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Abstract

I study the trading behavior of investors in this relatively new and unregulated
bitcoin market. By parsing transaction data from the bitcoin blockchain, I search for
addresses that are connected based on their trading behavior and identify the bit-
coin investor network. I find that, from June 2016 to May 2019, addresses that are
connected in the network earn 20.75% higher return than their unconnected peers on
average. Furthermore, the return difference also exists among these connected ad-
dresses. By dividing the connected addresses into ten groups I find the addresses in
the top two groups earn higher returns than the rest connected addresses. Among
the addresses inside the top two groups, I find that, compared with degree centrality,

higher eigenvector centrality is a more related indicator to higher returns.
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1 Introduction

This paper asks two questions: (1) Comparing with investors who are unconnected in
the bitcoin investor network, do connected investors earn a higher return? (2) Do more
connected investors earn a higher return than less connected investors? To answer the first
question, I construct a bitcoin investor network using raw transaction data from the bitcoin
blockchain. Based on the network, all the qualified transaction addresses are clustered into
a connected group and an unconnected group. I find that, on average, over the period from
June 2016 to May 2019, the return of the connected group is 20.75% higher than that of the
unconnected group. To answer the second question, I divide the addresses into eleven groups:
the unconnected addresses serve as the base group, and the connected addresses are divided
into ten groups based on either their degree centrality or their eigenvector centrality. I find
that there is another return difference between these connected addresses. The addresses in
the top two groups consistently show higher returns than all the rest connected addresses, no
matter the groups are divided based on degree centrality or eigenvector centrality. Further-
more, | test the importance of degree centrality and eigenvector centrality to the addresses
returns in the top two groups, and I find that eigenvector centrality is a better measure to
predict these most central addresses’ investment returns.

I also conduct a series of robustness checks. I choose three different thresholds of estab-
lishing the network connection between addresses, and 2-week and weekly returns are used
to replace the monthly returns used in the main results. It turns out that the main results
of this paper are not sensitive to these choices. To see how the results change as the bit-
coin market is becoming bigger and more mature, I also break down the whole sample into
three periods. All these results consistently show that investment return difference exists not
only between the connected and unconnected group but also exists among those connected
addresses.

A number of studies focus on bitcoin investors’ characteristics or behaviors. Xi et al.
(2020) conduct a web-based revealed preference survey to profile Initial Coin Offering (ICO)
investors’ characteristics in China and Australia, and they find the investing motivation
factors are different in these two countries. After analyzing the bitcoin trading data from
Mt. Gox, Glaser et al. (2014) conclude that new bitcoin users from 2011 to 2013 tend to treat
bitcoin as an alternative investment option rather than a new currency. This result aligns
with the survey result conducted by Mahomed et al. (2018) in South Africa. Using Mt. Gox
exchange trading data, Gandal et al. (2018) and Chen et al. (2019) demonstrate that there are
serious market manipulations inside Mt. Gox exchange, which causes unprecedented spikes

in the bitcoin price. Exchange data is the ideal data source for us to study bitcoin investors’



behavior. However, exchange data are usually tightly secured by bitcoin exchanges as their
own asset. The leaked Mt. Gox exchange trading data has been widely used in multiple
studies, but the drawback is that this dataset only covers the date period from April 2011 to
November 2013. It does not shine a light on more recent development in the bitcoin market.
In this study, I am using the data obtained directly from the bitcoin blockchain. Bitcoin
blockchain raw data is freely accessible to anyone on the internet, which allows me to choose
the periods that can better capture the dynamic change of the bitcoin market in the past few
years. However, bitcoin blockchain raw data also brings new challenges to the analysis: the
transaction data are connected to bitcoin addresses, not individual investors. In this paper,
I proposed a simplified parsing procedure to mitigate this drawback.

Most studies on the investors network are done only on stock markets. By exploiting a
dataset that includes all account-level trading information on the Istanbul Stock Exchange in
2005, Ozsoylev et al. (2014) find that investors with higher centrality can earn higher returns.
Rossi et al. (2018) show that investment managers who are better connected tend to have
a better portfolio performance. Ahern (2017) analyzes an illegal insider trading network
and finds that people in this network earn a 35% return over 21 days, and more central
traders in this network can earn even greater returns. Walden (2019) introduces a dynamic
noisy rational expectations model and finds out that an agent’s profitability is determined
by Katz centrality. To my best knowledge, most information network studies are conducted
using trading data from the stock market, which is usually a highly regulated and mature
market. However, here, I look at the bitcoin market as a new market with fewer government
regulations. Liu and Tsyvinski (2020) find that coin market returns are positively related to
cryptocurrency network growth rates, and current cryptocurrency prices include information
about the expected network growth. As a complement to their study, this study focuses on
how returns differ among investors inside the bitcoin network using address-level transaction
data. This paper will closely follow the approach in Ozsoylev et al. (2014), and see if the
widely observed positive relationship between centrality and profitability also applies to the
bitcoin market.

The remainder of the paper is structured as follows: section 2 introduces the basic tech-
nical background about bitcoin. Section 3 explains data sources and the blockchain data
parsing procedure. Section 4 constructs the bitcoin investor network. Section 5 shows the
empirical results about the effect of connectedness and centrality on bitcoin investment re-

turns. Section 6 concludes the paper.



2 Background

When bitcoin first debuted in 2008, Nakamoto (2008) promoted it as a replacement of
our current payment system. In Satoshi’s mind, bitcoin is a decentralized payment system
that does not need a centralized clearinghouse but can still keep transaction records secure
and immutable. Bitcoin the token itself is, more or less, a byproduct of this revolutionary
payment system. Twelve years later, China government is now testing its government-back
cryptocurrency in some cities. Facebook proposed a new cryptocurrency Libra, and the
project is set to launch in 2020. Cryptocurrency this concept has gained tremendous popu-
larity among regulation institutions and academia. In the following sections, I will lay out
some necessary technical details about bitcoin. I hope this can help readers better understand

how to identify the bitcoin investor network from bitcoin transactions.

2.1 Structure of a bitcoin block

Blocks are defined as storage units that contain confirmed transaction data. These blocks
comprise what is called a blockchain, which is a sequence of blocks. Each block in the
blockchain contains a piece of information about the location of its previous block.! The size
of each block has been set to be less than 1 MB. The block size limit ensures that each block
can only contain a certain number of transaction records. Meanwhile, every block includes
a block header (BH), which includes six fields: version, previous block hash, merkle root,
timestamp, target and nonce. The complete structure of a bitcoin block is well summarized
by Antonopoulos (2017) as in Table 1.2  In this study, the most relevant data comes from

the Transactions section in every bitcoin block.

2.2 Bitcoin transactions

Every transaction in the bitcoin system consists of two parts: transaction input and
transaction output. Except for coinbase transactions, a transaction input usually should
come from an unspent transaction output (UTXO) generated from a previous transaction.
In Table 2, I list the most important components in a bitcoin transaction.

When we say a user has received bitcoin from others, what we mean is that this user’s

!Technically speaking, blockchain is not just a chain, it has many branches due to the occurrence of forks.
But this is irrelevant to this study. So I can simply think it is just a chain constructed by thousands of blocks.

2Hash function can transfer data of arbitrary size into data of a fixed size. And the output can be called
hash. Hash function is pre-image resistance, which means as long as the input is the same, you can always
get the same output, but you are not able to deduce the input from the output.

3Merkle root is the root of merkle trees, which are data structures that helps nodes quickly verify trans-
actions and reduce data transaction.



bitcoin wallet has detected a new UTXO that can be spent by one of the private keys
controlled by this wallet. One feature of UTXO is that UTXO is an indivisible chunk of
bitcoin, just like a dollar bill. Users cannot spend a part of a UTXO in one transaction just
like they cannot use a part of a dollar bill in one transaction. However, the good news is,
unlike in our daily life that we have to worry about how many 5 dollar bills and 20 dollar bills
we need to take out of our wallets to fulfill a $107 transaction, bitcoin wallets will take care
of these tedious calculations. The user only needs to tell the bitcoin wallet what the desired
transaction amount and transaction fee are, and then the bitcoin wallet can automatically
select from all the UTXOs that are controlled by the wallet to compose an amount equal or
greater than the desired transaction amount.

