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Abstract

We study how the introduction of a central bank-issued digital currency affects

interest rates, the level of economic activity, and welfare in an environment where

both central bank money and private bank deposits are used in exchange. Banks in

our model are financially constrained and the liquidity premium on bank deposits

affects the level of aggregate investment. We study the optimal design of a digital

currency in this setting, including whether it should pay interest and how widely it

should circulate. We highlight an important policy tradeoff: while a digital currency

tends to promote efficiency in exchange, it may also crowd out bank deposits, raise

banks’ funding costs, and decrease investment. Despite these effects, introducing a

central bank digital currency often raises welfare.
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1. INTRODUCTION

The money used by households and firms is a mix of liabilities issued by the central bank, in

the form of paper currency, and liabilities issued by private financial institutions, most notably

bank deposits. In recent decades, it has become increasingly easy for transactions with bank

deposits to be made electronically using payment cards, online account access, and mobile

apps. Money issued by the central bank, in contrast, can generally be used only for purchases

made with physical currency or for transactions directly between commercial banks that hold

reserves on deposit at the central bank. The increased use of electronic means of payment

has, therefore, represented a decline in the use of central bank money for payments. Policy

makers have expressed concern that this decline could have negative consequences for financial

inclusion, contestability in payments services, and potentially for monetary policy as new types

of electronic money and payments services are developed.1

In response to these concerns, central banks have begun discussing the possibility of issuing

digital currencies, which could potentially take a variety of forms. A central bank could, for

example, issue cryptographic tokens that share some of the technological features of Bitcoin or

other cryptocurrencies. Alternatively, a digital currency could be created simply by allowing

households and non-bank firms to open deposit accounts at the central bank and use these

accounts to make payments in much the same way they currently use private bank deposits.

Depending on the details of the design, a digital currency could potentially allow households

and firms to use central bank money in a much wider range of situations, including online and

large-value transactions where the use of physical currency is impractical. It could also allow

a widely-held form of central bank money to bear interest, in much the same way that bank

reserves currently earn interest in many jurisdictions. Academics and policy makers have begun

discussing a range of issues from technical design features to political economy considerations in

an attempt to evaluate the potential benefits and costs of issuing digital currency.2

One concern raised in these discussions is that a central bank digital currency may crowd out

private bank deposits and thereby lead to disintermediation of the banking system. If households

and firms find this new option attractive, they may shift a substantial amount of funds out of

1See, for example, Skingsley (2016) and Lagarde (2018).
2See, for example, the discussions in Bank for International Settlements (2018), Bank of Israel (2018), Norges

Bank (2018) and Sverges Riksbank (2018), as well as the speeches by Broadbent (2016), Adrian (2019) and

Carstens (2019). Bartolini and Holden (2019) describe a survey of 63 central banks in which 70% reported

currently studying central bank digital currency in some form.
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private bank deposits and into the central bank digital currency. Such a shift could potentially

raise bank funding costs and lead to a decline in bank lending and investment. A Bank of

International Settlements report (BIS, 2018) expresses concern that “a flow of retail deposits

into a CBDC could lead to a loss of low-cost and stable funding for banks.” A senior official

at the European Central Bank worried that “[a] consequence could be higher interest rates

on bank loans” (Mersch, 2017). Others believe these concerns are overblown and that making

central bank money a more attractive competitor to private bank deposits will benefit consumers

and the broader economy.3 Several central banks have run or are planning pilot projects but,

as these debates indicate, the basic macroeconomic implications of introducing a central bank

digital currency are not well understood.

We study how the introduction of a central bank digital currency affects interest rates, bank

lending, output and welfare in an environment where both central bank money and private bank

deposits are used in exchange. We are particularly interested in evaluating the desirability of

issuing a digital currency that may crowd out private bank deposits and thereby adversely affect

bank lending and investment. We study three distinct forms of digital currency that differ in

the types of exchange they can facilitate. We show that when a digital currency competes with

bank deposits as a medium of exchange, it does tend to raise banks’ funding cost and decrease

bank-funded investment. At the same time, however, the availability of this new type of money

increases production of those goods that can be purchased with it and can potentially increase

total output. In addition, the central bank gains a new policy tool: it can choose the interest

rate it pays on the digital currency. We derive the optimal design of a central bank digital

currency in our setting, including the optimal choice of interest rate, and provide conditions

under which introducing such a currency strictly increases welfare.

We base our analysis on a model in which some form of money is essential for exchange,

as in Lagos and Wright (2005) and the subsequent New Monetarist literature.4 We introduce

an investment friction into this environment that creates borrowing constraints, as in Kiyotaki

and Moore (1997, 2005), Holmstrom and Tirole (1998) and others. Specifically, bankers in our

model have access to productive projects but face credit constraints due to limited pledgeability

of their returns. Because of these credit constraints, the level of aggregate investment may be

3See, for example, Bordo and Levin (2017) and Kumhof and Noone (2018).
4For an overview of this literature, see the survey papers by Williamson and Wright (2010a, 2010b) and Lagos,

Rocheteau and Wright (2017), as well as the many references therein.
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inefficiently low. To fund their projects, bankers can issue deposits that serve as a means of

payment in decentralized markets. The ability of these deposits to facilitate exchange may give

rise to a liquidity premium, which in turn affects banks’ funding costs and the level of investment.

There is also a central bank that issues physical currency and, potentially, a digital currency.

Two types of meetings occur in decentralized markets. In one type, the seller of goods is only

able to verify cash and, therefore, will not accept bank deposits as payment. We interpret these

meetings as capturing transactions in which concerns about privacy, fees, and/or a lack of access

to the bank-based payment system lead parties to trade using physical currency. In the other

type of meeting, the seller of goods is only able to verify bank deposits and, therefore, will not

accept cash in exchange. We interpret this second type of meeting as capturing transactions

in which the value of trade and/or the distance between the buyer and seller make the use of

physical currency impractical. Having these different types of meetings allows us to study design

choices that affect how widely a central bank digital currency would be accepted.

We first study equilibrium in our model in the absence of a digital currency. Households who

will be buyers in the decentralized market acquire a balance of either cash or bank deposits

in the previous centralized market. The inflation rate set by the central bank determines the

opportunity cost of holding cash and, therefore, the level of production of goods that are pur-

chased with cash. The interest rate on bank deposits is determined jointly by the transactions

demand for deposits and the supply of available investment projects. When such projects are

relatively scarce, a liquidity premium arises and the equilibrium interest rate on deposits falls

below the rate of time preference. This lower interest rate helps overcome the financial friction

faced by bankers and raises investment. At the same time, however, it raises the opportunity

cost of holding deposits and, therefore, causes a decrease in the production of goods that are

purchased with deposits.

Within this framework, we interpret a central bank digital currency as a new, technologically

distinct type of outside money. In practice, a central bank faces a number of questions in

designing such a currency. Would it bear interest, for example? Would its users be required

to identify themselves to the central bank, or could they remain anonymous as is the case with

physical currency? What fees and other costs would users face? Are any restrictions placed on

the size of users’ balances or of transactions? We capture different possible designs within our

framework by making different assumptions about how the digital currency can be used. We
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first assume the digital currency is cash-like in the sense that it can be used in transactions that

currently involve physical currency, but not those that currently involve bank deposits. We think

of this case as capturing a design that aims to maintain users’ anonymity and minimize usage

costs, particularly for smaller transactions, and that may cap transactions sizes at a relatively

low level. In our second case, the currency is deposit-like in the sense that it can be used in

transactions that currently involve bank deposits, but not those that currently involve cash. This

assumption could represent a currency that is based on users holding accounts at the central

bank, for example, and processed over existing payment networks. Our final case is a universal

digital currency that can be easily used in all types of transactions.

