
Cryptotokens and cryptocurrencies: the

extensive margin.∗

Andrea Canidio †

First version: July 13, 2020. This version: May 28, 2021. Please check here for the
latest version.

Abstract

We build a model of entry among competing blockchain-based decentralized digital plat-

forms, each with its own associated cryptotoken/cryptocurrency. We find that, if there are

developers who can self-finance the development of their platforms, then the equilibrium

is a monopoly in which a single platform (and a single token) enters the market. If these

developers are absent, then entering the market requires holding an Initial Coin Offering

(ICO). We show that ICOs weaken incentives because, in equilibrium, there is a strictly

positive probability that a developer who held an ICO will then liquidate all his tokens

and stop the development of his platform. At the same time, ICOs stimulate entry because

each developer might become a monopolist with strictly positive probability. Under certain

conditions, the developers’ levels of effort (and the quality of the competing platforms) are

higher when multiple developers enter via ICOs than when a single developer self-finance

the development of the platform.

JEL classification: D25, O31, L17, L26

Keywords: Blockchain, Cryptocurrencies, Cryptotokens, Initial Coin Offering (ICO),

seigniorage, innovation, tournaments, entry.

∗I am grateful to Iustina Alina Boitan, Matus Drgon, Christian Ewerhart, Antonio Fatas, Kenan
Huremović, Marteen van Oordt, and participants to the Oligo Workshop 2020, European Economic
Association Congress 2020, IMT Internal Seminar, the Third Toronto Fintech Conference, INFER-
PUEB Workshop 2021 for their comments and suggestions.
†IMT school of advanced studies, Lucca, Italy; andrea.canidio@imtlucca.it

1

http://andreacanidio.com/research


1 Introduction 2

1 Introduction

The publication of the Bitcoin whitepaper (Nakamoto, 2008) rapidly led to the cre-
ation of hundreds of new decentralized digital platforms. A decentralized digital
platform is the network of users of a specific blockchain-based protocol, a piece of
software allowing to perform peer-to-peer, disintermediated exchanges and transac-
tions.1 In addition to several other cryptocurrencies (see Litecoin, various Bitcoin
derivatives, Monero, ZCash,...), there are now several decentralized computing plat-
forms (see Ethereum, EOS, Cardano, NEO, Algorand, ...);2 decentralized real-time
gross settlement platforms (see Ripple, Stellar); decentralized marketplaces for stor-
age and hosting of files (see SIA, Filecoin, Storj) or for renting in/out CPU cycles
(see Golem); and many more. A key observation is that, in most cases, decen-
tralized digital platforms compete with each other—a person could send or receive
payments in one of several cryptocurrencies; could run smart contracts on one of
several decentralized computing platforms; could save (or host) files using one of
several decentralized marketplaces; and so on.

The rapid creation of these new decentralized digital platforms was made possi-
ble by the simultaneous creation of new blockchain-based tokens (or cryptotokens).
The relationship between each platform and its corresponding token is multilay-
ered. First, a decentralized digital platform is typically free to use because the
creator/maintainer of the platform does not charge its users. However, using the
platform requires using its associated token, usually because the token is the plat-
form’s internal currency.3 Second, tokens play a central role in the well functioning

1 See the following subsection for additional technical details on blockchain.
2 A decentralized computing platform is akin to an operating system running over a network

of computers rather than a single computer. Developers can then create software (which is called
smart contract) that is executed by the network as a whole rather than by a single computer.

3 This is immediate for the case of decentralized marketplaces, in which users on the buying
side of the platform pay those on its selling side using tokens (although prices may be expressed
in any fiat currency, such as USD). Similarly, within decentralized computing platforms (e.g.,
Ethereum), the token (e.g., Ether) must be used to pay miners or validators for executing some
piece of software (called smart contracts). In cryptocurrencies such as Bitcoin, people who need to
exchange Bitcoins reward those who process these transactions (called, again, miners) in two ways.
One is direct: the sender can directly pay some Bitcoins to the miner to process his transaction
faster. The second is indirect: the network awards miners with new bitcoins for their work. These
awards affect the total supply of Bitcoin and its price. Because of this, it is essentially a transfer
from the holders of bitcoins to the miners. See also Huberman, Leshno, and Moallemi (2017) and
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of their respective platforms because they can be automatically allocated to users
who perform useful costly actions—mining being the prime example.4 Third, selling
some tokens in an Initial Coin Offerings (ICO) can finance the development of its
corresponding decentralized digital platform.5 Finally, the sale of tokens not sold
at ICO allows the developers of decentralized digital platforms to profit from their
work. This novel business model is called seigniorage.6

This paper aims to contribute to our understanding of the creation and devel-
opment of decentralized digital platforms. We do so by studying theoretically the
entry of competing decentralized digital platforms in the same market. A market
here is defined by all decentralized digital platforms that allow users to perform a
given action. Examples are the market for cryptocurrencies (i.e. the decentralized
digital platforms that can be used to send and receive crypto-tokens with money-like
properties); the market for decentralized computing platforms (i.e., the decentral-
ized digital platforms that can be used to run smart contracts); the market for
decentralized exchanges of various types. Competition is assumed winner-take-all,
which is justified by the presence of strong network externalities. Hence, by as-
sumption, there is a single decentralized digital platform in each market in the long
run. But in the short run, multiple platforms may enter the same market. Because
to each decentralized digital platform entering the market is associated a specific
crypto-token, ours is a model in which the number of crypto-tokens in existence in
the short run is endogenous.

In our model, each developer decides first whether to hold an ICO, and then
whether to pay a fixed cost. The developers who pay the fixed cost then exert effort
in the development of their respective platforms. The developer who exerts the
highest effort is the winner, and his platform is the one adopted by users. After the

Easley, O’Hara, and Basu (2019).
4 Biais, Bisiere, Bouvard, and Casamatta (2019) and Huberman, Leshno, and Moallemi (2017)

provide an economic analysis of the resulting incentives for the case of Bitcoin.
5 See the next subsection for more details on ICOs.
6 See Canidio (2018). Seigniorage is profits earned by issuing currency and is clearly not a novel

concept. What is novel in this context is the fact that seigniorage is used to finance innovation.
Note that Howell, Niessner, and Yermack (2018) and Amsden and Schweizer (2018) show that
projects that go through an ICO sell only about half of their tokens at ICO, with the rest being
kept by the founding team. This indicates that projects that go through an ICO expect to sell as
many tokens at ICO as on the market post-ICO.
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winner is determined, all developers liquidate their tokens and exit the game, while
users continue using the winning platform indefinitely. Our measure of welfare is
the volume of transactions occurring in each period on the winning platform, which
depends on the effort exerted by the winning developer. Our primary assumption is
that if a developer does not hold an ICO, he can pay the fixed cost using his resources.
If a developer holds an ICO, he can pay the fixed cost using also the proceedings
from the ICO. Importantly, if a developer held an ICO, then a frictionless market
for tokens opens in every following period.7 In particular, this implies that if the
developer raises funds via an ICO, it will be possible for developers and investors
to exchange tokens on the market after the developer pays the fixed cost but before
the developer exerts effort.