To verify the ownership of a UTXO, bitcoin relies on the public-key cryptography. A
digital wallet can generate, in theory, unlimited pairs of public/private keys. A public key is
included in every UTXO. Public keys tell the whole bitcoin network who are the receivers of
these UTXOs. Private keys function as certifications telling miners you are the real owner of
these UTXOs, because one public key can only be deciphered by its corresponding private
key. To simplify the analysis, here we can think of each UTXO as a dollar bill with a face
value equal to the amount of bitcoin embedded in this UTXO. For example, in person A’s
digital wallet, there are 2 pairs of public/private keys (public key P1/private key1, public key
P2 /private key2). P1 link to UTXO1 (0.3 bitcoin) and UTXO2 (0.7 bitcoins) respectively.
And P2 links to UTXO3 (2 bitcoin). Now person A wants to send 2.5 bitcoins to person B’s
public key (public key P3). As I mentioned above, bitcoin works like a cash system. Person
A cannot send 1 bitcoin from P1 and 1.5 bitcoins from P2 to public key P3. What person
A can do is send out all 3 bitcoins: 2.5 bitcoins to public key P3 and 0.49 bitcoin to his/her
own public key. The 0.01 bitcoin difference serves as the transaction fee collected by the
miner who confirmed the transaction. A simplified transaction framework is illustrated in
Figure 1.%

In Figure 1, person A sends back the rest 0.49 bitcoin change to public address P1, that
is how we can figure out the 0.49 bitcoin is not a real transaction. In the bitcoin community,
people usually called these self-transactions as change transactions. Change transactions are
easy to be detected if people keep sending back the changes to any input addresses. However,
directly sending back changes to one of the already used addresses may give other people the
ability to trace back all the transactions related to person A. To protect his/her privacy, A
can ask the bitcoin wallet to generate a new pair of public key X/private key X and send the

rest 0.49 bitcoin to public key X (see Figure 2). By doing so, the outsider can never tell if

4Here I use public keys instead of bitcoin addresses (publish key hashes) to illustrate a simplified version
of transaction process. Nowadays, majority transactions actually use bitcoin addresses on the output side.



the 0.49 bitcoin transaction is a real transaction or just a change transaction. This practice
is usually recommended to anyone who wants to use bitcoin and also wants to keep their
privacy. However, this practice also brings out two big challenges to academic researches: (1)
it is difficult to cluster the transaction data into individual investor level because investors
can generate new addresses for every new transaction to cover their trading traces; (2) it is
quite challenging to filter out all the change transactions from the transaction dataset, given
investors can always generate new addresses to receive changes. There is no perfect way to
address the above two difficulties when we are dealing with bitcoin data. In the following

section, I will propose some solutions to mitigate the concern.

3 Data

3.1 Data source

In the bitcoin transaction raw data, the input side does not include the real transaction
amount. Instead, the input side includes the UTXOs that are supposed to be used to fulfill
the transaction. It is the miners’ responsibility to verify if these UTXOs contain enough
bitcoins to fulfill this transaction. The way how raw transaction data is stored in blockchain
makes it not user-friendly to our human eyes. Luckily, Google has already pre-parsed the
raw data and made the dataset more human-friendly. In the following transaction analysis, I
will use Google’s bitcoin transaction data as my data source. Considering the huge amount
of data that needs to be processed, I choose to use Google’s BigQuery service to pre-process
the whole dataset and use R for the final stage of data analysis.

I also use the minute-level bitcoin price data from Bitstamp and Coinbase to construct a
block-level bitcoin price data. If the price data is available on both Bitstamp and Coinbase, I
use the average value to represent the block-level bitcoin price data. If the price data is only
available on either Bitstamp or Coinbase, I use the available data to represent the block-level
bitcoin price data. If the price data is not available from both sources, the value will be

imputed based on the neighboring available values.

3.2 Data parsing

As mentioned in the background section, in theory, users can generate a new pub-
lic/private key pair for each transaction to hide their identities. One challenge when dealing
with bitcoin data is that we can never be certain if two addresses are owned by the same
person or owned by two different people. Meiklejohn et al. (2013) propose two heuristic rules

to parse bitcoin addresses data: (1) if two public keys are used as inputs in the same trans-



action, then these two public keys are considered to be owned by the same person; (2) the
change address used as output in a transaction should be recognized as it is also controlled

by the person who initiates the transaction.’®

Even though these two heuristic rules look
plausible, they are not practically perfect in some situations. Kalodner et al. (2020) point
out that rule (1) does not apply to CoinJoin transactions.® Meanwhile, it is very difficult to
distinguish change transactions from real transactions. One way proposed to detect change
address is if this address has only been used once, then it is a change address and should
be owned by the same person who owns the input addresses. However, this method may
mislabel some long-term investors and create false super-clusters. Especially, in this study,
more than 50% of addresses during the examined period only showed up once in the dataset.

In this study, I am mostly interested in what happened from June 2017 to May 2018. In
this period, the bitcoin price increased from 2,000 dollars to almost 20,000 dollars. Bitcoin
and related cryptocurrencies dominated worldwide business news coverage. Meanwhile, 1
also know that bitcoin had the biggest price drop from November 2018 to February 2019. To
test the dynamic change in the bitcoin market, I examine three periods in this study: period
1 from 2016-06-01 to 2017-05-31, period 2 from 2017-06-01 to 2018-05-31, and period 3 from
2018-06-01 to 2019-05-31. Period 1 represents the bitcoin market when it is not popularized
by mass media outlets. Period 2 represents the period when bitcoin became a mainstream
investment option and experienced an astonishing price jump. Period 3 represents the period
when the public hype about bitcoin was dying out, and bitcoin had the largest price drop in
its history.

Table 3 shows how many unique transaction addresses are recorded into the bitcoin
blockchain in each period. The table also shows how many addresses showed up multi-
ple times in each period. More than 100 million unique transaction addresses are recorded
into the bitcoin blockchain in each period, which makes it infeasible for me to include all the
addresses into the dataset. Furthermore, more than 90% of addresses showed up less than 3
times in each period. In this study, I use monthly returns, 2-week returns, and weekly returns
to measure investors’ performance on a short-term horizon. If the address does not trade
frequently, I can safely assume this investor does not care that much about the short-term
horizon. Also, considering computing pressure, only the addresses that appeared at least 10
times are included in the sample set, which means that around 2 million unique transaction
addresses will be examined in each period.

Given the large amount of data I am dealing with, I choose to use a set of simplified rules

to parse the bitcoin transaction data:

®Change address refers to the output address(es) in a change transaction.
6CoinJoin transctions combine transctions from different spenders into one transaction, in this way out-
siders cannot tell which spender paid which recipient(s).



Step 1. Subsample the original transaction dataset to only include the addresses that
showed up at least 10 times during a given period.” In this step, I filter out all the privacy-
centered users who only use addresses once for any transaction, along with the users who do
not care about short-term profitability. This step can help me significantly reduce computing
pressure. Meanwhile, those privacy-centered bitcoin users may have other motivations besides
the financial one when they choose to use bitcoin, so remove them can also reduce noise in
the data sample.

Step 2: In each transaction, I remove all the output addresses that also show up on the
input side because these output addresses are used as change addresses for sure. In this step,
I only remove these most obvious change addresses from the dataset. I do not want to adopt
more aggressive methods to parse out change addresses because there is no perfect method
to detect all the change addresses and I may end up mislabeling some addresses.

Step 3: In each transaction, I use one input address A to represent all the input addresses.
It is almost certain that the same person owns all the input addresses in the same transaction.
As I mentioned at the beginning of this subsection, CoinJoin transactions can be exceptions.
However, comparing with joining in a CoinJoin transaction to protect privacy, a much easier
way is to generate different addresses for different transactions. The addresses in this dataset
have already been used more than 10 times, I do not think their owners will be interested in
participating in CoinJion transactions to protect their identities.

My method will certainly miss some connections between addresses and treat some ad-
dresses owned by the same person as they have different owners. However, this simplified
method can significantly reduce computing power and exclude false super-clusters. In this

next section, I will use the parsed dataset to construct the bitcoin investor network.

4 The Bitcoin Investor Network

4.1 Identifying the bitcoin investor network

I define the bitcoin investor network in the same fashion as the empirical investor network
proposed by Ozsoylev et al. (2014). However, there are a few differences between the bitcoin
market and the stock market: (1) In the bitcoin market, there is only bitcoin this one asset
to trade. (2) Bitcoin transactions are confirmed in batches. When a new block is verified by
the bitcoin network, all the transactions inside this block are confirmed at the same time.

Hence, I define the bitcoin investor network as:

“In this subsample, each transaction record may no longer preserve all the involved addresses. However,
my goal is calculate address level return, so transaction level incompleteness will not affect my final result.



b,M

Definition The bitcoin investor network , ¢2®™ is defined such that for each pair of in-

Ab,M

vestors, i, j # i, € = 1 if and only if agents ¢ and j traded in the same direction within

Ab blocks at least M times over the period.