These different types of design have differing implications for the aggregate stock of liquid

assets in the economy. By designing its digital currency so that it can be used in a wider range

of transactions and/or offers a more attractive interest rate, the central bank can increase the

quantity of publicly-provided (i.e., outside) liquidity held by agents. A larger supply of public

liquidity, in turn, tends to promote more efficient levels of exchange. However, this outside

liquidity may also crowd out inside liquidity in the form of bank deposits and thereby lead to

a decrease in bank-financed investment. The optimal design of a digital currency may require

striking a balance between these two competing effects.

If the digital currency is designed to be cash-like, its introduction will tend to crowd out

existing currency. This shift can increase the production and exchange of cash goods but will

have no effect on other types of exchange or on investment. If the digital currency is deposit-

like, in contrast, its use will tend to crowd out bank deposits, raise the real interest rate on

these deposits, and decrease bank-financed investment. The magnitude of this disintermediation

effect is increasing in the interest rate paid on the digital currency by the central bank. We

derive the optimal interest rate and show that it balances the two competing effects described

above: a higher interest rate promotes more efficient levels of exchange but decreases the level

of investment.

The intuition for our disintermediation effect is straightforward. If the central bank introduces

a digital currency that is more attractive than bank deposits, buyers will want to shift out of

deposits into this new currency. For banks to attract deposits, the interest rate they pay must

rise until households are indifferent between holding bank deposits and the new digital currency.

At this new, higher interest rate, however, fewer projects generate enough pledgeable income to
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obtain funding. As a result, bank deposits and bank-funded investment decrease, while the total

liquid assets held by buyers (deposits plus digital currency) increase. While our precise results

depend on the details of our model, the main mechanism will be present in any setting where

higher bank funding costs have a contractionary effect on bank lending.

When the digital currency is universal, the policy tradeoff is similar but the interest rate

chosen by the central bank can now affect the level of exchange in all decentralized meetings.

We show that the optimal interest rate in the universal case is higher than that for a deposit-like

currency. Which approach yields the highest welfare depends on parameter values. We derive

conditions under which some form of digital currency raises welfare, as well as conditions under

which each specific type is desirable. In general terms, a deposit-like system tends to be preferred

when investment frictions are large and it is valuable for the central bank to be able to set a

low interest rate on the digital currency to avoid crowding out too much private investment.

When investment frictions are small, in contrast, such crowding out is less of a concern and the

central bank will tend to set a higher interest rate on either type of digital currency. In such

cases, a universal system is likely to be preferred because it allows a wider range of decentralized

transactions to benefit from this higher interest rate.

Related Literature. The literature on digital currencies is growing rapidly. A wave of recent

papers discuss the possibility of a central bank digital currency and the many design choices

that would need to be made in order to issue one. Bech and Garratt (2017) provide a useful

starting point by laying out a taxonomy of types of money and comparing different types of

possible digital currencies with existing payment options. Mancini-Griffoli et al. (2018) provide

a comprehensive overview of the issues raised by a possible digital currency along with citations

to many relevant papers. Among these, Kahn et al. (2018) and Kumhof and Noone (2018)

provide interesting discussions of the design choices facing a central bank.5

Despite the widespread interest in the topic, only a handful of models have been developed

to formally analyze the impact of a central bank digital currency. Two recent papers study the

effects of introducing a central bank digital currency when banks have market power. Andolfatto

(2018) constructs a model with overlapping generations of households in which imperfectly-

competitive banks hold a portfolio of reserves and loans to firms. The introduction of a central

5See also Bank for International Settlements (2018), which discusses possible impacts of a central bank digital

currency on payments, monetary policy, and the financial system. Interesting early discussions were provided by

Ali et at. (2014), Bordo and Levin (2017), Engert and Fung (2017), Fung and Halaburda (2016), Ketterer and

Andrade (2016), Niepelt (2018), and Wadsworth (2018).
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bank digital currency tends to raise the interest rate on bank deposits in much the same was

as in our model. However, this change has no effect on the equilibrium interest rate on bank

loans. In other words, the interest rates on bank deposits and on bank loans are disconnected in

his model, which implies that a central bank digital currency need not lead to a cause in bank

lending or investment. In addition, he shows how a central bank digital currency may promote

financial inclusion if the higher interest rate on deposits encourages some previously-unbanked

households to open bank accounts.

Chiu et al. (2019) introduce Cournot competition for deposits into a modified version of the

model we study here. They show that two distinct regimes arise. If the central bank digital

currency is only moderately attractive to households, there may be little or no use of it in

equilibrium. Nevertheless, the availability of this new option to households may change banks’

incentives and lead to both a higher interest rate on deposits and a larger quantity of deposits.

In this region, their results are similar in spirit to those in Andofatto (2018). If the interest

rate on the digital currency is increased further, however, households begin to shift funds out of

bank deposits and into the digital currency, which causes a decline in deposits and bank-funded

investment, as in our model.

The earliest formal model in the literature is Barrdear and Kumhof (2016), which introduces

a central bank digital currency into a quantitative DSGE model to assess its impact on GDP

and to evaluate different monetary policy rules. In their model, the real interest rate is assumed

to be increasing in the stock of government bonds held by the public. When the central bank

issues digital currency by purchasing government bonds, therefore, this action lowers the real

interest rate and tends to thereby raise GDP. In other words, an important part of the effects

of issuing a digital currency in their framework comes from the asset side of the central bank’s

balance sheet rather than from the digital currency per se. In our model, in contrast, the central

bank’s liabilities affect the liquidity premium and thereby alter equilibrium interest rates and

investment. The model in Davoodalhosseini (2018) is closer to our analysis in that it also

studies the role of a central bank digital currency as a new, potentially interest-bearing payment

instrument. His focus, however, is on how the introduction of a digital currency affects the use

of physical currency and on its implications for monetary policy. While we also study a cash-like

digital currency, our primary focus is on the implications of a digital currency that competes

with bank deposits as a means of payment. Williamson (2019) studies the implications of central
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bank digital currency in a New Monetarist model that shares many features with our analysis

here. His analysis also focuses on the role of physical currency in more detail than ours, including

the fact that it is more easily subject to theft than electronic means of payment. In common with

our analysis, his results also show that a central bank digital currency may lead to a decrease

in bank deposits.

Brunnermeier and Niepelt (2019) provide conditions under which the introduction of a digital

currency has no effect on equilibrium allocations. To relate our results to theirs, we extend

our model to allow the central bank to lend the proceeds it receives from the digital currency

back to private banks. In this extended model, it is possible for the central bank to choose the

interest rate on digital currency so that it is held in equilibrium but does not alter equilibrium

allocations, in line with the Brunnermeier-Niepelt result. In our setting, however, the interest

rate that achieves this outcome is often not the optimal policy. Instead, the central bank wants

to use this new policy tool to alter the equilibrium liquidity premium, so that introducing a

digital currency does affect allocations and raises welfare.

The remainder of the paper is organized as follows. We present the model environment and

derive the equilibrium conditions for a general formulation of the type(s) of currency available

to agents in Section 2. We analyze equilibrium in a benchmark case without a digital currency

in Section 3 and study the effects of introducing different types of digital currency in Section 4.

We discuss optimal currency design and offer some concluding remarks in Section 5.

2. THE MODEL

In this section, we describe the physical environment and derive the conditions characterizing

an equilibrium of our model for a general formulation of the type(s) of currency available to

agents. The subsequent sections then specialize the analysis to study equilibrium allocations

and welfare under different designs for a central bank digital currency.