To start, we show that competition is beneficial: having multiple competitors
always leads to higher effort than having a single competitor. However, increas-
ing the number of competitors beyond two does not always increase welfare. Our
second result is that, as it is often the case, outside financing (here in the form
of an ICO) weakens incentives: if the market for a given tokens is present, then,
in equilibrium, with strictly positive probability the corresponding developer will
liquidate all his tokens and stop the development of the protocol.8 The intuition is
that if investors expect a developer to hold on to his tokens, then they should also
expect this developer to exert high effort in the future, which implies that the price
of the token associated with the developer’s platform should be high. But then, the
developer should sell all his tokens to “cash in” on his future effort before exerting
any. Similarly, suppose investors expect low effort tomorrow. In that case, the price
of the developer’s token will be low, which implies that the developer should hold
on to most of his tokens and exert high effort tomorrow. Each developer is there-
fore engaged in an anti-coordination game with investors, which implies that the

7 Usually, tokens sold at ICO start trading on specialized financial exchanges immediately after
the end of the ICO. Sometimes a lockup mechanism prevents those tokens from being traded. This
lockup period can last between a few months to a year, which is minimal relative to time required
to develop the platform

8 This result is already in Canidio (2018), who, however, considers a single developer. It is
also related to DeMarzo and Urošević (2006), who consider a large shareholder who can exert
effort to improve the performance of a firm and is active on the market together with a mass of
small investors. They find that, in equilibrium, the large shareholder will inefficiently liquidate his
holdings (either immediately or slowly over time).
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equilibrium must be in mixed strategies: each developer sells all his tokens on the
market with strictly positive probability, and holds on to as many tokens as possible
otherwise.

An important implication is that a developer who paid the fixed cost without
holding an ICO will for sure reach the final stage of the game. In this case, compe-
tition ensures that a second developer who pays the fixed cost will earn zero profits
in the following period. Hence, no other developer will want to pay the fixed cost.
Instead, when all developers pay the fixed cost by holding ICOs, each of them may
liquidate his tokens before reaching the game’s final stage. Hence, when paying the
fixed cost, each developer knows that, with strictly positive probability, he may be
the only developer reaching the game’s final stage. In this case, multiple developers
may find it profitable to pay the fixed cost.

Solving for the equilibrium number of entrants shows that financing via ICOs
has two contrasting effects on the equilibrium level of effort: it reduces effort for
a given number of entrants, but it also stimulates entry (and, as a consequence,
effort). More precisely, depending on the developers’ initial wealth, there are three
cases. In the first one, some developers can pay the fixed cost with their resources.
In this case, no ICO occurs in equilibrium, and a single developer enters the market.
In the second case, all developers are very poor relative to the cost of entry, and
there are no ICOs nor entry. Intuitively, a very poor developer will need to sell
many tokens at ICO to raise enough resources to pay the fixed cost. But this leaves
this developer with few tokens, which means that his future profits if he pays the
fixed cost are low. As a consequence, for this developer paying the fixed cost may
not be incentive compatible.

The last case occurs for intermediate levels of wealth: developers are poor but
not so poor to be unable to hold an ICO. We solve this case by assuming that all
developers have the same initial wealth. We show that there are multiple equilibria:
there is an equilibrium in which no ICO occurs, together with an equilibrium with
multiple ICOs. For intuition, suppose investors believe that the developer will not
have the incentive to pay the fixed cost. In that case, they will be unwilling to
purchase tokens at ICO, which implies that the developer will indeed be unable to
pay the fixed cost. If investors instead expect high effort in the future, the price of
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the token will be high. Each developer will keep a significant fraction of tokens at
ICO (while simultaneously paying the fixed cost), which implies that future effort
will indeed be high.

We then compare welfare in the three cases above. Welfare is the lowest when all
developers are extremely poor (case 2 above), or when developers have an intermedi-
ate level of wealth but an inferior equilibrium with no ICOs nor entry emerges (case
3 above). However, the comparison between the case with no ICO and monopoly
(case 1 above) and that with multiple ICOs (case 3 above) is ambiguous. In case 1,
a single developer will enter the market and reach the game’s final stage with prob-
ability 1. In case 3, multiple developers enter the market. Each of them has some
likelihood of exiting the market prematurely. But it is also possible that multiple
developers reach the final stage of the game—in which case competition guarantees
a higher level of effort than in case 1. We show that, relative to no ICO and a
monopoly, welfare is higher with multiple ICOs whenever developers are not too
poor—that is, outside financing is present but limited. An interesting corollary is
that increasing the fixed cost may increase welfare. If the cost is such that some
developers can pay it using their own funds, there is a monopoly in equilibrium.
If the cost increases (via, for example, a tax), all developers may need to resort to
an ICO to pay it. This generates competition and, if this tax is not too large, also
increases welfare relative to the monopoly case.

Background on Blockchain and Tokens

In the opening paragraph of “Bitcoin: A Peer-to-Peer Electronic Cash System” (the
Bitcoin whitepaper) Nakamoto (2008) writes:

Commerce on the Internet has come to rely almost exclusively on fi-
nancial institutions serving as trusted third parties to process electronic
payments. [...] What is needed is an electronic payment system based
on cryptographic proof instead of trust, allowing any two willing parties
to transact directly with each other without the need for a trusted third
party.

To achieve this goal, Nakamoto (2008) introduced two innovations. The first one is
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Bitcoin, a new digital currency. The second, more important, is the bitcoin proto-
col—an open-source software allowing a network of anonymous, selfish participants
to maintain a record of Bitcoin transactions. Because these transactions are grouped
into “blocks” that are then “chained” (i.e., linked) together to form an immutable
history, this technology became known as blockchain. Notably, the bitcoin protocol
also establishes that the total number of bitcoins in existence increases over time
at a decreasing rate and will never exceed 21 million. At the onset of Bitcoin (in
early 2009), Nakamoto created and kept approximately 1 million Bitcoin to himself.
He ceased to contribute to the development of the Bitcoin protocol in mid-2010.
Soon after, it became clear that blockchain can be used to maintain various types of
records, not only financial records. This realization led to the creations of hundreds
of new blockchain-based protocols, resulting in hundreds of decentralized digital
platforms with corresponding cryptotokens.

As previously discussed, the development of decentralized digital platforms can
be financed by selling tokens via an ICO. The first notable ICO was that of Ethereum
in 2014, raising USD 2.3 million in approximately 12 hours. ICO activity exploded in
2017 and, especially, in 2018, with ICOs raising more that USD 6 billion in a single
month (July 2018, from Lyandres, Palazzo, and Rabetti, 2018).9 Note, however,
that in the vast majority of cases, teams holding ICOs plan to profit from their
work by selling more tokens at a later stage. This novel form of seigniorage is the
dominant business model in the blockchain sector.

Notably, blockchain enables seigniorage because it allows a developer to commit
to a given supply of tokens. This is because the rules determining whether (and how)
the supply of tokens increases over time can initially be specified within the protocol
powering the platform. If this software protocol is open source—that is, its source
code is publicly available—this commitment is credible because anybody can verify
the monetary policy specified by the protocol. Of course, this type of commitment
could be achieved by other means, such as complex institutional design (e.g., creating

9 For comparison, in 2016 total Venture Capital investment in Europe was USD 4.7 billion
(OECD, 2017). Note that, although far from its 2018 peak, ICOs continue to attract large invest-
ments. For example, between January 2021 and May 2021, 18 ICOs were able to raise more that
10M USD each, of those 3 ICOs raised more than 50M USD and one raised more than 1B USD
(source: https://icodrops.com.)

https://icodrops.com
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a “central bank”) or building reputation over time. But these alternatives are very
costly and not widely available.10 Blockchain instead generates commitment by
computer code. The downside is, however, that blockchain-based protocols (like all
open-source software) must be free to use.11 Hence, seigniorage is incompatible with
traditional pricing.