I calculate the bitcoin investor network using the Ab = 1 and picking M = 10, 30, 50. The
first reason why I keep the time window Ab short is that I want to separate the information-
driven trading, which is usually referred as “fast” trading and happens in a short time win-
dow, from other types of trading. The second reason for keeping Ab short is it can reduce
computing pressure.

This paper constructs bitcoin investor networks separately for three different periods (see
subsection 3.2). The reason behind this decision is that I am concerned about the change in
the composition of bitcoin investors given the landscape of the bitcoin market has changed a
lot during these three periods. For example, some addresses may be active in period 1 but not
active in period 2. By estimating the network using the whole sample, I may under-sample
the addresses that are only active in a certain period. Meanwhile, if there is no dramatic
investor change, estimating the network by periods should give us similar results as using
the whole data sample. If there is significant investor change, then estimating the network
by periods can better capture the dynamic change in the bitcoin investor network. Table 4
provides the summary statistics of this bitcoin investor network given M = 10, 30, 50 during
different periods. We can see that, overall, this network is very sparse, and the statistics are

mostly similar across these three different periods.

4.2 Node centrality and trading return

After identifying the bitcoin investor network, I can now measure the centrality of every
node (address) in this network. Many methods have been proposed to measures network
centrality.® In this paper, I use both degree centrality and eigenvector centrality, same as the
centrality measures used in Ozsoylev et al. (2014). Degree centrality measures how important
a node is in the network by counting how many other nodes are connected with this node.
Eigenvector centrality measures a node’s importance by considering the importance of all
the neighbors connected with the node. Degree centrality and eigenvalue centrality describe
different characteristics of the nodes in this bitcoin investor network. The degree centrality
measures how widely connected a node is in this network. The eigenvector centrality tells us

how important a node’s position is in this network. If a node is the only one that connects two

8A thorough discussion about network centrality, please see Jackson (2010).



large communities in the network, this node may not have a high degree centrality but can
have a high eigenvector centrality. Due to the computing limitation of calculating eigenvector
centrality, in this paper, I only calculate nodes’ centrality values when M = 50.

To measure trading returns, I follow the same approach as in Barber et al. (2009) and
Ozsoylev et al. (2014). I define a window length to be AB = 4320 blocks, which is roughly a
month given bitcoin blocks are generated, on average, every 10 minutes. Defining the window
in terms of blocks can help us precisely match the trading returns with the transaction data,
which is also generated by blocks. In the Appendix, for the robustness check, I also change
the window length to 2160 blocks and 1008 blocks, which correspond to two weeks and one

week. For each trade, z, the potential return is:

pb—i—AB _ Pb
iz = SIGN * (T - Ttbiu)

where P**2B is the bitcoin price B blocks later after the trade happened in block b. When
we set B = 4320, this roughly tells us the monthly return of each trade. ryu;; comes from
the daily U.S. Treasury yield curve rates, I impute the rate value for weekends based on the
neighboring available values.” Both data sources have been annualized to make sure they
are comparable.!” The symbol sign indicts the trade direction, and it should be negative for
input addresses and positive for output addresses. To further reduce the computing pressure
and lower the computing memory requirement, I group the dataset by addresses and months,
then calculate the average as an address’s return for each month.

Due to the difficulty of linking all the addresses that are owned by the same investor, it is
not possible to accurately calculate the trade amount of every investor. This drawback makes
the value-weighted average return proposed in Ozsoylev et al. (2014) highly inaccurate in this
study. For example, if there are three addresses: a, b, ¢ that are owned by investor A. Suppose
c serves as a safe vault, and A usually transfer a large amount of bitcoin into ¢ and move a
small amount of bitcoin out of ¢ during the period when bitcoin price is increasing rapidly. If
I failed to realize that these addresses are owned by the same person and all the transactions
among them are actually change transactions, which should be excluded from the dataset, I
will amplify these abnormal returns caused by these change addresses in regressions by using
weighted return. To mitigate the effect of these undetected change transactions, I think the

potential return is a better candidate to measure investors’ performance. Potential return

9The daily U.S. Treasury yield curve rate can be found on the U.S. department of the Treasury websitte.

10To annualized the monthly return, I time the results with 365/30.5. Following the same logic, I use
365/14 for two-week return data and 365/7 for weekly return data. I did not use the formula (1 + )" —1
because bitcoin returns are very high in some months, (1 +r)* — 1 may make the performance of an address
in a high return month dominates its whole year performance.
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measures how often an address can show up at the right side of a trade at the right time and
ignores the trading amount due to incomplete trading information on the individual investor
level. By using potential returns, we can focus on the effect of centrality on the profitability
of addresses without worrying about if these addresses are owned by the same investor or

not.

4.3 Stability of the bitcoin investor network over time

In subsection 4.1 I have already stated the benefits of estimating the bitcoin investor
network individually for three different periods. Here I try to examine if the bitcoin investor
network is stable over these periods. Following Ozsoylev et al. (2014) approach, T try to
answer whether the bitcoin investor networks are more similar in these three periods than if
they were randomly generated in these periods.

There are two different methods to test the stability of the bitcoin investor network. The
first intuitive way is assuming the network links are generated randomly. Suppose a network
contains /N nodes and k; links, then the possibility of any two different nodes that are linked is
ki1/ K, where K = N(N —1)/2 is the total possible links in this network. Suppose the network
in two different periods has k; and ks links respectively, and k1 << K, ky << K, then the
expected number of overlap links (E,4ndom|y]) in these two periods should be approximately:!!

kik
Erandom [y] ~ %

where k; is the number of links in the first period, ks is the number of links in the second
period, K is all the possible links among all the addresses in the network.

Meanwhile, considering the bitcoin investor network is not truly random generated and
the degree distribution has heavy tails, I also adopt the degree-adjusted method proposed
in the Internet Appendix of Ozsoylev et al. (2014). By taking degree into consideration,
the degree-adjusted expected number of overlap links (Epegree-adjusted) between period 1 and

period 2 can be written as:

=1

ko
E egree-adjusted — Dz_12
Deg djusted leNg( )

where N is the number of investors in the network, D is the degree distribution of the network

in period 1.

HCondition k; << K, ko << K is easily satisfied in this study given the bitcoin investor network is very
sparse.
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Table 5 shows the results of the above two methods when M = 50.12 We can see that
the actual number of overlap links between any two periods is significantly higher than the
expected number of overlap links when we assume the network links are randomly generated.
When I am using the degree-adjusted method, the actual number of overlap links is still
significantly higher than the theory predicted. Using both methods, we should have high
confidence to reject the null hypothesis that the network is not stable over time. I also used
M = 10, 30 for robustness checks. The results for M = 10, 30 are included in the appendix
(Table A.1, Table A.2). We still can see that, under the random generation assumption, the
real overlap link data still reject the null hypothesis that the network is not stable over time.
However, the picture is not so clear when we compare the results using the degree-adjusted
method when M = 10. These results may indicate that high-connected, more central nodes
stay active in the bitcoin investor network longer than the rest nodes. Hence, when I set
M = 50 and rule out more less-connected nodes, we can observe a much more stable network
over time.

Given we are almost certain that the network is stable over time when M = 50, I will
report the results using M = 50 as the main results and use M = 10, 30 for robustness check.
Also, I will report the results for the whole data sample along with the results for each period

to provide more detailed information.

5 Results

5.1 Do connected addresses have better profitability?

I divide the addresses into two groups based on their degree values: the unconnected and
connected groups. The unconnected group includes all the addresses that are not connected
with any other addresses in my sample. The connected group includes the addresses which
are connected with other addresses. To avoid influence by outliers and maintain consistency
with the following regression part, I truncate the addresses in the top two percentiles of
connectedness in the dataset. I calculate the median monthly return of all the addresses in
each group for every month in the sample period under M = 10, 30, 50, and the results are
shown in Figure 3, Figure 4, and Figure 5.

When M = 10, we can see that the median return of the connected group is much
higher than that of the unconnected group when the bitcoin market return, in general, is

increasing. The most obvious example is in November 2017, the median annualized monthly

12The number of links in Table 5 is slighted different from the number in Table 4. This is because Ozsoylev
et al. (2014) counted self-links in their method. To maintain consistency, I also include self-links in this table.
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return in the connected group is around 917% and 556% for the unconnected group. Also,
the connected group is doing worse during the period when the bitcoin market return, in
general, is dropping. The patterns are consistent when I increase the threshold to M = 30 or
50 even though the median return difference between these two groups shrinks. This is not
surprising because more addresses have been categorized into the unconnected group when
we raise the threshold M to 30 or 50.