2.1 The environment

Time is discrete and continues forever. Each period is divided into two subperiods in which

economic activity will differ. There is a frictionless centralized market in the first subperiod,

while trade is decentralized in the second subperiod. A perishable commodity is produced and

consumed in each subperiod. We refer to the commodity produced in the first subperiod as the
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centralized market (CM) good and to the commodity produced in the second subperiod as the

decentralized market (DM) good.

Agents. The economy is populated by three types of agents: buyers, sellers, and bankers.

Buyers and sellers are infinitely lived and participate in both markets in each period. They can

produce the CM good in the first subperiod using a linear production technology that requires

labor as input, and they also have linear utility over CM consumption. In the second subperiod,

buyers want to consume but cannot produce, whereas sellers are able to produce but do not

want to consume. A buyer is randomly matched with a seller with probability  ∈ [0 1] and
vice versa, so trade in the decentralized market is bilateral. Each buyer has the period utility

function

 
³
  

´
=  +  () ,

where  ∈ R denotes net consumption of the CM good and  ∈ R+ denotes consumption of the
DM good. The function  : R+ → R+ is strictly increasing, strictly concave, and continuously

differentiable, with  (0) = 0 and 0 (0) =∞. Each seller has the period utility function

 (  ) =  −  () ,

where  ∈ R denotes net consumption of the CM good and  ∈ R+ denotes production of
the DM good. The function  : R+ → R+ is strictly increasing, convex, and continuously

differentiable, with  (0) = 0. There is a unit mass each of buyers and sellers, all of whom

discount future periods at a common rate  ∈ (0 1).
Bankers live for two periods, participate only in the centralized market, and consume only in

old age. Each period, a new generation of bankers with unit mass is born. Banker  is endowed

at birth with an indivisible and nontradable project that requires one unit of the CM good as

input and pays off  ∈ R+ units of the CM good in the following period.6 Project returns

are known in advance and are heterogeneous across bankers; let  () denote the distribution of

payoffs across the population of bankers. We assume the support of the distribution is [0 ̄] with

̄  −1 which implies that some projects are socially efficient to operate but others are not.

In addition, the distribution is continuous and has a density function  that is strictly positive

6A banker in our model can be interpreted as the combination of an intermediary that issues a means of payment

and a firm that operates a productive technology. It is straightforward to divide these two roles into separate

institutions (a bank and a firm) in a way that leaves the results below unchanged.
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on the interior of the support.

Bankers have no endowment; they must fund their project by issuing deposits in the centralized

market when they are young. These deposits are risk-free claims on consumption in the following

period’s CM. The ability to issue deposits is limited by a pledgeability constraint: only a fraction

 ∈ (0 1) of the project’s return can be pledged to the bank’s depositors. This friction will
prevent some banks whose project would be profitable at market interest rates from being able

to borrow and invest.

Assets and exchange. We assume that buyers and sellers are anonymous (i.e., their identities

are unknown to each other and their trading histories are private information), which precludes

credit in the decentralized market. Because there is no scope for trading future promises in

this market, a medium of exchange is essential for decentralized trade. The possible media of

exchange in our model are deposits issued by bankers and currency, both physical and digital.

The supply of bank deposits depends on the real interest rate, which determines how many

bankers are able to attract funding and operate. The supply of currency is determined by

the central bank according to a price-level targeting regime in which the gross inflation rate

 ≥ −1 is assumed to be constant over time. In particular, the central bank stands ready to

buy/sell CM goods each period at a predetermined price in either physical or digital currency.

By enforcing the same price level target for physical and digital currency, the central bank is

effectively offering to convert units of physical currency one-for-one into units of digital currency

and vice versa. In this sense, the digital currency in our model is an electronic version of the

physical currency and not a distinct item that might trade at a different price.7 The central

bank uses lump-sum taxes/transfers to balance its budget each period.8

The extent to which each of these assets can be used in DM exchange depends on the ver-

ification technology available to the seller in a particular meeting. We assume that a fraction

1 ∈ (0 1) of sellers is endowed with the technology to recognize physical currency but not
deposits. We interpret this assumption as capturing a variety of reasons why cash is used in

practice, including concerns about the privacy of the transacting parties and the costs of access-

ing and using the bank-based payment network. The remaining fraction 2 ≡ 1−1 of sellers is

7Private digital currencies like bitcoin would be different in this regard, of course. See Bank for International

Settlements (2015) for a discussion of the economic implications of private digital currencies and Fernandez-

Villaverde and Sanches (2019) for a model of private digital currency issue.
8 In other words, while we refer to the policy maker in the model as the “central bank,” it actually represents the

consolidated public sector, as is common in dynamic general equilibrium models
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endowed with the technology to recognize bank deposits but not physical currency. The meet-

ings of these sellers correspond to transactions that in practice involve debit cards, checks, or

other methods of directly transferring claims on a commercial bank from the buyer to the seller.

We view these meetings as at least partially consisting of situations in which the use of cash

is impractical, such as large-value purchases, online purchases, etc. We refer to a meeting in

which the seller is able to verify physical currency as type 1 and to a meeting in which the seller

can verify bank deposits as type 2.9 The buyer finds out the type of seller she will potentially

meet in the next DM before making her portfolio decision in the CM, which implies that she

will choose to hold either currency or deposits for transactions purposes, but not both.

When we introduce a digital currency into this environment, a key issue is the type(s) of

meeting in which it can be used. We consider three different assumptions about the digital

technology that correspond to different ways policy makers might choose to design a digital

currency in practice. A type I digital currency can only be verified by type 1 sellers and represents

a design that aims to mimic physical cash as closely as possible. For example, such a design

may use cryptography to maintain anonymity of the transacting parties and may minimize the

fees and other costs associated with its use. A type II digital currency, in contrast, represents a

deposit-like design that can be verified only by type 2 sellers. This assumption would likely be

appropriate for a digital currency that is based on individuals holding accounts at the central

bank and that makes use of the existing payment network. Finally, a type III digital currency

can be verified by all sellers. This assumption corresponds to a design that would make the

digital currency attractive for use in a wide range of transactions.10 We derive the effects of

each of these types of digital currency and then discuss conditions under which each design can

be optimal.

Allocations and welfare. For discussions of optimal policy, we measure welfare using an

equal-weighted sum of all agents’ utilities. However, as in Williamson (2012), we allow for the

possibility that some of the transactions that take place in type 1 meetings, where only currency

9 It is straightforward to add a third type of meeting in which both currency and deposits can be verified by the

seller. Doing so complicates the presentation without changing the basic insights of our model, as only one of

the two forms of payment would typically be used in all such meetings. The important assumption is that each

form of payment can be used in some situations where the other cannot.
10See Agur et al. (2019) for a model in which a central bank digital currency is an imperfect substitute for both

cash and deposits. While our approach of having digital currency be a perfect substitute for existing payment

method(s) is perhaps somewhat extreme, it allow us to focus on the macroeconomic implications of the currency

with minimal complications.
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is used, might have lower social value than private value. For example, a policy maker may

want to put less weight on transactions involving illegal activity or foreign use of the domestic

currency. Specifically, we follow Williamson (2012) in assuming the a fraction  ∈ [0 1] of type
1 meetings generate no social value. We can then write aggregate welfare as

∞X
=0


n
 +  +  +  [1 (1− ) ( (1)−  (1)) + 2 ( (2)−  (2))]

o
 (1)

where  denotes the average CM consumption of old-age bankers. Feasibility of an allocation

requires that the net consumption of all agents in the centralized market is no greater than the

net output of bankers’ investment projects. We focus on allocations characterized by a cutoff

value ̂ above which a banker’s project is operated and below which it is not. Feasibility in

period  then requires

 +  +  ≤
Z ̄

̂−1
 ()  − (1− (̂))  (2)

The right-hand side of this expression is the output from projects coming to fruition at the

current date minus total investment into new projects that will mature the following period.