Literature

Competition, cryptocurrencies, and crypto-tokens. To the best of our knowl-
edge, ours is the first paper to study entry and competition among decentralized
digital platforms. However, some existing papers investigate related questions. For
example, Lyandres (2019) study competition between two firms, one of which can
price its output in tokens. They show that pricing in tokens can increase a firm’s
expected profits if its competitor prices its output in fiat currency. Also related is
Gandal and Halaburda (2016), who study empirically the price movements of vari-
ous cryptocurrencies between May 2013 and July 2014. They find evidence of strong
network effects and winner-take-all dynamics toward the end of their sample period,
but not at the beginning. There are also general-equilibrium models of competition
between traditional currencies and cryptocurrencies (see Garratt and Wallace, 2018,
Schilling and Uhlig, 2019, Benigno, Schilling, and Uhlig, 2019). Importantly for our
purposes, these papers take as given both the existence and the overall “quality” of
these currencies.

Tokens and decentralized digital platforms. The literature studying tokens and
decentralized digital platforms has so far largely ignored the choice of entry of de-
centralize digital platforms and the subsequent competitive dynamics.

Within this literature, the most closely related paper is a previous work of ours
(Canidio, 2018), in which a developer exerts effort and invests in the development of

10 As a consequence, the only notable example of non-blockchain electronic currency that is freely
exchangeable with dollars is the Linden Dollar (the currency of the game Second Life). Other non-
blockchain electronic currencies are those of online games like World of Warcraft which, however,
cannot be freely exchanged with dollars.

11 This follows from Bertrand competition: if an open-source software is not free, a competitor
or a group of users could, at zero cost, launch a replica of the same software having lower or zero
prices.
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a decentralized digital platform over several periods. The developer holds the initial
stock of tokens and can choose when to hold an ICO. Following the ICO, in every
period there is a frictionless market for tokens where investors and the developer
himself can trade tokens. Relative to Canidio (2018), here we allow the developers
to invest and exert effort only once. Also, the choice of when to hold the ICO is
simplified to two options: either initially or before exiting the game. Of course,
here the number of developers is endogenous and could be greater than one, while
in Canidio (2018) there is a unique developer.

Also closely related are Cong, Li, and Wang (2019) and Goldstein, Gupta, and
Sverchkov (2019). Cong, Li, and Wang (2019) build a model in which the owner of
a decentralized digital platform continuously creates new tokens which can be either
sold (and the proceedings consumed) or used to pay workers who will improve the
value of the platform. In Goldstein, Gupta, and Sverchkov (2019) an entrepreneur
chooses whether to create a decentralized digital platform or a traditional platform.
Their main result is that creating a decentralized digital platform generates compe-
tition among the users of the (unique) platform. Here instead we study competition
among platforms.

Sockin and Xiong (2018), Cong, Li, and Wang (2018), Bakos and Halaburda
(2018), and Li and Mann (2018) consider a single decentralized digital platform, and
argue that because of network externalities there could be coordination failures in
its adoption. They study the role of tokens and the way they are sold in achieving
the high-adoption equilibrium. Finally, a number of authors have studied ICOs
held by firms that are not building decentralized digital platforms and may even
completely unrelated to blockchain. In this case, a token may represent a voucher
and therefore give the right to acquire a good or service from the issuer, or may
represent a claim on a business’s revenues, or a claim on a business’s profits. This
use of blockchain-based tokens is studied in Catalini and Gans (2018), Chod and
Lyandres (2018), Garratt and van Oordt (2019), Malinova and Park (2018), and in
the already discussed Lyandres (2019). With the exception of Lyandres (2019), all
these papers study this problem by considering a single firm.



2 The Model 10

Contest theory and platform competition. The core of our model is a winner-
take-all contest with asymmetric players and valuable effort. The main theoretical
reference is therefore Siegel (2014), who provides conditions under which these types
of contests have an equilibrium, and show that the equilibrium payoffs of all partic-
ipants are the same in all equilibria of the game.

Finally, the literature studying competitions among (traditional) platforms has
focused mostly on the resulting equilibrium prices (see, for example, the seminal
work by Rochet and Tirole, 2003, Armstrong, 2006, and Caillaud and Jullien, 2003).
Here this issue is not present because decentralized digital platforms are free to use
provided that the corresponding tokens are also used. Hence, profits are generated
exclusively by the sale of tokens. Despite this, our research question is related to
Kristiansen and Thum (1997), who study R&D choice when there are network ex-
ternalities. In their model, however, network externalities are at the market level—
users’ benefit of using a product depends on the total number of users of all products
in the market—while here network externalities are assumed at the platform level.

2 The Model

The economy is composed of a large mass of developers, a large mass of risk-neutral
price-taking investors, and a large mass of users. Developers are heterogeneous
in their initial wealth ai, but are identical in all other respects. Each developer i
entering the market creates his own platform (also indexed by i) and establishes that
all transactions using his/her platform must be conducted using a specific token (also
indexed by i) with total supply M , fully owned by the developer at the beginning of
the game.12 The development of the protocol lasts 2 periods. In the first one, each
developer invests I i ∈ {0, C}, where we interpret C > 0 as a market-entry fixed
cost. In the second one, each developer exerts effort ei, which is productive only if
he/she previously paid the fixed cost. All developers exit the game at the end of
period 2.

Each developer can choose to hold an ICO either at the beginning of the game
12 As we will show later, equilibrium actions, payoffs and prices are independent of M , provided

that it is strictly positive and finite. We therefore treatM as a parameter common to all developers
rather that a choice variable.



2 The Model 11

(in period t = 0) or before exiting the game (in period t = 2). An ICO is modeled
as an auction, in which a developer sells some tokens to investors. If developer i
held an ICO in period t, then at the end of every subsequent period a frictionless
market for token i opens. In this market, investors and developer i can trade token
i. Developers and investors can also hold a risk-free asset yielding a per-period gross
return R ≥ 1.

From period 3 onward, all users adopt a single decentralized digital platform. We
call such platform the winning platform w, which we define in the next paragraph.
More precisely, in every t > 3 first the market for token w opens and then users use
the winning platform. See Figure 1 for a graphical representation of the timeline.

t = 0

ICO
No ICO

All developers exit

Markets for tokens open

Users use the winning platform

t = 4

t = 1

investment I i

Markets for tokens open

t = 2

effort ei

Markets for tokens open

t = 3

t = 1

investment I i

t = 2

effort ei

ICO

t = 3

Fig. 1: Timeline
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Investors. Investors are risk-neutral profit maximizers with no cash constraints.
They can purchase tokens in every period and sell them during any subsequent
period. Importantly, when buying or selling tokens on the market, they are price
takers: their net demand for tokens in period t depends on the sequence of token
prices from period t onward, which they take as given.