To further examine if the return difference between the connected and the unconnected
group is consistent, in addition to using monthly return data, I also plot out the median
2-week return and weekly return of these two groups under M = 10, 30,50 (see Figure A.1-
Figure A.6 in appendix). The results consistently show that the connected group gains higher
returns than the unconnected group when the bitcoin market return, in general, is increasing.
And sometimes, when the bitcoin market return is dropping, the connected group may suffer
more than the unconnected group. No matter which format of returns or threshold M I
choose, the pattern is consistent and clear.

In the next step, I want to make sure the connected group’s higher profitability is not
driven by a small group of addresses in the group. Hence, I further divide the addresses in the
connected group into 10 subgroups based on their degree values. I then calculate the median
returns of each group over the full time period and compare them with the median return of
the unconnected group. Figure 6 shows the results under different threshold M = 10, 30, 50.
No matter which M 1 pick, it is clear that the median return of every decile in the connected
group is higher than the median return of the unconnected group. This conclusion still holds
when I replace monthly returns with 2-week returns or weekly returns (see Figure A.7 and
Figure A.8).

To better understand the effect of being connected, I do multivariate regressions on ad-
dress level to see how connectedness can affect the return rate. Meanwhile, I also control the
monthly market trade volume (Q), the monthly market number of trades (N), the monthly
individual trade volume (q), the monthly individual number of trades (n) and the monthly
bitcoin price volatility (V), which is calculated as the standard deviation of bitcoin prices in
each month. Table 6 shows the summary statistics of these variables over the whole sample
period and breaks it down into period 1,2, and 3, representing the different bitcoin market
periods described in subsection 3.2. All of these variables are in log-from.

I regress the returns of addresses on these variables mentioned in Table 6 using the whole
data sample. Then I further break it down to the three different periods. Table 7 shows
the results when M = 50. The difference between the connected and unconnected groups is
relatively small in period 1, during which the bitcoin was only popular in some small circles.

The difference becomes very obvious during period 2, when bitcoin finally entered the public
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eye and gained its worldwide popularity. During period 2, the addresses in the connected
group, on average, have almost 45% higher return rate than their peers in the unconnected
group. Hence, it is obvious to say connected addresses have better profitability. I also conduct
the same regression using M = 10, 30, and replace monthly returns with 2-week returns or
weekly returns for robustness check, and the results consistently show that the connected
addresses have significantly higher profitability than the unconnected ones. The difference is
most obvious in period 2, during which the bitcoin price had a rapid increase and reached its
historically high. Detailed regression results can be found in the appendix from Table A.3 to
Table A.10.

5.2 Do more central addresses earn higher returns?

I have shown that addresses being connected in the network have higher returns than
their unconnected peers, and naturally, the next question to ask is whether it matters to be
more central than your peers in the network.

There are multiple ways to measure network centrality, and I choose the most commonly
used measures: degree centrality and eigenvector centrality. Degree centrality measures how
connected a node is by counting the number of nodes connected to this node. Usually, we
expect a more connected node to be playing a more important role in spreading information in
the network as an information hub. Being a hub may give a node the advantage of accessing
more exclusive information about the market, which may help the node earn higher return.
However, it is also worth mentioning that some addresses may not have a high degree value,
but they may become important information hubs by occupying strategical positions in the
network and being connected to some influential nodes. That is why I also consider the
eigenvector centrality in this analysis. FKEigenvector centrality measures how important a
node is by looking at how important its neighbors are. Eigenvector centrality is calculated
using iGraph package in R, and the value has been normalized to be between 0 and 1. Due
to computing limitations, here, I only report the results when M = 50.'3

Figure 7shows how addresses with different degree centrality values perform in the full
sample. [ divide the addresses in the connected group into 10 subgroups based on their degree
centrality values. Then I calculate the median monthly returns of each group over the whole
period and compare them with the median return of the unconnected group. This figure
shows that connected subgroups always have higher returns compared with the unconnected

group. Also, we can observe another return jump around the top two groups. These results

13Tn this study, Eigenvector centrality is calculated on Virgina Tech ARC servers using 20 cores (128
GB shared memory). Given the size of the network, more computing resources are needed to calculate the
Eigenvector centrality when M = 30 or 10.
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are consistent no matter which return data I use. Using the same approach, I also show the
performance of the addresses with different eigenvector centrality values in the full sample in
Figure 8. And the results are very similar.

To further test the higher return associated with the top two groups is not driven by a
specific period of data, I bread down the full sample into the three different periods mentioned
in subsection 3.2. The figures showing the relationship between return and degree centrality/
eigenvector centrality among different groups in different periods can be found in Figure A.9
to Figure A.14. In these figures, we can see that no matter which centrality measure we
choose to use, addresses in the top two most central groups are earning higher returns than
their other connected peers in the first two periods. A slight difference in these two periods
is that the return jump in the top two groups in the first period is not so dramatic as
in the second period. However, in the third period, the figures show that addresses in
the top two groups are doing even worse than the addresses in the unconnected group.
Directly drawing conclusions from the figures from different periods may be misleading. The
different shapes of the relationships between return and centrality may serve as a piece of
evidence reconfirming these three periods have captured some dynamic changes in the bitcoin
investment environment. As we mentioned in subsection 3.2, the first period represents a
period when this token is still out of the public eye; the second period represents a period
when ordinary investors flocked into the market and bitcoin price reached its historically
high; and the third period represents a period when bitcoin had the largest price drop in its
history.

To carefully examine the relationship between returns and groups with different centrality,
I run regressions for returns on groups with different centrality. The base group consists
of addresses without connections. The 1-10 groups in regression results represents the least
central group to the most central group. The groups are divided using either degree centrality
or eigenvector centrality. In the regressions, I also control bitcoin price volatility, market
number of trades, market trade volume, individual trade volume and individual number of
trades.The summary statistics of these variables are in Table 6. Table 8 shows the relationship
between monthly returns and groups with different centrality. From Table 8, we can reach
two conclusions: (1) most time, connected groups have higher returns than the unconnected
base group. There are only two exceptions in the first period, during which addresses in group
6 and group 7 may have lower returns than their unconnected peers. We do not see this kind
of exceptions in more recent periods. (2) the top two groups are having higher returns than
the other groups. This conclusion is consistent no matter these groups are identified based
on degree centrality or eigenvector centrality.

Table A.11 and Table A.12 replace the monthly returns with two-week returns and weekly
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returns for the robustness check. To visualize all these results, I also plot out the coefficients
from these regressions. Figure 9 and Figure 10 show the coefficients in the regressions for
returns on groups with different centralities using the full dataset. We can clearly see a
jump on the coefficient values around the top two groups in these two figures. This pattern
also matches the upward trend we observed in Figure 7 and Figure 8. Also, this pattern is
consistent no matter which return data we choose to use.

Recall in Figure A.9 to Figure A.14, we find out that the median return in the top two
groups is higher than that in other groups during the first two periods, but the conclusion does
not hold in the third period. After controlling some individual-level and macro-environment
variables, I also plot out the coefficients in these different periods. Figure A.15 to Figure A.18
show that the top two groups consistently have larger coefficient values, no matter whether
the groups are identified using degree centrality or eigenvector centrality. In the third period,
we can see the top two groups are having higher returns than the unconnected group because
the coefficients are positive. Meanwhile, addresses in these two groups are still earning higher
returns than their other connected peers. Among all these regressions, the top two groups
only seem to perform worse than their other connected peers in the third period when we
use weekly returns. Even in this case, the addresses in the 80 — 90% range still have the
highest return among all the groups. It is only the top 10% that does not show high weekly
returns.'4

All these discussed results suggest that the connected group can be further divided into
two subgroups: the central group, which includes addresses whose centrality belongs to the
top 20%, and the less-central group, which includes all the rest connected addresses. Besides
the return difference between the unconnected addresses and connected address, now we
observed another return difference among these connected addresses: the addresses in the

central group are earning even higher returns than the rest connected addresses.