Net consumption of CM goods by all agents can be no larger than this difference.

Given the quasi-linear specification of preferences, the welfare properties of an allocation

depend only on the sequences of DM consumption levels {1 2} and of cutoff investment
values {̂}  which determine the total amount of CM consumption available in each period.

As equations (1) and (2) make clear, the distribution of CM consumption across agents has

no impact on welfare. In the analysis that follows, we summarize an allocation by these three

quantities.

2.2 Asset demand

Let  denote the goods value of money in the centralized market in period  so that the real

value of dollars can be written as ≡  Let 
 denote the net nominal interest rate paid

on digital currency by the central bank, which can be either positive or negative. The gross real

rate of return on physical currency is then +1 and on digital currency is (1 + )+1.

Let 1 +  denote the gross real interest rate on bank deposits. Finally, let a ≡ (  ) denote

an asset portfolio consisting of  ∈ R+ units of physical real money balances,  ∈ R+ units of
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bank deposits, and  ∈ R+ units of digital (or “electronic”) real money balances, all measured
in current CM consumption goods.

We begin the analysis by defining the value function  (a ) for a buyer entering the centralized

market in period  holding portfolio a. The index  ∈ {1 2} indicates what type of seller she
will potentially meet in the next decentralized market. Let  (a ) denote the value function

of this same buyer when she arrives in the decentralized market. Using these two functions, we

can write the Bellman equation for this buyer as

 (a ) = max
(a0)∈R×R3+

h
 + 

¡
a0 

¢i


where the maximization is subject to the budget constraint

 + p · a0 = R−1 · a+  .

The variable  is the buyer’s net consumption of the CM good, which can be positive or negative.

The price vector p ≡ (1 1 1) measures the cost of acquiring real money balances and deposits
in terms of CM goods, while the vector

R−1 =
µ


−1

 1 + −1 (1 + )

−1

¶

measures real returns on assets carried over from the previous period. Finally,   denotes the

real value of any lump-sum transfer received by the agent.

The value  (a
0 ) satisfies


¡
a0 

¢
= 

£

¡

¡
a0 

¢¢
+ 

¡
a0 − h

¡
a0 

¢
 + 1

¢¤
+ (1− )

¡
a0 + 1

¢
, (3)

where  (a
0 ) ∈ R+ denotes the buyer’s consumption of the DM good and h (a

0 ) ∈ R3+
denotes the payment she makes for this consumption out of her asset holdings a0. The function

 (a0 ) in this expression represents the expected value of entering the centralized market before

knowing the type of her potential meeting in the following period’s decentralized market, that

is,


¡
a0 

¢
= 11

¡
a0 

¢
+ 22

¡
a0 

¢
. (4)
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Throughout the analysis, we assume that the terms of decentralized trade are determined by

Nash bargaining. For simplicity, we restrict attention to the case in which the buyer has all the

bargaining power. The bargaining problem can then be described as

max
(h)∈R4+

[ ()−  ×R · h]

subject to the seller’s participation constraint

− () +  ×R · h ≥ 0

and the liquidity constraint

h ≤ f (a) . (5)

The function f enforces the fact that the buyer will only pay with assets her trading partner

can verify. If, for example, type 1 sellers can only verify physical currency, then we have f1 (a) =

( 0 0)  If they can verify both physical and digital currency, we have f1 (a) = ( 0 )  In

the sections that follow, we impose particular functions f to capture different potential digital

currency designs. For now, however, we only impose that type 1 sellers can verify physical

currency but not bank deposits and that the reverse holds for type 2 sellers.

The solution to this bargaining problem implies the following schedule for DM output

 (a ) =

⎧⎨⎩ −1 (R · f (a)) if R · f (a)  (∗)


∗ otherwise
(6)

and for payments

R · h (a ) =
⎧⎨⎩ R · f (a) if R · f (a)  (∗)



(∗)
 otherwise,

where ∗ is the efficient level of DM trade, which satisfies

0 (∗) = 0 (∗) .

In other words, if the value of the buyer’s spendable assets is large enough to induce the seller

to produce ∗ the efficient level of trade occurs. If not, the buyer spends all that she can and

the seller produces an amount smaller than ∗

14



Using this solution to the bargaining problem, a buyer’s portfolio problem in the centralized

market can be written as

max
a0∈R3+

©−p · a0 + 
£

¡

¡
a0 

¢¢− R · h
¡
a0 

¢¤
+ R · a0

ª
. (7)

Recall that the buyer knows the type of seller she will potentially meet in the next DM when

making this portfolio choice in the CM. If  = 1, the buyer knows the seller will accept physical

currency and the slope of the objective function with respect to 0 is

−1 + 
+1


"

0
¡
−1 (R · f1 (a0))

¢
0 (−1 (R · f1 (a0))) + 1− 

#
for R · f1

¡
a0
¢


 (∗)


and

−1 + 
+1


for R · f1
¡
a0
¢


 (∗)




If  = 2, the buyer knows the seller will accept bank deposits and the slope of the objective

function with respect to 0 is

−1 +  (1 + )

"

0
¡
−1 (R · f2 (a0))

¢
0 (−1 (R · f2 (a0))) + 1− 

#
for R · f2

¡
a0
¢


 (∗)


and

−1 +  (1 + ) for R · f2
¡
a0
¢


 (∗)




It is helpful to define the function  : R+ → R+ by

 () =

⎧⎨⎩ 
0(−1())
0(−1()) + 1−  if  ≤  (∗)

1 otherwise
(8)

This function measures the expected liquidity benefit of holding one extra unit of spendable

assets. If the buyer’s current spendable assets are insufficient to purchase the efficient quantity

∗ the increase will allow her to consume more if she is matched in the DM, which occurs with

probability  If she is not matched, or if she already has enough spendable assets to purchase

∗ she merely holds the extra unit of assets until the following CM. The first-order condition

for the real physical currency balances of a buyer who will potentially be in a type 1 match can
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then be written as


¡
R · f1

¡
a0
¢¢ ≤ 

+1
(9)

with equality if 0  0 The first-order condition for the deposits of a buyer who will potentially

be in a type 2 match is


¡
R · f2

¡
a0
¢¢ ≤ 1

 (1 + )
(10)

with equality if 0  0 In addition, only buyers potentially entering type 1 meetings will hold

physical currency and only buyers potentially entering type 2 meetings will hold bank deposits.11

Equations (9) and (10) thus characterize the demand for each of these assets in the period- CM.

2.3 Asset supply

To derive the supply of deposits, we start by solving the bankers’ problem. Given the market

interest rate , a banker  ∈ [0 ̄] born in period  is willing to issue a deposit claim if

 − (1 + ) ≥ 0.

Because only a fraction  ∈ (0 1) of the project’s payoff is pledgeable, the banker is subject to
the pledgeability restriction

1 +  ≤ .

In other words, the promised repayment cannot exceed the value of the banker’s pledgeable

future income. Note that   1 implies that this constraint is strictly tighter than the previous

one, meaning that some bankers with projects that are profitable at the market interest rate

will not be able to raise funds and invest.

Let ̂ ∈ R+ denote the banker whose project’s payoff satisfies the pledgeability restriction
with equality in period , that is,

̂ =
1 + 


. (11)

This condition simply says that the project’s return must exceed the cost of borrowing by a

factor 1 for the marginal banker who is funded. Note that the lower the pledgeable portion

11These decisions reflect agents’ strict preferences when the real return on an asset is less than −1 All buyers
and sellers are indifferent about holding an asset whose real return equals −1 In this case, we simplify our
notation by assuming, without any loss of generality, that only buyers potentially entering a meeting where an

asset is accepted will hold that asset.
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of the project’s payoff, the higher is the return required to satisfy the pledgeability restriction.