Call pit the price of token i in period t, which could be determined on the market
or in an ICO. Investors are indifferent between purchasing any amount of tokens
i in period t whenever they expect the token to yield the risk-free return, that
is whenever pit = maxs>t

{
E[ pis

Rs−t ]
}
. If instead pit > maxs>t

{
E[ pis

Rs−t ]
}
, then the

investors’ demand for tokens i in period t is zero. Finally, if pit < maxs>t

{
E[ pis

Rs−t ]
}
,

then the investors’ demand for token i in period t is not defined.

Users. Because of network externalities, from t = 3 onward, all user will use the
winning platform to transact with each other.

Call q the price of the good (or service) exchanged on this platform, expressed
in fiat currency (for example USD). For ease of derivation, I introduce the following
functional forms for the supply and the demand on the platform:

Assumption 1. The per-period demand and supply functions on the winning de-
centralized digital platform are, respectively:

D̃(q) · ew S̃(q) · ew,

with S̃(q) is strictly increasing and D̃(q) is strictly decreasing, with S̃(0) < D̃(0).

Hence, effort increase both supply and demand proportionally and by the same
factor. The equilibrium price on the platform is q∗, implicitly defined as

D̃(q∗) = S̃(q∗).

For ease of notation, we introduce the following normalization:

S̃(q∗) ≡ 1,
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so that the value (in USD) of all exchanges occurring on the winning platform is
ew. We call this the value of the winning platform. Assumption 1 together with
the above normalization therefore capture in a parsimonious way the fact that the
developer’s effort generates an improvement of the protocol (i.e., lower transaction
costs, more ease of use, increased security, and reliability), which in turns induces
more users to use the platform to perform more/larger transactions.

We abstract away from possible coordination failures by assuming that users use
the platform with the highest value, so that

w ≡ argmaxi{ei}

In case more then one platform have the same, highest value, then a tie breaking rule
determines which platform is the winner (the exact nature of this tie breaking rule
is irrelevant for the calculations below). Finally, each user can access the market for
tokens only once in every period.13 This implies that, in every t ≥ 3, those on the
demand side of the platform have a demand for tokens equal to ew

pwt
, while those on

the supply side of the platform have a supply of tokens in period t+ 1 equal, again,
to ew

pwt
.

The developers. Call Qi
t the stock of token i held by developer i at the beginning

of period t. Each developer maximizes the total cash at the end of life minus a cost
of effort (ei)2

2
. It follows that, in period 2, a developer sets effort ei so to maximize

U i
2 ≡ pi2Q

i
2 −

(ei)2

2
,

where pi2 is determined in equilibrium (either in an ICO or on the market) and
depends on the effort exerted by all developers who paid the fixed cost, in a way
that is fully anticipated by the developer.

In period 1, a developer who did not previously hold an ICO chooses I i ∈ {0, C}
13 That is, the winning token has velocity 1. Assuming a different, exogenous velocity will

introduce an additional parameter without affecting the results. The velocity of tokens could,
however, be endogenous as in Prat, Danos, and Marcassa (2019) and Holden and Malani (2019).
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so to maximize
U i

1 ≡ U i
2 +

(
aiR− I i

)
R

subject to a cash constraint
aiR ≤ I i (1)

Instead, in period 1, a developer who previously held an ICO chooses Qi
2 ∈ [0,M ]

and I i ∈ {0, C} so to maximize

U i
1 ≡ U i

2 +
(
(ai + pi0(M −Qi

1))R− I i − pi1(Qi
2 −Qi

1)
)
R

subject to a cash constraint

(ai + pi0(M −Qi
1))R ≤ I i + max

{
pi1(Qi

2 −Qi
1), 0

}
, (2)

where pi1 is the price for token i emerging on the market in period 1. Note that
pi0(M −Qi

1) are the proceeds of the ICO, invested in the risk free asset in period 0
together with the initial wealth. Hence, the term (ai +pi0(M −Qi

1))R represents the
developer’s wealth at the beginning of period 1. Note also that if pi1(Qi

2 −Qi
1) > 0,

then this term represents the resources spent by the developer to purchase his own
token on the market in period 1 (which matters for the cash constraint).14 If instead
pi1(Qi

2−Qi
1) < 0 then this term represents the resources earned by selling additional

tokens on the market in period 1. The cash constraint therefore says that the agent
wealth at the beginning of period 1 cannot exceed the amount invested I i plus the
amount spent to purchase tokens on the market. Also, the term (ai+pi0(M−Qi

1))R−
I i−pi1(Qi

2−Qi
1) is the developer’s total wealth at the end of period 1, after choosing

Qi
2 ∈ [0,M ] and I i ∈ {0, C}. This wealth earns the risk-free return and is consumed

at the end of period 2.
Finally, in period 0, the developer chooses whether to hold an ICO and how

many tokens to sell at ICO so to maximize his continuation utility U i
1. We assume

14 This possibility emerges because, at ICO, a developer could sell more tokens than what nec-
essary to pay the fixed cost, invest the proceeding in the risk free asset and then purchase back
some of his tokens on the market in period 1. As we will show later, without loss of generality, we
can focus on equilibria in which this never happens. The reason is that, in equilibrium, the return
on holding tokens is the same as holding the risk free asset.
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full information, so that whether a developer paid the fixed cost, his/her effort, and
his/her token holdings are observable by investors, users, and other developers.

Equilibrium. We solve the model by backward induction, starting from the price
of the winning token, then moving to solving for the equilibrium effort, the market
equilibrium in period 1 (if an ICO occurred), the choice of paying the fixed cost,
and finally the choice of whether to hold an ICO.

As we will see, at each stage there may be multiple equilibria. When this is the
case, we apply a forward induction refinement: at the beginning of the subgame,
we allow a single developer to take a useless-but-costly action, which is observable
by other developers but not by investors nor users.15 Ben-Porath and Dekel (1992)
show that this developer is able to “signal his future action.” The intuition is that,
by bearing an additional cost, this developer can credibly commit to choosing the
equilibrium strategy of his preferred equilibrium. Interestingly, this works also if no
useless-but-costly action is taken on the equilibrium path.

In our framework, this implies that the developer who can take the costly action
will use this possibility to coordinate all other developers on his most preferred
equilibrium. However, these actions are not observable by investors and hence can
be used only to coordinate the equilibrium strategies of developers, and not to
manipulate the price of the token (which depends on the investors’ beliefs over the
developers future actions).

For each developer, therefore, the possibility of taking a useless-but-costly action
restricts the set of possible equilibria to a subsect of the full set of equilibria. In our
refinement, we consider the union of these subsets. That is, we check, for each de-
veloper, which equilibria are eliminated when only this developer is allowed to take
a useless-but-costly action, and then consider all the surviving equilibria as plausi-
ble.16 If multiple equilibria survive this refinement, then we focus on the symmetric

15 In the literature, this a useless-but-costly action is usually assumed to be “money burning”.
The problem with this interpretation is that if a developer’s cash constraint is binding, then this
developer has no money to burn. The forward induction logic, however, applies to any form of
action that generates a cost to the player but has no impact on the payoffs of the game. For
example, there could be a second dimension of effort that has no impact neither on quality of the
decentralized platform but is nonetheless observed by the other developers.

16 When multiple players are allowed to useless-but-costly actions, then Ben-Porath and Dekel
(1992) show that their ability to select an equilibrium depends on the order in which those actions
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equilibrium in which identical developers play identical equilibrium strategies.