5.3 Centrality measures in the central group

In the last subsection, we find the addresses that belong to the central group are having

higher returns than the rest connected addresses. And the conclusion is true no matter

A plausible explanation for the abnormal performance of the top 10% in the third period is that I
accidentally include some exchanges or other institutions in this group. These institutions, like bitcoin
exchanges, may have goals other than pursuing high returns in the bitcoin market. In this regression dataset,
I truncate the top two percent most connected addresses in the original dataset to avoid influence by outliers,
and we get the most connected address in the first period has 7707 connections, in the second period has
5896 connections. However, in the third period, the most connected address still has 16082 connections. If I
only include the addresses with less than 7000 degrees into the regression, then the results will be similar to
what we see in the first two periods. For the sake of consistency, in this study, I choose to only truncate the
top 2% most connected addresses in all three periods.
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which centrality measure is used. One explanation for this is maybe degree centrality and
eigenvector centrality are both important. Another explanation is that these two measures
are correlated, but they may not be equally important. In this subsection, I try to test these
two theories. I run regressions for returns on degree centrality and eigenvector centrality
and the interaction of these two measures among the addresses which belong to the top
20% of both centrality measures. Same as previous regression, here I also include bitcoin
price volatility, market number of trades, market trade volume, individual trade volume, and
individual number of trades as control variables. The summary statistics of these variables
are in Table 9.

Regression results are reported in Table 10. We can see that, compared with degree
centrality, eigenvector centrality seems to be a better measure to predict investment returns
of these most central addresses in the bitcoin investor network. The results from the different
period samples make the conclusion even more obvious: the coefficient of degree centrality
becomes negative when we break down the full sample into three periods. The conclusion
also holds no matter which type of returns I use in the regressions.

Even though the regression results consistently show that eigenvector centrality is a bet-
ter measure to predict the returns of these most central addresses, the reason behind this
conclusion still bears further research. One plausible explanation is that the results pick up
the exchange addresses effect. Bitcoin exchanges profit from commissions, which are usually
charged inside exchanges and off the bitcoin blockchain. These exchange addresses may not
care much about on-chain investment returns, but they also tend to have a large number of
connections (high degree centrality). If these exchange addresses are still part of the most
central addresses in this dataset, then we may find negative coefficients of degree centrality
and the interaction term of degree and eigenvector centrality. Another plausible explanation
is that adding more connections may not be beneficial to those addresses which are already
in the most central position in the network. What these addresses need is connecting with
more central addresses like themselves. On some occasions, adding low-quality connections

may bring in more noise and affect these central addresses’ investment performance.

6 Conclusion

This paper reaches two conclusions: (1) compared with their unconnected peers, con-
nected investors earn higher returns, and (2) the connected investors can be further divided
into two subgroups: the less central group describes those who have connections but are
not connected to other important investors, the central group describe those who occupy

more central positions in the network and earn even higher returns than their peers in the
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less-central group. I also find that, compared with degree centrality, eigenvector centrality
is a better measure to capture the addresses’ investment returns in the central group.

In this paper, I assume each address in my dataset is owned by a unique investor. How-
ever, due to the data parsing limitation, this approach almost certainly mis-categorize some
addresses that are actually controlled by the same person. To mitigate the effect of this mis-
categorization issue on results, I use each address’s potential return instead of the weighted
actual return. With the improvement of data parsing technology, such as BlockSci (Kalodner
et al., 2020), we may be able to cluster bitcoin addresses into the individual level with higher
accuracy. We can then calculate an individual investor’s weighted actual return, which may
give us a more precise picture of how connectedness and centrality are related to return in

the bitcoin market.
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Figure 1: A simplified transaction framework I This figure shows a simplified trans-
action framework. Private key 1 in wallet A controls UTXO1 and UTXO2, private key 2
controls UTX03. A extracts 3 BTC from her bitcoin wallet, sends 2.5 BTC to B, and sends
back 0.49 BTC to herself. The 0.1 BTC difference is served as transaction fee collected by
the miner who confirmed this transaction.
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Figure 2: A simplified transaction framework II This figure shows a simplified trans-
action framework. Private key 1 in wallet A controls UTXO1 and UTXO2, private key 2
controls UTXO3. A extracts 3 BTC from her bitcoin wallet, sends 2.5 BTC to B. In this
transaction, I do not know the identity of the person who receive the 0.49 BTC. It could be
a new address created by A to receive the change, or it could be owned by a third person.
The 0.1 BTC difference is served as transaction fee collected by the miner who confirmed
this transaction.
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Figure 3: Median monthly return in connected and unconnected groups, M=10
In this figure, addresses are divided into connected group and unconnected group based on
threshold M = 10. Then I calculate the median monthly return of all the addresses in
each group for every month. The connected group has higher profitability than unconnected
group when the whole bitcoin market is experiencing positive returns, but also suffers lower
profitability when the whole market is experiencing negative returns.
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Figure 4: Median monthly return in connected and unconnected groups, M=30
In this figure, addresses are divided into connected group and unconnected group based on
threshold M = 30. Then I calculate the median monthly return of all the addresses in
each group for every month. The connected group has higher profitability than unconnected
group when the whole bitcoin market is experiencing positive returns, but also suffers lower
profitability when the whole market is experiencing negative returns.
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Figure 5: Median monthly return in connected and unconnected groups, M=50
In this figure, addresses are divided into connected group and unconnected group based on
threshold M = 50. Then I calculate the median monthly return of all the addresses in
each group for every month. The connected group has higher profitability than unconnected
group when the whole bitcoin market is experiencing positive returns, but also suffers lower
profitability when the whole market is experiencing negative returns.
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Figure 6: Median monthly return in connected and unconnected groups In this
figure, I further divide the addresses in the connected group into 10 subgroups based on their
degree values. I calculate the median monthly returns of each group over the full time period
and compared them with the median return of the unconnected group. This figure shows
connected subgroups always have higher returns no matter which threshold M I choose.
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Figure 7: Median returns in groups with different degree centrality In this figure, I
divide the addresses in the connected group into 10 subgroups based on their degree centrality
values. I calculate the median monthly returns of each group over the full time period
and compared them with the median return of the unconnected group. This figure shows
connected subgroups always have higher returns compared with the unconnected group. Also
there is another return jump around the top 20%. These results are consistent no matter
which return data I use.

1.0
/
monthly return 7/
0.84 == == two-week return
= == = weekly return /7
/
2
5 0.61 ~ / %
+ ~
o 7/ ~ - / o4
- ~
c 7/ '~ ~ / 7
o s . - = o~ *
5 . ~ - -~ e = = = o y 4
@ 0.4 , 7 T~ )
€ . ~ 7
.- e e e s
(/
0.2
0.0

unconnected 0-10%  10-20%  20-30%  30-40%  40-50%  50-60%  60-70%  70-80%  80-90%  top 10%
eigenvector centrality decile

Figure 8: Median returns in groups with different eigenvector centrality In this
figure, I divide the addresses in the connected group into 10 subgroups based on their eigen-
vector centrality values. I calculate the median monthly returns of each group over the full
time period and compared them with the median return of the unconnected group. This fig-
ure shows connected subgroups always have higher returns compared with the unconnected
group. Also there is another return jump around the top 20%. These results are consistent
no matter which return data I use.
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If the coefficient is not significant, then it will be replaced with 0.
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Figure 10: Regression coefficients for returns on groups with different eigenvector
centralities This figure shows the coefficients in the regression for returns on groups with
different eigenvector centralities. The full sample is used in this regression. Three different
returns: monthly returns, two-week returns and weekly returns are used to represent the
return data. If the coefficient is not significant, then it will be replaced with 0.
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Table 1: The structure of a bitcoin block

Field Description

Block Size The size of the block

BH: Version A version number to track software/protocol upgrades

BH: Previous Block Hash | A reference to the hash of the previous block in the chain

BH: Merkle Root A hash of the root of the merkle tree of this block’s transactions
BH: Timestamp The approximate creation time of this block

BH: Target The Proof-of-Work algorithm target for this block

BH: Nonce A counter used for the Proof-of-Work algorithm

Transaction Counter The number of transactions included in this block

Transactions The transactions data

This table is adopted from Table 9-1 and Table 9-2 in Antonopoulos (2017).

Table 2: The structure of a bitcoin transaction

Field Description

Input: Transaction Hash | Pointer to the previous transaction that contains the UTXO
Input: Output Index The location of the UTXO in the previous transaction

Input: Unlocking Script | The script to fullfill the condition set by the UTXO locking script
Output: Amount The amount of bitcoin that should be sent to the output address
Output: Locking Script | The script that set the condition to spend the bitcoin

This table is adopted from Table 6-1 and Table 6-2 in Antonopoulos (2017).