Given the marginal type ̂, the aggregate supply of deposits is

1− (̂) = 1−

µ
1 + 


¶
. (12)

This expression shows that a reduction in the interest rate leads to an increase in investment by

allowing a larger number of bankers to issue debt claims. In other words, a lower interest rate

will lead to an expansion of the banking system and an increased supply of deposits.

The supply of both physical and digital currency is set by the central bank following a price-

level target rule. We assume the target grows at a constant gross rate  ≥ . Letting ̄0 ∈ R+
denote the initial target for the value of money, the target at date  is given by

̄ =

µ
1



¶

̄0

and we have


+1

=  for all  (13)

The central bank stands ready to exchange units of either physical or digital currency for CM

goods at the desired price level each period.12 Letting ̄ ∈ R+ denote the supply of physical
currency and ̄ the supply of digital currency per asset holder, the central bank’s budget

constraint is


¡
̄ + ̄

¢
= 

¡
̄−1 + (1 + ) ̄−1

¢
+  

where the lump-sum tax/transfer   is chosen to balance the budget each period.

2.4 Market clearing

Using the fact that physical currency is only used in type 1 meetings, we can write the market

clearing equation as

1 = ̄ (14)

12We could instead take the more standard approach of assuming that the total money supply grows at a constant

rate  With both physical and digital currency, however, the relative supply of each type of currency is
endogenous and the notation becomes more complex. Given that we focus on stationary allocations, the simpler

approach we take here is without any loss of generality.
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Similarly, the fact that bank deposits are only exchanged in type 2 meetings allows us to write

the market-clearing equation for the deposit market as

2 = 1−

µ
1 + 


¶
. (15)

The demand for digital currency and the form of the market-clearing equation depends on design

features that determine in which type(s) of meetings the currency can be used; we analyze three

distinct cases below. An equilibrium of the model consists of a sequence of prices { } 
portfolio holdings {a1a2}  and allocations {1 2 ̂} satisfying equations (9)-(15) plus the
first-order and market-clearing equations for digital currency presented for each case below.

In the next section, we derive the properties of equilibrium in a benchmark model with no

digital currency. We then introduce various types of digital currency in Section 4 and analyze

the resulting equilibrium allocations and welfare.

3. EQUILIBRIUM WITH NO DIGITAL CURRENCY

The model with no digital currency provides the benchmark allocation and welfare level against

which different types of digital currency will be compared. When there is no digital currency,

the functions f in the borrower’s liquidity constraint (5) are given by

f1 (a) = ( 0 0) and f2 (a) = (0  0) .

In other words, a buyer can only use her physical currency balances to purchase DM goods in

a type 1 meeting and can only use bank deposits in a type 2 meeting. The Inada condition

on buyers’ utility function then implies that the first-order conditions (9) and (10) for buyers’

portfolio choices will hold with equality. Combining these equations with the market-clearing

conditions (14) and (15) yield




= 

µ




¶
(16)

and

1

 (1 + )
= 

µµ
1 + 
2

¶ ∙
1−

µ
1 + 


¶¸¶
. (17)

The fact that only period- variables appears in each of these two equations shows that an
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equilibrium in our model is necessarily stationary.13 The equations also demonstrate a dichotomy

between the money and deposit markets in our baseline model. Given the inflation rate ,

equation (16) pins down real money balances independent of the interest rate on deposits.

Meanwhile, equation (17) determines the equilibrium interest rate on deposits independent of

the inflation rate. We think of our model as capturing long-run phenomena, in which case it

is not unreasonable to think that standard monetary policy has a limited effect on real interest

rates and the level of investment. Notice that inflation is not neutral here, however. A higher

inflation target leads to lower production and consumption in type 1 DM meetings and to lower

welfare, as is standard in models of monetary exchange.

We use the superscript  to identify equilibrium values in the model with no digital currency.

As is standard, equation 16 can be directly solved for the equilibrium level of real money balances

held by each type 1 buyer,   The properties of the function  defined in equation 8 imply that

there is a unique solution for  whenever    holds, and this solution is strictly decreasing

in the gross inflation rate  The equilibrium interest rate on deposits,   is determined by

equation 17. Here, two distinct cases emerge. If the mass of bankers with relatively high-return

projects is large enough, the interest rate on deposits will satisfy
¡
1 + 

¢
= −1 and the

production of DM goods in type 2 meetings will equal the efficient level ∗. If, instead, high-

return projects are scarce, a liquidity premium emerges on deposits and
¡
1 + 

¢
falls below

−1. Formally, we have the following result:

1 +  
1


if

1

2

∙
1−

µ
1



¶¸
  (∗)

1 +  =
1


otherwise.

Figure 1 illustrates these results. The upward-sloping (green) curve in panel (a) represents

buyers’ demand for deposits as a function of the gross return 1 +  which is derived from the

first-order condition (10). Note that the demand for deposits becomes vertical when the return

equals 1 The two downward-sloping curves represent the supply of deposits from equation

(12) for two different distribution functions  The dashed (blue) supply curve corresponds to

the dashed (blue) distribution function in panel (b), which has a relatively large number of

13This result follows from our assumption of a price-level targeting rule, which removes the multiplicity of equilibria

and dynamics that are common in monetary models. Our aim here is to analyze the effects of introducing a

digital currency taking as given the conduct of traditional monetary policy.
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high-productivity projects. In this situation, the equilibrium interest rate equals 1 and the

equilibrium quantity of deposits is large enough to finance the efficient level of DM trade ∗

in type 2 meetings. The solid (red) supply curve in panel (a) is generated by the solid (red)

distribution in panel (b), where there are fewer bankers with high values of  . In this case,

the scarcity of good projects leads to a liquidity premium as the equilibrium interest rate on

deposits fall below 1

Fig. 1. Equilibrium with no digital currency

When high-return projects are plentiful and there is no liquidity premium, as with the dashed

(blue) curves in Figure 1, all projects in the shaded area to the right of ̂ = 1 are funded

in equilibrium. Note, however, that all projects to the right of  = 1 are socially productive.

Because   1, the level of investment is inefficiently low: some projects with positive net present

value from a social point of view remain unfunded. When high-productivity projects are scarce,

as with the solid (red) curves, the equilibrium quantity of deposits and interest rate in panel

(a) are both lower. Because there are fewer deposits, the quantity of DM good produced and

traded in type 2 meetings falls below the efficient level ∗ At the same time, however, the lower

interest rate decreases the cutoff value ̂ and thus allows more projects to be funded in the CM,

as shown in panel (b). If the liquidity premium on deposits is large enough, it is even possible

for the level of equilibrium investment to be too high: projects with negative net present value

from a social point of view may be funded because the deposits created by the banker are so

valuable in exchange. This tradeoff between the efficiency of DM exchange and the quantity

of CM investment will be central to understanding the macroeconomic effects of introducing a

digital currency in the sections that follow.
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4. INTRODUCING A CENTRAL BANK DIGITAL CURRENCY

We now introduce a central bank digital currency into the economy. As described above, we

view digital currency as a technological innovation that allows the central bank to issue money

that can bear either a positive or a negative nominal return and can potentially be used in a

different set of situations than physical currency. The macroeconomic effects of this currency

will depend in large part on the type(s) of transactions in which it is used. We study three cases

in this section: one where digital currency competes only with physical currency, a second where

it competes only with deposits, and a third where it competes with both traditional means of

payment.