3 Solution

3.1 Price of tokens from period 2 onward

We start by solving for the price of the token associated with the winning platform.
The fact that no development is possible after period 2 implies that the price of the
token associated with the winning platform must be constant from period 2 onward.
Investors are therefore unwilling to hold any token. Because the demand for tokens
originates exclusively from users, from period 2 onward the price of the winning
token is:

pw2 =
ew

M
. (3)

The above equation is a version of the equation of exchange, used in macroeconomics
to link money supply (hereM), economic activity (here ew), price level, and velocity
of money (here assumed 1).17 With respect to the non-winning platforms, because
they are not used, their associated tokens have prices equal to zero.

Before continuing with the derivation of the solution, an important observation.
The presence of the investors guarantees that, if a token is traded on the market in
period 1, in equilibrium it must be that

pi1 =
E[ei]

R ·M
· pr{i = w},

and if a token is sold at ICO in period 0, in equilibrium it must be that

pi0 =
E[ei]

R2 ·M
· pr{i = w}.

The important observation is that what is known by investors and hence is used
to compute the expectation changes from period 0 to period 1. In an ICO, the
developer announces the supply of tokens and investors submit bids. The developer’s

are taken.
17 Bolt and Van Oordt (2020) also propose using the equation of exchange to determine the price

of cryptocurrencies.
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announcement is used to compute the expectation, and hence determines the token
price at ICO. On the market, instead, investors are price takers, which implies
that their demand for tokens depends exclusively on p1 and E[p2], and not on the
quantity of tokens sold by the developer in period 1.18 To say it differently, in period
1 investors form an expectation with respect to future effort that does not depend
on period-1 supply of tokens. This expectation is correct in equilibrium (that is,
for the equilibrium supply of tokens in period 1 and subsequent effort) but will not
react to deviations from the equilibrium. From the developers view point, therefore,
the supply of tokens in period 1 does not affect the equilibrium price for tokens in
that period. However, as we will see, the supply of tokens in period 1 determines the
developers’ effort, and hence the price of the token in period 2.

3.2 Equilibrium effort

Consider the choice of effort in period 2. Suppose that, at this stage, developers
i ∈ {1, ...k} for k ≥ 0 are the active one, which means that they paid the fixed cost
and own a strictly positive stock of tokens (that is Qi

2 > 0 for i ≤ r).
In period 2 all developers will sell their entire stock of tokens. Given this, when

choosing the optimal level of effort, developer i ≤ k chooses ei to maximize
Qi

2·ei
M
− (ei)2

2
if ei > ej ∀j 6= i

− (ei)2

2
otherwise

The developers are therefore engaged in an asymmetric contest with productive
effort, as studied in Siegel (2014). Call the developer with the highest Qi

2 the leader
and the developer with the second-highest Qi

2 the follower.19 Define Ql ≡ maxiQ
i
2

and Qf ≡ maxi 6=lQ
i
2 as the tokens held by leader and follower, respectively.

Note that Qi
2

M
is the optimal effort whenever developer i expects to win with

probability one. Instead 2Qi
2

M
is the effort level at which a developer’s utility is zero

18 Of course, the equilibrium price will be such that demand equals supply; the point is simply
that in a price-taking environment the demand cannot be a function of the supply.

19 Whenever leader and follower have the same Qi
2, we say that there are multiple leaders.

Although we do not explicitly mention it, our results extend to this case as well. See, in particular,
Equation (4) in Proposition 1.
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even if he wins with probability 1. Hence, when 2Qf ≤ Ql the leader’s unconstrained
optimal effort is larger then the follower’s largest possible effort. In this case, in the
unique equilibrium of the game, the leader will set effort equal to his unconditional
optimal level and earn

1

2

(
Ql

M

)2

,

while all other developers earn zero. If instead 2Qf
2 > Ql, then the leader’s uncon-

strained optimal effort is strictly below the follower’s largest possible effort. In this
case, there are multiple mixed-strategy equilibria. However, by Theorem 1 in Siegel
(2014), in every equilibrium of the game the leader’s utility is

2Qf
(
Ql −Qf

)
M2

.

That is, the leader’s utility is equal to the utility he would achieve if he’d set his
effort equal to the follower’s largest possible effort.20 Also here, the utility of all
other developers is zero. The following proposition summarizes these results.

Proposition 1 (Period 2 utility). Define Qi = maxj 6=i{Qj
2}. In all equilibria of the

period-2 effort game, developer i’s utility is

U∗2 (Qi
2,Q

i) =


0 if Qi ≥ Qi

2

2Qi(Qi
2−Qi)

M2 if Qi < Qi
2 < 2Qi

1
2

(
Qi

2

M

)2

otherwise .

(4)

Proof. By direct application of Siegel (2014), Theorem 1.

See Figure 2. For future reference, note that, given the shape of U∗2 (Qi,Qi), ran-
domizing over values of Qi

2 makes the developer better off, strictly so when i could
be both a leader and a follower depending on the realization Qi

2.
To derive the equilibrium period-2 prices of tokens, we again distinguish between

two cases. As already mentioned, if 2Qf ≤ Ql there is a unique equilibrium in pure
20 This result is also in Siegel (2009), in which however only non-productive effort is considered.

Siegel (2014) extends these results to cases in which, over some range, the “prize” to be won by a
player may be increasing in this player’s effort. Note also that the fact that the equilibrium payoffs
are the same in all equilibria implies that our forward-looking equilibrium refinement is mute.
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Qi
2Qi 2Qi M

Fig. 2: Player i’s payoff in period 2, as a function of Qi
2.

strategy: the leader sets effort equal to Ql

M
and wins with probability 1; all other

developers set effort equal to zero. The leader’s token price is

pl2 =
Ql

M2
.

All other developers’ tokens have price equal to zero.
If instead 2Qf > Ql, then multiple, mixed strategies Nash equilibria exist. To

each equilibrium of the game corresponds the same equilibrium payoffs, but a dif-
ferent distribution of effort by leader and follower, and expected prices of tokens
(where the expectation is taken at the beginning of period 2 with respect to effort).
Deriving the full set of equilibrium effort is, in general, quite convoluted. However,
there is a particular case that will be relevant on the equilibrium path and that we
can explicitly solve: the case in which all active developers are identical.

Proposition 2 (Prices in period 2). Suppose that Qi = Ql ∀i ≤ k. If k ≥ 2, then
set of equilibria of the game can be characterized by a z ∈ {2, ..., k} such that z
developers randomize over

[
0, 2Ql

M

]
, while the remaining developers set effort equal
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to zero with probability 1. Furthermore, the expected value of the winning platform
is:

E[ew] =
z

2z − 1

(
2Ql

M

)
,

where the expectation is taken at the beginning of period 2, before effort is set. If
i ≤ z then

E[pi2] =
1

2z − 1

(
2Ql

M2

)
,

otherwise E[pi2] = 0.

An important consequence of the above proposition is that, going from a single
active developer to multiple active developers always increases the value of the
winning platform: that is, in any equilibrium with k > 1 identical developers the
expected value of the winning platform is larger than with k = 1. Conditional
on having more than 2 identical developers, the value of the winning platform is
maximized when only two developers take part in the competition, while all other
developers set effort equal to zero.