Table 3: Number of unique addresses in each period under different criteria

Appear Times | Period 1 (%) Period 2 (%) Period 3 (%)
>1 116,796,653 | 100 | 139,381,552 | 100 | 121,402,453 | 100
>2 63,967,311 | 54.77 | 74,344,299 | 53.34 | 65,959,905 | 54.33
>3 7,511,554 6.43 | 10,481,970 | 7.52 7,979,337 6.57
>H 4,135,734 3.54 5,241,400 3.76 4,143,966 3.41
>10 2,144,685 1.84 2,206,217 1.58 2,025,334 1.67
>30 733,001 0.63 574,290 0.41 637,315 0.52
>50 418,306 0.36 308,356 0.22 354,599 0.29

This table shows how many unique transaction addresses are recorded in the bitcoin
blockchain in each period. Period 1 represents Jun 2016-May 2017, period 2 represents Jun
2017-May 2018, and period 3 represents Jun 2018-May 2019. Appear times > 1 represents
the whole data sample, appear times > 2 means only includes the addresses that showed up
at least 2 time during a given period. (%) shows the percent of addresses that showed up
certain times in the dataset.
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Table 4: Summary statistics for the bitcoin investor network in different periods

Statistics M=10 M=30 M=50
Number of links 696,588,746 203,830,771 108,242,916
Period 1: Jun Average number of links 325 95 50
2016 - May 2017 | Fraction of links 0.0152% 0.0044% 0.0023%
Maximum number of links | 1,092,437 351,897 193,247
Number of links 736,537,035 209,150,592 92,857,510
Period 2: Jun Average number of links 334 95 42
2017 - May 2018 | Fraction of links 0.0151% 0.0043% 0.0019%
Maximum number of links | 1,234,352 311,727 162,539
Number of links 764,699,333 256,855,523 145,163,621
Period 3: Jun Average number of links 378 127 72
2018 - May 2019 Fraction of links 0.0187% 0.0063% 0.0036%
Maximum number of links | 1,120,383 332,901 168,979

Fraction of links is equal to average number of links divided by the number of all the potential
links a node can connect. The number of potential links is 2144684 in period 1, 2206216 in
period 2, 2025333 in period 3.

Table 5: Stability of the bitcoin investor network, M=50

Compared periods period 1-period 2 period 2-period 3 period 1-period 3
Number of links in period 1, k; 114,014,182 114,014,182
Number of links in period 2, ko 98,628,776 98,628,776

Number of links in period 3, k3 150,934,887 150,934,887
Overlap links, y 10,077,079 12,961,294 5,821,282
Erandom|[V] 675 894 1,033

Y/ Erandom|V] 14923.97 14499.97 5633.55
Eegree—adjusted|Y] 118,705 108,186 181,658

Y/ Edegree—adjusted|V] 84.89 119.81 32.05

The table shows the stability of the bitcoin investor network across the three periods. The
network is constructed when the connection threshold is set as M = 50. Period 1 is from
Jun 2016 to May 2017, period 2 is from Jun 2017 to May 2018, and period 3 is from Jun
2018 to May 2019. Two agents are linked if they trade in the same direction for multiple
time M. Overlap links, y, shows the number of intersecting links between two different
periods. Erandom|y] is the expected number of intersecting links between two periods if the
network is random. Egegrec—adjusted|y] 1S another measure of expected number of intersection
links between two periods, but it takes the degree distributions of the original networks into
consideration.
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Table 7: Connectedness and monthly return, M=>50

Full Sample First Period Second Period Third Period
Address Level Variables
Connoectedness 0.2075 0.0606 0.4475 0.1665
(>20) (>20) (>20) (>20)
Trade Volume -0.0543 -0.0764 -0.0995 0.0000
(<-20) (<-20) (<-20) (-0.1342)
-0.0486 0.0812 -0.0654 -0.1074
7 of Trades (<-20) (>20) (<-20) (<-20)
Market Level Variables
. e 0.0520 0.1621 0.8592 -0.4957
Price Volatility (>20) (>20) (>20) (<-20)
Trade Volume 1.7569 0.3722 7.1016 6.8990
(>20) (>20) (>20) (>20)
2.2585 4.8400 -8.2764 0.5978
# of Trades (>20) (>20) (<-20) (>20)
R? 0.1203 0.1404 0.2057 0.2464
obs. 26,242,261 8,046,594 9,314,410 8,881,202

This table display the results from the regression of monthly returns on connectedness, log
address-level trade volume, log address-level number of trades, log bitcoin price volatility, log
market-level trade volume, log market-level number of trade. I first examine the relationship
between return and connectedness using the whole sample, then I further break it down to
three different periods. All the results are reported with robust standard errors. The numbers
in the parentheses represent the t-statistics.
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Table 10:

Returns and centrality in the central group

Monthly Return

Full Sample

First Period Second Period Third Period

Degree Centrality -0.0224 -0.1679 -0.5186 -0.0895
(-1.27) (-4.77) (-7.42) (-9.34)
Eigenvector 0.5251 0.4887 1.8362 0.1810
Centrality (12.91) (6.47) (11.76) (7.75)
Degree x Eigen -0.0673 -0.0529 -0.2320 -0.0196
(-13.96) (-5.85) (-12.11) (-7.23)
R? 0.2336 0.2834 0.3369 0.3545
Two-week Return
Degree Centrality -0.0737 -0.2836 -0.2964 -0.2027
(-3.41) (-7.14) (-3.70) (-14.79)
Eigenvector 0.6624 0.8449 2.1017 0.3679
Centrality (13.43) (9.81) (11.82) (11.13)
Degree x Eigen -0.0878 -0.1010 -0.2761 -0.0402
(-15.02) (-9.77) (-12.68) (-10.49)
R? 0.2184 0.2703 0.3221 0.2406
Weekly Return
Degree Centrality -0.0387 -0.2021 0.0116 -0.1422
(-1.76) (-4.54) (0.14) (-9.42)
Eigenvector 0.5314 0.5855 1.7357 0.2266
Centrality (10.54) (6.04) (9.30) (6.33)
Degree x Eigen -0.0742 -0.0665 -0.2378 -0.0244
(-12.41) (-5.71) (-10.41) (-5.91)
R? 0.2038 0.2152 0.2394 0.1523
obs. 650,076 281,287 192,202 264,949

This table display the results from the regression of returns on degree centrality, eigenvec-
tor centrality and the interaction term, controlling address-level trade volume, address-level
number of trades, bitcoin price volatility, market-level trade volume, market-level number
of trade. I first examine the relationship between return and centrality in the central group
using the whole sample, then I further break it down to three different periods. All the vari-
ables are in log form. All the results are reported with robust standard errors. The numbers

in the parentheses represent the t-statistics.
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A Appendix

The results in the appendix section serve as a series of robustness checks of my main results
reported in the paper. All these robustness checks can be summarized as two approaches:
(1) in the first approach, instead of using M = 50 to establish addresses connections in the
bitcoin investor network, I also choose M = 10, 30 to verify if the results will be consistent
with the main results. (2) in the second approach, instead of using monthly returns, I use
2-week returns and weekly returns to verify if the conclusions in the main results still hold.
In the following part, I iterate all the possible situations listed in these two approaches, and

I find that all the results are consistent with the main results reported in the paper.
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Figure A.1: Median 2-week return in connected and unconnected groups, M=10
In this figure, addresses are divided into connected group and unconnected group based
on threshold M = 10. Then I calculate the median 2-week return of all the addresses in
each group for every month. The connected group has higher profitability than unconnected
group when the whole bitcoin market is experiencing positive returns, but also suffers lower
profitability when the whole market is experiencing negative returns.
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Figure A.2: Median 2-week return in connected and unconnected groups, M=30
In this figure, addresses are divided into connected group and unconnected group based on
threshold M = 30. Then I calculate the median 2-week return of all the addresses in each
group for every month. The connected group has higher profitability than unconnected group
when the whole bitcoin market is experiencing positive returns, but also has slightly lower
profitability when the whole market is experiencing negative returns.
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Figure A.3: Median 2-week return in connected and unconnected groups, M=50
In this figure, addresses are divided into connected group and unconnected group based on
threshold M = 50. Then I calculate the median 2-week return of all the addresses in each
group for every month. The connected group has higher profitability than unconnected group
when the whole bitcoin market is experiencing positive returns, but also has slightly lower
profitability when the whole market is experiencing negative returns.
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Figure A.4: Median weeky return in connected and unconnected groups, M=10
In this figure, addresses are divided into connected group and unconnected group based
on threshold M = 10. Then I calculate the median weekly return of all the addresses in
each group for every month. The connected group has higher profitability than unconnected
group when the whole bitcoin market is experiencing positive returns, but also suffers lower
profitability when the whole market is experiencing negative returns.
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Figure A.5: Median weekly return in connected and unconnected groups, M=30
In this figure, addresses are divided into connected group and unconnected group based
on threshold M = 30. Then I calculate the median weekly return of all the addresses in
each group for every month. The connected group has higher profitability than unconnected
group when the whole bitcoin market is experiencing positive returns, but also suffers lower
profitability when the whole market is experiencing negative returns.