4.1 A cash-like digital currency

We first consider a type I digital currency, which can be verified by type 1 sellers but not

by type 2 sellers. We think of this case as representing design features for the digital currency

that aim to mimic the properties of physical currency as closely as possible. For example, the

digital currency may take the form of a token rather than a deposit in an account at the central

bank and thereby grant users some degree of anonymity.14 Alternatively, the central bank may

impose a maximum allowable balance or transaction size. The design may also minimize the

fees and other costs associated with the currency, particularly for small transactions.

Under this design, the functions f in the borrower’s liquidity constraint in equation (5) are

given by

f1 (a) = ( 0 ) and f2 (a) = (0  0) .

In other words, buyers in a type 1 meeting can use their balances of physical and/or digital

currency to make purchases, while buyers in a type 2 meeting can only use bank deposits. Using

the function  defined in equation (8), we can write the first-order condition for a buyer’s choice

of real digital currency balances  if she will potentially be in a type 1 meeting as

 (R · f1 (a)) ≤ 
(1 + )+1

 (18)

with equality if   0 The market-clearing condition for digital currency in this case can be

14Some authors use pseudosnymity rather than anonymity to refer to a system in which individuals can use

pseudonyms rather than their actual identities to hold and transfer assets.
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written as

1 = ̄

Comparing equation (18) with the first-order condition for physical currency balances in equa-

tion (9) shows that the demand for the digital currency will depend critically on the nominal

interest rate it earns. If   0 the demand for digital currency will be zero since buyers would

strictly prefer to use physical currency.15 In this case, the equilibrium is unchanged from Section

3 and is again characterized by equations (16) and (17). If  = 0 buyers are indifferent between

using physical and digital currency. In this case, equation (17) is unchanged but equation (16)

becomes




= 

µ
 + 



¶


The paths of {} and {} are then indeterminate; the equilibrium conditions determine only

the sum ( + ). However, while digital currency may now be used in equilibrium, its intro-

duction still has no effect on equilibrium allocations or on welfare. We summarize these results

in the following proposition.

Proposition 1 If  ≤ 0 we have ¡1 2  ̂¢ = ¡1  2  ̂¢ 
If the digital currency earns a positive interest rate, it will completely replace physical currency

and will change the level of trade in type 1 meetings.16 In this case, equation (16) is replaced

with



(1 + )
= 

µ
(1 + )




¶


Solving this equation for the equilibrium value  and using equation (6) to determine the

quantity of trade in type 1 meetings yields the following result.

Proposition 2 If   0 we have   0, 1  1 and
¡
2 ̂


¢
=
¡
2  ̂


¢


This proposition shows that an interest-bearing digital currency that competes only with physical

currency will increase trade in type 1 DM meetings, but will have no effect on investment in the

CM or on trade in type 2 meetings. The introduction of such a currency will always raise welfare.

15While some authors have advocated eliminating physical currency to avoid this outcome and thereby remove

the lower bound on nominal interest rates, we do not consider such a policy here.
16This result stems from our assumption that there are no meetings in which only physical currency can be

used. It would be straightforward to add such meetings to our model. Physical currency would then remain in

circulation when   0 but the optimal policy results would be qualitatively unchanged.
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However, it is fairly straightforward to show that the equilibrium allocation associated with any

choice of   0 can also be achieved without a digital currency by changing the target inflation

rate  In this sense, introducing a cash-like digital currency does not bring any meaningful

benefits in our model.17

4.2 A deposit-like digital currency

Next, we consider a type II digital currency, which can only be verified by sellers in type

2 meetings (where bank deposits are currently used). This assumption might represent, for

example, a digital currency that is based on accounts at the central bank and in which payments

are processed over the existing bank-based network. The functions f in the borrower’s liquidity

constraint in equation (5) for a type II digital currency are

f1 (a) = ( 0 0) and f2 (a) = (0  ) .

These functions state that buyers in a type 1 meeting can only use their physical currency

balances to make purchases, while buyers in a type 2 meeting can use their bank deposits

and/or digital currency balances. The first-order condition for a buyer’s choice of real digital

currency balances  if she is heading into a type 2 meeting is given by

 (R · f2 (a)) ≤ 
(1 + )+1

 (19)

with equality if   0 The market-clearing condition for digital currency in this case can be

written as

2 = ̄

Comparing equation (19) with the first-order condition for bank deposits in equation (10)

shows that a buyer will choose to hold both bank deposits and digital currency only if they offer

the same real return, that is, if

1 +  = (1 + )
+1


. (20)

This condition shows how the central bank’s policy choices — the inflation rate and the nominal

17One could imagine that policy makers might aim to target a particular inflation rate (say, 2%) for reasons that

are outside the scope of our model. In such cases, an interest-bearing, cash-like digital currency may be useful

for promoting efficient production and exchange while maintaining the desired inflation rate.

23



interest rate on digital currency — will impact the interest rate on bank deposits in this policy

regime.

An equilibrium in this case is characterized by equation (16) together with

1

 (1 + )
= 

Ã
(1 + )

"
1−

¡
1+


¢
2

+ 

#!
, (21)

and

1 +  ≥ (1 + )


, (22)

with equality if   0 Our first result gives a necessary and sufficient condition for a type II

digital currency to be held in equilibrium.

Proposition 3   0 if and only if 1 +   
¡
1 + 

¢


A type II digital currency is a perfect substitute for bank deposits in transactions. In equi-

librium, buyers will only choose to hold and spend the digital currency if it offers a return at

least as high as deposits. Of course, the return on deposits is endogenous and depends on the

central bank’s policy choices. Proposition 3 shows that the equilibrium nominal interest rate on

deposits in the baseline economy with no digital currency, 
¡
1 + 

¢
 is an important threshold.

If the central bank sets the nominal interest rate on digital currency, 1+, below this threshold,

there will be no demand for the new currency and the equilibrium allocation will be the same as

without the digital currency. When 1+  is above this threshold, in contrast, a positive amount

of digital currency is held and the equilibrium allocation changes. Our next result documents

the direction of these changes.

Proposition 4 If 1 +   
¡
1 + 

¢
 we have

¡
2  ̂

¢ À ¡
2  ̂


¢
and 1 = 1  In

addition,    and    hold.

This result shows that a type II digital currency has multiple effects on the equilibrium

allocation. On one hand, by raising the rate of return on assets that can be used as a means of

payment in type 2 meetings, the digital currency leads — through buyers’ portfolio choice and the

outcome of the bargaining process — to higher output being produced in these meetings. On the

other hand, however, a type II digital currency tends to crowd out bank deposits, raise the real

interest rate on deposits, and decrease CM investment. In other words, a central bank digital

currency that competes with bank deposits as a medium of exchange leads to disintermediation
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in the banking system: buyers shift funds away from private bank deposits into the digital

currency. This shift leads to less bank-financed investment. The effect of this shift on welfare

depends on the productivity of the marginal investment project; we return to this issue below.