As already discussed, here we focus on the symmetric equilibrium. In this equi-
librium, whenever there are k > 1 identical developers, then all k developers ran-
domize. The value of the winning platform is given in Proposition 2, for the case
z = k. If instead k = 1 the unique developer sets effort equal to Ql

M
with probability

1. Finally, if k = 0 then no developer will exert effort and the value of the winning
platform will be zero. Hence, when there are k identical developers, we can write
the expected value of the winning platform and the price of tokens as:

E[ew] =
2k

2k − 1{k 6= 1}

(
Ql

M

)
. (5)

E[pi2] =


2

2k−1{k 6=1}

(
Ql

M2

)
if i ≤ k

0 otherwise
(6)

where 1 is the indicator function, so that 1{k 6= 1} takes value 1 if k > 1 or k = 0,
and zero if k = 1. In this class of equilibria, competition is always beneficial, because
the expected value of the winning platform is always greater with k ≤ 2 than with
k = 1. However, the intensity of competition has a non-monotonic effect on the
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value of the winning platform: the expected value of the winning platform increases
with k for k ≤ 2, but decreases with k for k ≥ 2. Finally, a fact that we will use
extensively is that the expected value of all tokens is equal to the expected value of
the winning platform, that is:

M
∑
i

E[pi2] = E[ew]. (7)

3.3 Sale of tokens in period 1

We now order the developers so that the first n ≥ 0 are that active ones, which at
this stage means that they paid the fixed cost. Of those, the first r ∈ {0, ..., n} are
rrich: they paid the fixed cost without holding the ICO in period 0. The subsequent
n− r are poor: they paid the fixed cost and held the ICO in period 0.

Consider now a poor developer’s choice of Qi
2, that is, how many tokens to sell

on the market in period 1. For given pi1, this choice solves

max
Qi

2∈[0,Q̄i]

{
pi1(Qi

1 −Qi
2)R + E

[
U∗2 (Qi

2,Q
i)
]}

where

Q̄i ≡ max{Qi
1 ≤M s.t. (ai + pi0(M −Qi

1))R ≤ I i + max{pi1(Qi
2 −Qi

1), 0}} (8)

is the largest Qi
2 ≤ M satisfying the developer’s cash constraint (2). Note that

pi1(Qi
1−Qi

2) is the amount earned by selling tokens in period 1, while E [U∗2 (Qi
2,Q

i)]

is developer i’s expected period 2 utility (as defined in Proposition 4), where the
expectation is taken with respect to Qi (developer i’s opponents may be randomiz-
ing).

The fist observation is that if there is at least one rich developer j ≤ r, then for
all other developers i 6= j we have Qi = M and their continuation utility is zero. In
this case, all tokens that are traded in period 1 (those belonging to poor developers)
must have price equal to zero, as the next proposition shows.

Proposition 3. Suppose that r > 0. Then, in equilibrium, every developer i ∈
{r + 1, ..., n} chooses Qi

2 = 0 so that ei = 0 and pi1 = pi2 = 0.
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The intuition for the above result is quite straightforward. If developer i holds
enough tokens in period 2, he may be expected to set strictly positive effort with
some probability. But then, the period-1 price of his token should be strictly positive.
This, however, cannot be an equilibrium: if Qi = M , developer i is better off selling
all his tokens in period 1 (and earn strictly positive payoff) rather than holding
tokens until period 2 (and earn zero). In equilibrium, therefore, it must be that
Qi

2 = 0, so that effort is zero in period 2.21

By the above proposition, only rich developers will be active on the market in
period 2. Proposition 2 then directly implies the following corollary.

Corollary 1. If r > 0, then in a symmetric equilibrium the expected value of the
winning platform is given by (5) and the price of tokens is given by (6), with k = r

and Ql = M .

Consider now the case r = 0 and n > 0, that is, all active developers are poor.
Two observations are important here. First, because U∗2 (Qi

2,Q
i) is convex in Qi

2, also
E [U∗2 (Qi

2,Q
i)] is convex in Qi

2, strictly so if developer i is the only leader for some
Qi

2 and some realizations of Qi.22 This implies that the developer’s maximization
problem can only have corner solutions: he sets either Qi

2 = 0, or Qi
2 = Q̄i (as

defined in 8), or he randomizes between these two values.
Second, pi1 must be such that investors are indifferent between purchasing tokens

or the risk free asset. This gives rise to an anti-coordination problem between
investors and each developer. The reason is that if investors expect developer i to
hold on to his tokens and exert high effort tomorrow, this should already be priced
into pi1. But then this developer should sell all his tokens in period 1 and invest in
the risk free asset. This way, he can benefit from his future effort without exerting
any. Similarly, if investors expect a developer to hold no tokens in period 2, then
the period-1 price of this token should be zero. But then, as long as this developer

21 Note that effort could be zero also if Qi
2 > 0 but low. Hence, whereas period-2 effort, period 1

price and period 2 price are zero in every equilibrium, the equilibrium token holding is not uniquely
identified.

22 To see this, consider a specific Qi
2 and Qi. By Proposition 1, we can write αU2(x,Qi) + (1−

α)U2(y,Qi) ≥ U2(αx+(1−α)y,Qi) for all x, y ∈ [0, Qi
1] and α ∈ [0, 1]. Furthermore, the inequality

will be strict if i is the leader at x but not at y (or vice versa). To establish that E
[
U∗2 (Qi

2,Q
i)
]

is convex, it is enough to integrate both sides over the possible values of Qi.
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can be the leader with positive probability in period 2, such developer should hold
on to all his tokens.

These two observations imply that, in equilibrium, all developers will randomize
between holding the maximum amount of tokens (and therefore putting high effort
in the following period) or no tokens (and therefore putting no effort in the following
period), as the next proposition shows.23

Proposition 4 (Market equilibrium in period 1). Suppose r = 0 and n > 0 (that
is, only poor developers are present). In the period-1 market equilibrium all devel-
opers randomize between 0 and Q̄i, where Q̄i is the largest Qi

2 ≤ M satisfying the
developer’s cash constraint (2) (see 8).

If, furthermore, all developers are identical (i.e. same Qi
1 and same Q̄i), then in

the symmetric equilibrium the probability that each developer sets Qi
2 = 0 is τ(n),

implicitly defined as

τ(n) ≡ τ :
1

2
= (1− τ)

n−1∑
j=0

(
n− 1

j

)(
1− τ
τ

)j
2

2(j + 1)− 1{j 6= 0}
(9)

The corresponding period-1 prices are

pi1 =
1

R

E
[
U2(Q̄i,Qi)

]
Q̄i

=
τ(n)n−1

R
· 1

2

Q̄i

M2

The corresponding value of the winning platform is:24

E[ew] = nτ(n)n−1 · 1

2

Q̄i

M

Note that, by equation 9, τ(n) increases with n. Hence, as the number of com-
petitors in the market increases, in the symmetric equilibrium the probability that

23 A note on our forward-looking equilibrium selection criterion. In every possible equilibria,
developers are indifferent between selling all their tokens or holding on to all their tokens. Hence,
in all equilibria, a developer i’s payoff is equal to pi1Qi

1R (i.e., what he would earn if he sold all
his tokens in period 1). Because, by assumption, the useless-but-costly action is not observable by
investors, this action does not affect the period 1 market price. It follows that, given such prices,
all equilibria yield the same payoffs to all developers, and hence our forward-looking equilibrium
refinement is mute.