35



m— connected
unconnected

weekly return

_6 -
201606 201612 201706 201712 201806 201812
time

Figure A.6: Median weekly return in connected and unconnected groups, M=50
In this figure, addresses are divided into connected group and unconnected group based
on threshold M = 50. Then I calculate the median weekly return of all the addresses in
each group for every month. The connected group has higher profitability than unconnected
group when the whole bitcoin market is experiencing positive returns, but also suffers lower
profitability when the whole market is experiencing negative returns.
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Figure A.7: Median 2-week return in connected and unconnected groups In this
figure, I further divide the addresses in the connected group into 10 subgroups based on their
degree values. I calculate the median 2-week returns of each group over the full time period
and compared them with the median return of the unconnected group. This figure shows
connected subgroups always have higher returns no matter which threshold M I choose.

0.6 1 /
. I,l
M=10
— — Mf30 . /
e = M0 "
=} - .
° ,/ \\\ j/
%0.4- ,/ - - ,
(0] - N i
i .l = pale N — -
I
3 W
£ /
0.2

unconnected 0-10%  10-20%  20-30%  30-40%  40-50%  50-60%  60-70%  70-80%  80-90% top 10%
degree decile

Figure A.8: Median weekly return in connected and unconnected groups In this
figure, I further divide the addresses in the connected group into 10 subgroups based on their
degree values. I calculate the median weekly returns of each group over the full time period
and compared them with the median return of the unconnected group. This figure shows
connected subgroups always have higher returns no matter which threshold M I choose.

37



101  type
monthly return -~
== == two-week return P
= == = weekly return 7

~038 e
3 7S o - '
2 - ~ 7
g ~ ~ -~ Ve —
? 06 ‘o~ == . e
S /. -TTUs. L X - .7
c 4 = -— ~ 'l .
= . . E S .-
2 ~ .
2 041 ‘S
c
8
°
g

0.2

0.01

unconnected 0-10%  10-20%  20-30%  30-40%  40-50%  50-60%  60-70%  70-80%  80-90% top 10%
degree decile

Figure A.9: Median returns in groups with degree centrality, first period In this
figure, I divide the addresses in the connected group into 10 subgroups based on their degree
centrality values. I calculate the median monthly returns of each group in the first period
and compare them with the median return of the unconnected group. This figure shows
connected subgroups always have higher returns than the unconnected. Also the top 20%
has the highest return among all the subgroups. These results are consistent no matter which
return data I use.
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Figure A.10: Median returns in groups with eigenvector centrality, first period
In this figure, I divide the addresses in the connected group into 10 subgroups based on their
eigenvector centrality values. I calculate the median monthly returns of each group in the
first period and compare them with the median return of the unconnected group. This figure
shows connected subgroups always have higher returns than the unconnected. Also the top
20% has the highest return among all the subgroups.These results are consistent no matter
which return data I use.
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Figure A.11: Median returns in groups with degree centrality, second period
In this figure, I divide the addresses in the connected group into 10 subgroups based on
their degree centrality values. I calculate the median monthly returns of each group in the
second period and compare them with the median return of the unconnected group. This
figure shows connected subgroups always have higher returns compared with the unconnected
group. Also there is another return jump around the top 20%. These results are consistent
no matter which return data I use.
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Figure A.12: Median returns in groups with eigenvector centrality, second period
In this figure, I divide the addresses in the connected group into 10 subgroups based on their
eigenvector centrality values. I calculate the median monthly returns of each group in the
second period and compare them with the median return of the unconnected group. This
figure shows connected subgroups always have higher returns compared with the unconnected
group. Also there is another return jump around the top 20%. These results are consistent
no matter which return data I use.
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Figure A.13: Median returns in groups with degree centrality, third period In this
figure, I divide the addresses in the connected group into 10 subgroups based on their degree
centrality values. I calculate the median monthly returns of each group in the third period
and compare them with the median return of the unconnected group. This figure shows, in
the third period, the top 20% are having lower return than their peers. These results are
consistent no matter which return data I use.
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Figure A.14: Median returns in groups with eigenvector centrality, third period
In this figure, I divide the addresses in the connected group into 10 subgroups based on
their eigenvector centrality values. I calculate the median monthly returns of each group in
the third period and compare them with the median return of the unconnected group. This
figure shows, in the third period, the top 20% are having lower return than their peers. These
results are consistent no matter which return data I use.
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Figure A.15: Regression coefficients for returns on groups with different degree
centralities, first period This figure shows the coefficients in the regression for returns
on groups with different degree centralities. This regression focus on the first period. Three
different returns: monthly returns, two-week returns and weekly returns are used to represent
the return data. If the coefficient is not significant, then it will be replaced with 0.
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Figure A.16: Regression coefficients for returns on groups with different eigen-
vector centralities, first period This figure shows the coefficients in the regression for
returns on groups with different eigenvector centralities. This regression focus the first pe-
riod. Three different returns: monthly returns, two-week returns and weekly returns are used

to represent the return data. If the coefficient is not significant, then it will be replaced with
0.
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Figure A.17: Regression coefficients for returns on groups with different degree
centralities, second period This figure shows the coefficients in the regression for returns
on groups with different degree centralities. This regression focus on the second period.
Three different returns: monthly returns, two-week returns and weekly returns are used to
represent the return data. If the coefficient is not significant, then it will be replaced with 0.
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A.18: Regression coefficients for returns on groups with different eigen-
centralities, second period This figure shows the coefficients in the regression for
on groups with different eigenvector centralities. This regression focus the second
Three different returns: monthly returns, two-week returns and weekly returns are
represent the return data. If the coefficient is not significant, then it will be replaced
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Figure A.19: Regression coefficients for returns on groups with different degree
centralities, third period This figure shows the coefficients in the regression for returns
on groups with different degree centralities. This regression focus on the third period. Three
different returns: monthly returns, two-week returns and weekly returns are used to represent
the return data. If the coefficient is not significant, then it will be replaced with 0.
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Figure A.20: Regression coefficients for returns on groups with different eigen-
vector centralities, third period This figure shows the coefficients in the regression for
returns on groups with different eigenvector centralities. This regression focus the third pe-
riod. Three different returns: monthly returns, two-week returns and weekly returns are used

to represent the return data. If the coefficient is not significant, then it will be replaced with
0.
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Table A.1: Stability of the bitcoin investor network, M=10

Compared periods 1-2 2-3 1-3
Number of links in period 1, k; 702,360,012 702,360,012
Number of links in period 2, ky 742,308,301 742,308,301

Number of links in period 3, k3 770,470,599 770,470,599
Overlap links, y 48,022,189 64,121,487 6,268,211
E\andom V] 31,306 34,342 32,494
Y/ Erandom|V] 1533.95 1867.13 192.90
Eegree—adjusted|Y] 4,377,357 2,700,984 4,543,429
y/Edegree—adjusted [y] 10.97 23.74 1.38

The table shows the stability of the bitcoin investor network across the three periods. The
network is constructed when the connection threshold is set as M = 10. Period 1 is from
Jun 2016 to May 2017, period 2 is from Jun 2017 to May 2018, and period 3 is from Jun
2018 to May 2019. Two agents are linked if they trade in the same direction for multiple
time M. Overlap links, y, shows the number of intersecting links between two different
periods. E,qndom[y] is the expected number of intersecting links between two periods if the
network is random. FEjegrec—adjustea|y] 18 another measure of expected number of intersection
links between two periods, but it takes the degree distributions of the original networks into
consideration.

Table A.2: Stability of the bitcoin investor network, M=30

Compared periods 1-2 2-3 1-3
Number of links in period 1, k; 209,602,037 209,602,037
Number of links in period 2, ks 214,921,858 214,921,858

Number of links in period 3, k3 262,626,789 262,626,789
Overlap links, y 16,303,616 22,031,201 5,876,037
Erandom V] 2,705 3,389 3,305

Y/ Erandom|V] 6027.26 6500.26 1777.72
Eegree—adjusted|Y] 425,191 319,101 519,569
Y/ Edegree—adjusted|Y] 38.34 69.04 11.31

The table shows the stability of the bitcoin investor network across the three periods. The
network is constructed when the connection threshold is set as M = 30. Period 1 is from
Jun 2016 to May 2017, period 2 is from Jun 2017 to May 2018, and period 3 is from Jun
2018 to May 2019. Two agents are linked if they trade in the same direction for multiple
time M. Overlap links, y, shows the number of intersecting links between two different
periods. Erandom|y] is the expected number of intersecting links between two periods if the
network is random. Egegrec—adjusted|y] 1S another measure of expected number of intersection
links between two periods, but it takes the degree distributions of the original networks into
consideration.
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Table A.3: Connectedness and monthly returns, M=30

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume
# of Trades

R2
obs.