The results in Proposition 4 point to a policy tradeoff the central bank faces when setting

the interest rate on a type II digital currency. Raising this interest rate increases DM output

and promotes efficient exchange, but decreases investment and output in the CM. The optimal

policy choice will balance these competing concerns. Figure 2 illustrates this tradeoff using a

numerical example.18 The upper-left panel of the figure shows how as the gross interest rate

1+  is increased, buyers’ holdings of real digital currency balances (in red) increase while their

holdings of bank deposits (in blue) decrease. The upper-right panel shows the net effect of these

changes on the quantity of DM goods produced and consumed in type 2 meetings, 2  This

quantity is strictly increasing in the central bank’s choice of 1 +  The quantity produced and

consumed in type 1 meetings is independent of 1 +  as demonstrated in Proposition 4
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Fig. 2. Equilibrium with a type II digital currency

The bottom-left panel of the figure plots the net output of bankers’ investment projects in

18The utility functions for this example are  () =  1−
1− with  = 05 and  = 075 and  () = . The

distribution of productivities follows a beta distribution on [0 15] with parameters (3 3)  The other parameter
values are (  1   ) = (1 096 025 085 106 0) 
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the CM. Combining equations (11) and (22) shows that banker ’s project will be funded if and

only if its productivity  is greater than

̂ =
1 + 




This expression shows that as the interest rate on digital currency 1 +  increases, the cutoff

productivity ̂ also increases, meaning that fewer projects are funded. In the bottom-left panel

of Figure 2, however, net output is initially increasing in 1 +  This fact is an indication that,

for low values of 1 +  the liquidity premium on deposits is so large that some projects with

negative real returns are being funded. Eventually, as 1 +  increases further, the continued

reduction in investment causes net CM output to decrease. The bottom-right panel of the figure

plots welfare as measured in equation (1). In the region where net CM production is increasing

in 1 +  welfare will necessarily increase as well.19 Once net CM production begins to decline,

however, there is a tradeoff because further increases in 1 +  continue to raise the level of DM

production and consumption. For this example, the value of 1 +  that maximizes net CM

output is 0.94 and the welfare-maximizing value of 1 +  is 0.97.

4.3 A universal digital currency

We now examine the effects of introducing a type III digital currency, which can be used in

both types of DM meetings. We interpret this type as resulting from design choices that make

the digital currency attractive for use in a wide range of transactions. Under this design, the

borrower’s liquidity constraints in equation (5) become

f1 (a) = ( 0 ) and f2 (a) = (0  ) .

This specification indicates that a buyer in a type 1 meeting can now pay with any combination of

physical and/or digital currency, while a buyer in a type 2 meeting can pay with any combination

of digital currency and/or deposits. The first-order condition for a buyer’s choice of real digital

currency balances 0 if she will potentially be in a type 1 meeting is given by equation (18) while

the condition for a buyer who will potentially be in a type 2 meeting is equation (19). We denote

19 It is worth pointing out, however, that even in these cases, an increase in 1 +  does not lead to a Pareto
improvement because those bankers whose (low-productivity) projects are not funded are made worse off.
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these holdings by 1 and 2 respectively. The market-clearing condition for digital currency

can then be written as

̄ = 11 + 22

The market-clearing conditions for physical currency and deposits are again given by equations

(14) and (15).

If the net nominal interest rate on digital currency is negative (  0), then it will never

be held by buyers heading into a type 1 meeting; they will strictly prefer to hold only physical

currency. If  = 0 these buyers will be indifferent between the two types of currency but the

introduction of digital currency will have no effect on their total real money balances or on their

equilibrium consumption. In both cases, the equilibrium allocation will be the same as with

a type II digital currency that cannot be used in these meetings. We record this result in the

following proposition.

Proposition 5 If  ≤ 0 we have ¡1  2  ̂
¢
=
¡
1  2  ̂

¢


It follows immediately from this result that equilibrium welfare is the same for both types of

digital currency as well. For this reason, we focus our attention in the remainder of this section

on the case where   0

When the digital currency pays a positive nominal interest rate, it will completely replace

physical currency in equilibrium as in Section 41. In this case, the equilibrium conditions can

be written as




= 

µ
(1 + )


1

¶
, (23)

1

 (1 + )
= 

Ã
(1 + )

"
1−

¡
1+


¢
1− 

+ 2

#!
, (24)

and

1 +  ≥ (1 + )


(25)

with equality if 2  0 As in the previous sections, a solution to these equations is necessarily

stationary. Our first result gives a sufficient condition for digital currency to be used in both

types of DM transactions.

Proposition 6 If 1 +   
¡
1 + 

¢ ≥ 1 then 1  0 and 2  0 hold.
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Our next result shows that a type III digital currency can increase the level of exchange in

all decentralized meetings. Recall that changes in the nominal interest rate affected output only

in one type of meeting in each of the previous cases. Thus, a digital currency designed to serve

as a medium of exchange in a wider range of decentralized transactions has a larger effect on

trading activity.

Proposition 7 If 1 +   
¡
1 + 

¢
 then 1  1 = 1 and 2 = 2  2  In addition,¡

    ̂
¢
=
¡
    ̂

¢
.
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Fig. 3. Equilibrium with a type III digital currency

Figure 3 illustrates these results. In the upper left-panel, the behavior of deposits and real

digital currency balances by buyers headed into type 2 meetings are the same is in Figure

2. When the nominal interest rate on the digital currency is positive, however, 1 becomes

positive because the digital currency is now used in type 1 meetings as well. The upper-right

panel shows that production of the DM good in type 2 meetings is the same as before, but now

production in type 1 meetings begins to increase as well when the interest rate on the digital

currency becomes positive. The behavior of net CM output in the lower-left panel is identical

to that in Figure 2.
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The bottom-right panel of Figure 3 shows that the behavior of welfare as 1+  varies has two

distinct regions. When the interest rate on the digital currency is negative, welfare is the same

as in Figure 2. As  becomes positive, however, welfare is higher with a universal currency than

with a deposit-like currency (the latter is indicated by the dashed line in the figure). This pattern

arises because the positive interest rate on digital currency leads to an increase in production

and consumption of the DM good in type 1 meetings. In other words, if the digital currency

pays a positive nominal interest rate, it is better to have a universal design that allows it to be

used in a wider range of transactions. This result is a general property of our model.

Proposition 8 If   0 then      

For this example, the welfare function has two local maxima. In one, the digital currency is

only used in type 2meetings and the interest rate corresponds to the optimal rate with a deposit-

like digital currency. At the other local maximum,  is strictly positive and the digital currency

is used in both types of meetings. The optimal type of digital currency to introduce depends

on which of these two local maxima is higher; we address this issue in Section 5. Before doing

so, however, we ask how the results derived above change if the central bank lends resources to

banks when a digital currency is introduced.

4.4 Central bank lending

When the central bank issues ̄ units of digital currency, it receives ̄ units of CM good in

exchange. Our analysis above assumes that these goods are distributed back to agents as lump-

sum transfers. The central bank then finances any interest payments on the digital currency

in future periods by collecting lump-sum taxes. One might ask if the crowding-out effect we

identify would be mitigated or eliminated if the central bank were instead to lend some or all of

these goods to banks in the deposit market. To answer this question, we now extend our model

to include this type of central bank lending policy.

For concreteness, suppose the central bank introduces a universal digital currency and sets the

interest rate  so that the equilibrium quantity of digital currency held by both types of buyers

is positive.20 In addition, suppose the central bank lends an amount  of goods (measured per

type 2 buyer) into the deposit market in each period. Letting  continue to denote the deposit

20 It is straightforward to show that the analysis with a type  digital currency held only by type 2 buyers is
similar.
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of a typical type 2 buyer, the market-clearing condition for deposits in equation (15) becomes

2 ( + ) = 1−

µ
1 + 


¶
 (26)

Note that this equation can also be interpreted as the balance-sheet identity for the banking

system; on the left-hand side are the liabilities of banks to depositors and the government, while

the funded projects on the right-hand side are the banking system’s assets. Looking at buyers’

portfolio-choice problem, it is still the case that type 1 buyers will hold only digital currency if

  0 and that type 2 buyers will hold both deposits and digital currency only if both offer the

same rate of return. Combining the relationship in (26) with the first-order condition of a type

2 buyer in equation (10) yields

1

 (1 + )
= 

Ã
(1 + )

Ã
1−

¡
1+


¢
2

+ 2 − 

!!
 (27)

The equilibrium conditions for the model with a universal digital currency and central bank

lending are then equations (23), (25), and (27).