24 The expectation here is taken after the developers paid the fixed cost, before the market opens.
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a single developer liquidates all his token increases. This has an ambiguous effect
on the equilibrium prices: from the point of view of a given developer, it is now
more likely that a given opponent liquidates his tokens, but the number of oppo-
nents increases. Similarly, changes in n have an ambiguous effect on the value of the
winning platform. We therefore resort to numerical calculations, reported in Table
1.

The first order effects is that, as the number of competitors increases, the prob-
ability that all developers but one liquidate their tokens decreases. This in turns
decreases the price of each individual token because each developer is more likely to
have a competitor and, in equilibrium, this developer must be indifferent between
Qi

2 = 0 and Qi
2 = Q̄i. The calculations also show that the expected value of the

winning platform is monotonically increasing with n. Hence, if all developers are
poor, competition is always beneficial. This is in sharp contrast with the case r > 0

in which, as we saw, the value of the winning platform is maximized at r = 2.
A related observation is that, by Proposition 3, if r = 1 then the value of the

winning platform will be 1. It is possible, therefore, that the value of the winning
platform is greater when there are sufficiently many poor developers and no rich
developers.25 If instead there are two developers who did not hold an ICO, then
the value of the winning platform will be 2, which is always above the value of the
winning platform when any numbers of developers held an ICO. Intuitively, relative
to a situation in which a single developer self-financed the fixed cost, having multiple
ICOs implies two things. On the one hand, there could be multiple competitors in
period 2, which increases expected effort. On the other hand, in equilibrium it is
possible that all developers liquidate their tokens. If sufficiently many developers
held an ICO, the first effect dominates, which implies that it is better to have several
developers who held an ICO. Of course, if there are two developers who did not hold
an ICO, then we have the best of both words: competition will push these developers
to exert effort, but without the risk that they liquidate all their tokens in period 1.
We summarize these observations in the following remark.

Remark 1. The value of the winning platform is the largest possible when r = 2

25 In particular, this would be the case if there are no rich developers, at least 12 poor developers,
and for these developers Q̄ is sufficiently close to M .
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n τ(n) τ(n)n−1 nτ(n)n−1

1 1/2 1 1
2 0.6375 0.6375 1.274
3 0.6976 0.4866 1.46
4 0.7353 0.3975 1.5902
5 0.7622 0.3375 1.6874
6 0.7827 0.2938 1.763
7 0.7992 0.2605 1.8234
8 0.8127 0.2341 1.8728
9 0.8241 0.2127 1.914
10 0.8339 0.1949 1.949
11 0.8423 0.1799 1.9788
12 0.85 0.167 2.0044
13 0.8565 0.1559 2.0272
20 0.8888 0.1064 2.1284
30 0.9138 0.0731 2.1944
100 0.9625 0.0227 2.2672

Tab. 1: Probability of liquidating all tokens (τ(n)), price of each token (∝ τ(n)n−1)
and expected value of the winning platform (∝ nτ(n)n−1) as a function of
n. Symmetric equilibrium for r = 0.

(i.e., there are two rich developers). If Q̄ is sufficiently large, then the value of
the winning platform is greater with r = 0 and n sufficiently large (i.e., no rich
developers but sufficiently many poor developers), then with r = 1 (i.e., a single rich
developer).

3.4 Period 1: fixed cost.

Consider now the choice of paying the fixed cost. It is useful to reorder the developers
in the following way. The first ñ ≥ 0 developers have enough funds to pay the fixed
cost. Of those, the first r̃ ≥ 0 did not hold an ICO so that, by definition Qi

1 = M

for i ≤ r̃. The remaining developers held an ICO and therefore have Q̄i ≤M .26

26 Note that, if a developer held an ICO and Q̄i = M , this developer was rich enough to pay the
fixed cost without holding an ICO. We show later that, in equilibrium, no developer who is rich
enough to pay the fixed cost holds an ICO. Hence, on the equilibrium path, for all developers who
held an ICO we have Q̄i < M .
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Suppose r̃ > 0. If
1

2
≥ C ·R, (10)

then entry by at least one developer i ≤ r̃ is profitable. In this case, there are
r̃ equilibria in which a single developer i ≤ r̃ pays the fixed cost. There are also
equilibria in mixed strategy in which multiple developers randomize between paying
the fixed cost or not. It is clear however that these equilibria do not survive our
forward-induction refinement: by taking a useless-but-costly action a developer i ≤ r̃

can signal its intention to pay the fixed cost with probability one, therefore deterring
all other developers from paying the fixed cost.27 We summarize these observation
in the following proposition (we omit its proof).

Proposition 5. Suppose r̃ > 0. If

1

2
≥ C ·R (11)

Then the equilibria robust to our forward-looking refinement are those in which a
single developer i ≤ r̃ pays the fixed cost. The value of the winning protocol is
therefore:

ew = 1.

If (11) is violated, then in equilibrium no developer pays the fixed cost.

From now on, we always assume that (11) holds.
Consider now the case r̃ = 0: all developers with enough resources to pay the

fixed cost previously held an ICO. We further assume that all developers are identi-
cal. By Proposition 3, if a single developer pays the fixed cost, his subsequent payoff
is

1

2R

(
Q̄

M

)2

.

Hence, if
1

2R

(
Q̄

M

)2

≥ C ·R, (12)

27 Note that if a developer j with r̃ < j ≤ ñ signals his intention to pay the fixed cost in the
same way, a developer i ≤ r̃ will still find it profitable to enter. The reason is that, by Proposition
3, if both i and j pay the fixed cost, j will liquidate all his tokens on the market and never reach
period 2.
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then it is profitable for a single developer to pay the fixed cost, while if the above
equation is violated, then the only equilibrium is one in which no developer pays
the fixed cost. If instead all ñ developers pay the fixed cost, each of them will earn

τ(ñ)ñ−1

R
· 1

2

(
Q̄

M

)2

.

This immediately implies that if

τ(ñ)ñ−1 · 1

2

(
Q̄

M

)2

≥ C ·R (13)

in equilibrium all developers with enough resources pay the fixed cost with proba-
bility one. However if

τ(ñ)ñ−1 · 1

2

(
Q̄

M

)2

< C ·R, (14)

and all developers with enough resources pay the fixed cost, then profits will be
negative. If (12) holds, then the only equilibrium surviving our forward-induction
refinement is one in which n̂(Q̄) developers pay the fixed cost, where

n̂(Q̄) ≡ max

{
n|τ(n)n−1 · 1

2

(
Q̄

M

)2

≥ C ·R

}
(15)

The following proposition summarizes these observations (we omit its proof).

Proposition 6. Suppose that r̃ = 0, that (12) holds, and that all developers are iden-
tical. In the equilibrium robust to our forward-looking refinement n = min{ñ, n̂(Q̄)}
developers pay the fixed cost.

It is interesting to note that the above equilibrium may not be the only one
surviving our forward looking refinement. If

τ(n̂(Q̄))n̂(Q̄)−1 · 1

2

(
Q̄

M

)2

= C ·R

then there are also equilibria in which n̂(Q̄)− 1 pay the fixed cost for sure, and an
additional developer randomizes. We have not expicitly mentioned them because,
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when considering the ICO stage, these equilibria are never reached. For a more
detailed discussion, see the remark on Proposition 6 in the mathematical appendix.