Full Sample

0.2401
(>20)
-0.0533
(<-20)
-0.0625
(<-20)

0.0535
(>20)
1.7645
(>20)
2.2483
(>20)

0.1207
26,181,341

First Period

0.1150
(>20)
-0.0749
(<-20)
0.0691
(>20)

0.1645
(>20)
0.3756
(>20)
4.8171
(>20)

0.1405
8,026,523

Second Period

0.4169
(>20)
-0.0985
(<-20)
-0.0787
(<-20)

0.8576
(>20)
7.0990
(>20)
-8.2662
(<-20)

0.2059
9,296,250

Third Period

0.1959
(>20)
0.0001
(0.4553)
-0.1194
(<-20)

-0.4944
(<-20)
0.6902
(>20)
0.5964
(>20)

0.2467
8,858,550

This table display the results from the regression of monthly returns on connectedness,
and other control variables (log-form) . All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.

Table A.4: Connectedness and monthly returns, M=10

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume

# of Trades

R?
obs.

Full Sample

0.4114
(>20)
-0.0507
(<-20)
-0.0580
(<-20)

0.0502
(>20)
1.7690
(>20)
2.2602
(>20)

0.1223
25,924,373

First Period

0.3683
(>20)
-0.0686
(<-20)
0.0541
(>20)

0.1665
(>20)
0.3760
(>20)
4.7901
(>20)

0.1441
7,954,317

Second Period

0.4739
(>20)
-0.0978
(<-20)
-0.0590
(<-20)

0.8589
(>20)
7.0990
(>20)
-8.2644
(<-20)

0.2058
9,199,468

Third Period

0.4132
(>20)
0.0017
(6.788)
-0.1155
(<-20)

-0.4939
(<-20)
0.6902
(>20)
0.6226
(>20)

0.2498
8,770,535

This table display the results from the regression of monthly returns on connectedness,
and other control variables (log-form) . All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.
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Table A.5: Connectedness and 2-week returns, M=50

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume

# of Trades

Q2
obs.

Full Sample

0.2082
(>20)
-0.0585
(<-20)
-0.0536
(<-20)

0.1030
(>20)
1.9569
(>20)
2.3324
(>20)

0.0906
26,242,261

First Period

0.0074
(3.295)
-0.0807
(<-20)
0.1097
(>20)

0.5761
(>20)
0.0848
(>20)
2.7412
(>20)

0.1276
8,046,594

Second Period

0.4934
(>20)
-0.1129
(<-20)
-0.0887
(<-20)

2.0104
(>20)
9.1081
(>20)
-11.5520
(<-20)

0.1684
9,314,410

Third Period

0.0610
(>20)
-0.0019
(-5.429)
-0.0610
(<-20)

-0.9339
(<-20)
6.0760
(>20)
0.8139
(>20)

0.1536
8,881,202

This table display the results from the regression of 2-week returns on connectedness,
and other control variables (log-form) . All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.

Table A.6: Connectedness and 2-week returns, M=30

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume

# of Trades

Q2
obs.

Full Sample

0.2390
(>20)
-0.0575
(<-20)
-0.0671
(<-20)

0.1048
(>20)
1.9643
(>20)
2.3225
(>20)

0.0908
26,181,341

First Period

0.0769
(>20)
-0.0792
(<-20)
0.0959
(>20)

0.5787
(>20)
0.0888
(>20)
2.7158
(>20)

0.1274
8,026,523

Second Period

0.4647
(>20)
-0.1118
(<-20)
-0.1039
(<-20)

2.0086
(>20)
9.1059
(>20)
-11.5408
(<-20)

0.1685
9,296,250

Third Period

0.0984
(>20)
-0.0017
(-4.926)
-0.0707
(<-20)

-0.9324
(<-20)
6.0769
(>20)
0.8127
(>20)

0.1534
8,858,550

This table display the results from the regression of 2-week returns on connectedness,
and other control variables (log-form) . All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.
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Table A.7: Connectedness and 2-week returns, M=10

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume

# of Trades

Q2
obs.

Full Sample

0.4105
(>20)
-0.0550
(<-20)
-0.0624
(<-20)

0.1020
(>20)
1.9695
(>20)
2.3344
(>20)

0.0917
25,924,373

First Period

0.3628
(>20)
-0.0723
(<-20)
0.0736
(>20)

0.5817
(>20)
0.0932
(>20)
2.6783
(>20)

0.1297
7,954,317

Second Period

0.5330
(>20)
-0.1113
(<-20)
-0.0791
(<-20)

2.0102
(>20)
9.1099
(>20)
-11.5440
(<-20)

0.1683
9,199,468

Third Period

0.3055
(>20)
-0.0005
(-1.346)
-0.0761
(<-20)

-0.9300
(<-20)
6.0760
(>20)
0.8327
(>20)

0.1540
8,770,535

This table display the results from the regression of 2-week returns on connectedness,
and other control variables (log-form). All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.

Table A.8: Connectedness and weekly returns, M=50

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume

# of Trades

Q2
obs.

Full Sample

0.1827
(>20)
-0.0609
(<-20)
-0.0345
(<-20)

0.1529
(>20)
1.7971
(>20)
2.4357
(>20)

0.0645
26,242,261

First Period

0.0277
(10.53)
-0.0698
(<-20)
0.0619
(>20)

0.7357
(>20)
0.1113
(>20)
1.0374
(>20)

0.0844
8,046,594

Second Period

0.4180
(>20)
-0.1242
(<-20)
-0.0488
(<-20)

1.5492
(>20)

6.7777
(>20)
-7.3683
(<-20)

0.0899
9,314,410

Third Period

0.0472
(15.11)
-0.0065
(-15.13)
-0.0348
(<-20)

-0.4930
(<-20)
3.4794
(>20)
2.2461
(>20)

0.0749
8,881,202

This table display the results from the regression of weekly returns on connectedness,
and other control variables (log-form). All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.
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Table A.9: Connectedness and weekly returns, M=30

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume

# of Trades

Q2
obs.

Full Sample

0.2137
(>20)
-0.0600
(<-20)
-0.0469
(<-20)

0.1544
(>20)
1.8034
(>20)
2.4275
(>20)

0.0646
26,181,341

First Period

0.0873
(>20)
-0.0684
(<-20)
0.0493
(>20)

0.7377
(>20)
0.1144
(>20)
1.0163
(>20)

0.0843
8,026,523

Second Period

0.4147
(>20)
-0.1230
(<-20)
-0.0656
(<-20)

1.5470
(>20)

6.7752
(>20)
-7.3555
(<-20)

0.0901
9,296,250

Third Period

0.0789
(>20)
-0.0064
(-14.80)
-0.0428
(<-20)

-0.4920
(<-20)
3.4814
(>20)
2.2434
(>20)

0.0748
8,858,550

This table display the results from the regression of weekly returns on connectedness,
and other control variables (log-form). All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.

Table A.10: Connectedness and weekly returns, M=10

Address Level Variables

Connectedness
Trade Volume

# of Trades
Market Level Variables
Price Volatility

Trade Volume
# of Trades

Q2
obs.

Full Sample

0.3715
(>20)
-0.0579
(<-20)
-0.0428
(<-20)

0.1517
(>20)
1.8077
(>20)
2.4391
(>20)

0.0651
95,924,373

First Period

0.3409
(>20)
-0.0623
(<-20)
0.0307
(>20)

0.7389
(>20)
0.1147
(>20)
0.9927
(>20)

0.0857
7,954,317

Second Period

0.5002
(>20)
-0.1226
(<-20)
-0.0450
(<-20)

1.5486
(>20)

6.7830
(>20)
-7.3640
(<-20)

0.0901
9,199,468

Third Period

0.2537
(>20)
-0.0054
(-12.44)
-0.0472
(<-20)

-0.4905
(<-20)
3.4866
(>20)
2.2547
(>20)

0.0749
8,770,535

This table display the results from the regression of weekly returns on connectedness,
and other control variables (log-form). All the results are reported with robust standard
errors. The numbers in the parentheses represent the t-statistics.
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