When  = 0 equation (27) reduces to (24) and the equilibrium allocation is the same as in the

previous section. In particular, the real value of digital currency held by each type 2 buyer is 2 

which we assume here is positive. When the central bank instead sets   0 the equilibrium real

interest rate 1 +  does not change, since equation (25) must still hold with equality. It follows

immediately that the level of bank lending does not change because the measure of projects

that meet the funding constraint, given on the right-hand side of equation (26), is unchanged.

The left-hand side of this equation shows that central bank lending crowds out buyers’ deposits

in banks one-for-one, so that banks’ total liabilities  +  remain unchanged. Equation (27)

shows that central bank lending increases the digital currency holdings of type 2 buyers, so that

the difference 2 −  is unchanged. In other words, for each dollar lent by the central bank to

banks, private agents decrease their bank deposits and increase their digital currency holdings by

exactly one dollar. Since bank deposits and digital currency yield the same, unchanged return,

this shuffling of funds has no effect on equilibrium allocations. In particular, the central bank

cannot mitigate a digital currency’s impact on banks by lending to them. Instead, central bank

lending causes further disintermedation of private deposits. We summarize this result in the

following proposition.
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Proposition 9 Suppose 2  0 If the central bank lends an amount  ∈ £0 ¤ in the
deposit market, () private bank deposits decrease by  () digital currency held by type II

buyers increases by  and () equilibrium consumption allocations are unchanged.

This result is related to Brunnermeier and Niepelt (2019), who establish an equivalence result

between the use of public and private money. Their result can be seen in the context of our model

as follows. Suppose the central bank were to introduce a digital currency and set the interest

rate so that the real return on the digital currency (1 + ) exactly equals the real interest

rate in the economy with no digital currency, 1+ . In the absence of central bank lending, our

results from the previous sections show that the digital currency will not be held in equilibrium,

that is, 2 = 0 Now suppose the government lends   0 in the deposit market. It is easy to

see, using the logic of Proposition 9, that in the new equilibrium type 2 buyers will substitute

 units of digital currency for bank deposits, so that 2 becomes positive. In this way, the

central bank could introduce a digital currency that is held in equilibrium without changing the

equilibrium allocation of resources, in line with the Brunnermeier-Niepelt equivalence result.

Of course, the central bank may choose to set the interest rate on digital currency higher,

which would decrease the liquidity premium and create changes in the equilibrium allocation.

In the next section, we investigate optimal policy in our setting. We show that in many cases,

the optimal interest rate on digital currency does change the equilibrium allocation of resources

and strictly raises welfare.

5. OPTIMAL POLICY

Should a central bank issue a digital currency and, if so, how should it be designed? In our

model, introducing a digital currency has both positive and negative effects. By raising the

rate of return on the means of payment in decentralized transactions, it can move output and

consumption in these markets closer to the efficient level. At the same time, however, it raises

banks’ funding costs by reducing the liquidity premium on deposits. This higher funding cost

causes a decrease in bank-financed investment and output. In general, either of these effects can

dominate and introducing a central bank digital currency can either raise or lower welfare.

A digital currency does, however, give the central bank a new policy tool: it can choose the

nominal interest rate (either positive or negative) that the new currency earns. This interest

rate influences both the costs and the benefits described above. If the interest rate is chosen to
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maximize welfare, then introducing a digital currency of any type cannot decrease welfare, since

the interest rate can always be set in a way that minimizes the use of the currency and any

associated costs. To make this statement precise, let ̂  denote welfare under a digital currency

of type  ∈ {  } when the interest rate 1+  is chosen to maximize welfare as measured

in equation (1). Then we have the following result.

Proposition 10 We have min
n
̂   ̂   ̂ 

o
≥ 

Figure 4 presents the optimal interest rate and the associated level of welfare for each type

of digital currency as the severity of the financial friction  varies. Panel (a) shows that the

optimal interest rate for a type I, cash-like digital currency is independent of  and equal to


 (≈ 110 in this example). Note that 

 corresponds to the gross nominal interest rate on a

one-period illiquid bond. Since this type of currency does not influence the level of investment,

the best policy is to implement a type of Friedman rule for type 1 transactions, regardless of

the severity of the investment friction.

For the other two designs, the figure shows that the optimal interest rate is strictly increasing in

When  is small, the investment friction is strong and many bankers with socially-productive

projects are unable to raise the required funding. Panel (a) shows that, in these cases, the

optimal nominal interest rate  on a type II or III currency is negative, which implies that these

designs lead to the same outcome. This low interest rate maintains a large liquidity premium on

deposits, which enables many bankers to overcome the credit friction and operate their projects.
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Fig. 4. The optimal interest rate and welfare with each type of digital currency
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As  increases and the investment friction becomes weaker, the gain from setting the interest

rate  low to maintain a liquidity premium on deposits diminishes. As a result, panel (a) shows

that the optimal interest rate  increases. When  is high enough (approximately 0.85 in this

example), the optimal interest rate for a type III currency jumps above zero.21 For this value

of  and higher, the universal design is used in both types of meetings and yields higher welfare

than the deposit-like design. When the investment friction is weak, the crowding-out effect of

the digital currency on bank deposits is less costly. In these cases, it is better to pay a higher

interest rate to encourage more efficient production and exchange in as many DM meetings as

possible.

As  approaches one and the investment friction disappears, the optimal policy approaches

1 +  = 
 . When 1 +  is set to this level, digital currency and bank deposits will offer the

same return as an illiquid bond in equilibrium, which means there is no liquidity premium.

The crowding-out effect of the digital currency on CM investment is still present. However,

when there is no investment friction, any liquidity premium on deposits leads to inefficiently

high investment from a social point of view. In this case, and only in this case, the optimal

policy in our model corresponds to a full implementation of the Friedman rule. Note that fully

implementing the Friedman rule in our setting requires using a universal design so that the

digital currency can be used in both types of DM meetings.

Concluding remarks. The introduction of a central bank digital currency would represent a

potentially historic innovation in monetary policy. If households and firms choose to hold and

use significant quantities of such a currency, it could lead to a substantial shift in aggregate

liquidity, that is, in the types of assets that are used in exchange and that carry a liquidity

premium. While there have been much recent discussion of this issue in policy circles, the

macroeconomic implications of this shift are not well understood.

Our analysis shows how a fairly standard model in the New Monetarist tradition can generate

insight into these issues. In particular, it highlights a potentially-important policy tradeoff: while

a digital currency can indeed promote efficient exchange, it leads agents to shift away from bank

deposits and thereby raises bank funding costs. By appropriately choosing the interest rate

it pays on digital currency, the central bank can balance these competing concerns. When

21This jump corresponds to a shift in the global maximum between the two local maxima shown in the bottom-

right panel of Figure 3.
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investment frictions are small, the optimal policy is to pay a relatively high interest rate on the

digital currency and to design it in a way that it allows it to be used as widely as possible.

This approach can be seen as an implementation of the well-known Friedman rule. If, however,

frictions prevent a significant number of socially-productive projects from being funded, the

optimal policy changes. In these cases, the central bank should choose to pay a lower interest

rate on the currency, possibly even a negative rate. Doing so allows bank deposits to carry

a liquidity premium and thus helps banks partially overcome the investment friction. Taken

together, our results show how a digital currency could potentially be an important and useful

tool for central banks to use in managing aggregate liquidity.
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