By Proposition 4, therefore, as long as ñ < n̂(Q̄), increasing ñ increases the
expected value of the winning protocol and the sum of the token prices, while de-
creasing the price of each individual token. If instead ñ > n̂(Q̄), then the equilibrium
level of entry (and hence the value of the winning protocol and the prices of tokens)
are independent of ñ.

3.5 Period 0: the ICO.

To start, suppose r̃ > 0: some developers have enough own resources to pay the fixed
cost without holding an ICO. The following Lemma follows directly from Proposition
5.

Lemma 1. Suppose r̃ > 0, that is, max{ai} ≥ C
R
. In this case there is no ICO in

period 0.28 In the subsequent period a single developer i ≤ r̃ pays the fixed cost. The
expected value of the winning platform is ew = 1.

Hence, the presence of a single developer who is sufficiently rich prevents all
other developers from raising funds at ICO. The equilibrium outcome is therefore a
monopoly.

Suppose no developer has enough resources to pay the fixed cost C. Note that,
because the ICO is modeled as an auction, first investors learn Qi

1, and then they
form an expectation with respect to the developer’s behavior in period 1 and hence
about pi1. For investors to be indifferent, it must be that:

pi0 =
pi1
R
.

Furthermore, a developer holding the ICO should raise sufficient funds to pay
the fixed cost29

(ai + pi0(M −Qi
1))R = C. (16)

28 More precisely, there could be ICOs with equilibrium price equal to zero. We consider this
possibility as equivalent to “no ICO”.

29 A technical note. A developer could sell at ICO more tokens that what required to pay the
fixed cost, and then use the extra funds to invest in the risk-free asset and then, possibly, purchase
back his tokens in period 1. These extra funds yield a return R, which in equilibrium is equal
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Finally, the investors’ expectation with respect to the developer’s behavior in period
1 should be correct. In particular, in equilibrium p0

1 and Qi
1 should be such that the

developer is willing to pay the fixed cost in period 1.
The next proposition uses these three conditions to characterize the equilibrium.

Proposition 7. Suppose maxi{ai} < C
R
. There is always an equilibrium in which

there is no ICOs nor entry in equilibrium.
Suppose furthermore that all developers are identical, that is ai = a for all i.

Define:
pi1(Q∗1) ≡ 1

R
τ(n̂(Q∗1))n̂(Q∗

1)−1 · 1

2

Q∗1
M2

.

Then any Q∗1 ≥M
√

2C solution to:

Q∗1 = M − C − aR
pi1(Q∗1)

, (17)

is an equilibrium in which ñ(Q∗1) developers hold an ICO, each of them sellingM−Q∗1
tokens.

For intuition, note that pi1(Q∗1) is the price for tokens in period 1, when all
developers holding an ICO sellM−Q∗1 tokens and, as a consequence, n̂(Q∗1) developer
pay the fixed cost. Note also that, as Q∗1 increases, if n̂(Q∗1) stays constant then
pi1(Q∗1) will increase. It is however possible that increasing Q∗1 leads to an increase in
the number of competitors n̂(Q∗1) and to a discontinuous drop in pi1(Q∗1). Condition
(17) comes from (16) and guarantees that a developer selling M −Q∗1 tokens at ICO
at price pi1(Q∗1)/R raises enough money to pay the fixed cost in the following period.
Finally, the condition Q∗1 ≥ M

√
2C guarantees that (12) holds at Q∗1, and hence

there can be an equilibrium in which at least one developer pays the fixed cost.
There are therefore multiple equilibria. One source of equilibrium multiplicity

are off equilibrium beliefs: if investors believe that no developer will pay the fixed
cost in the future, then it is not possible to raise funds at ICO. This is always an

to the return on tokens. Hence, developers are indifferent between selling extra tokens or not.
Furthermore, Proposition 4 shows that pi1 depends on Q̄i. By definition, Q̄i is the largest number
of tokens that a developer can purchase in period 1 given his cash constraint (2), and is the same
independently of whether the developer sells extra tokens in period 0. For ease of exposition, here
we focus on the equilibria in which no extra tokens are sold at ICO.
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equilibrium because no developer is given the chance to invest, and hence investors’
beliefs cannot be shown to be incorrect.

Furthermore, an equilibrium with ICOs may or may not exist. This may happen
for two reasons. Note that the largest possible value of Q∗1 is M , and at this value
we have

Q∗1 > M − C − aR
pi1(Q∗1) ·Q∗1

.

Hence, the equilibrium with ICO may fail to exist because, for all Q∗1 ≥M
√

2C we
have

Q∗1 > M − C − aR
pi1(Q∗1) ·Q∗1

,

and therefore no Q∗1 ≥ M
√

2C solves (17). Clearly, this situation is more likely to
emerge when C − aR is large, and never emerges when C − aR is sufficiently small.
Hence, if developers are too poor, there is no equilibrium with ICO. In this case,
developers can raise enough funds to pay the fixed cost only by selling many tokens.
But by doing so they have no more incentive to pay the fixed cost in the following
period.

An equilibrium with ICO may fail to exist also because of an integer problem:
there are value of Q∗1 such that

Q∗1 < M − C − aR
pi1(Q∗1) ·Q∗1

.

but because n̂(Q∗1) jumps discontinuously at some values of Q∗1 equation (17) never
holds. In this case, it is possible to show that an equilibrium with ICO exists
provided that a public randomization device is available.30

Finally, note that (17) may have multiple solutions and hence there could be
multiple equilibria with ICOs. The intuition here is the following. As Q∗1 increases,
as long as n̂(Q∗1) does not change the corresponding token price pi1(Q∗1) will increase.

30 In such equilibrium, each of n̂(Q∗1) developers announces how many tokens to sell at ICO and
investors then submit bids. Each developer may then cancel the ICO (in which case investors
do not pay anything). After the bids are submitted, a fair public randomization device is used
to identify a single developer among the n̂(Q∗1), who will then randomize between canceling his
ICO or not. Note also that this equilibrium is strictly preferred by all n̂(Q∗1) developers to the
equilibrium with no ICOs. See the proof of the proposition for more details.
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This is because investors expect higher effort in the future, and hence are willing
to pay a larger price. But if this is the case, then the developer needs to sell fewer
tokens at ICO in order to pay the fixed cost, which implies that his future effort
will be high. Conversely, if Q∗1 is low, then pi1(Q∗1) will be low, in which case the
developer will need to sell many tokens to cover the fixed cost. This can be seen as
a coordination problem between investors and developers. This logic is mitigated
(but not fully eliminated) by the fact that, as Q∗1 increases n̂(Q∗1) may also increase.
In this case, additional competition will drive the price of each token down.

4 Welfare

Our measure of welfare is the expected value of the winning protocol. As already
discussed, if there is at least one developer with enough resources to pay the fixed
cost, then a single developer will enter and the equilibrium value of the winning
protocol is 1.

If instead there is no developer who can pay the fixed cost, then, by Proposition
3 the expected value of the winning protocol is

E[ew] = ñ(Q∗1)τ(ñ(Q∗1))ñ(Q∗
1)−1 · 1

2

Q∗1
M

where Q∗1 is defined in (17). If, furthermore, we have a→ C
R
, then Q∗1 →M and

E[ew]→ ñ(M)τ(ñ(M))ñ(M)−1 · 1

2

In this case, welfare with ICOs is larger than welfare without ICOs as long as
ñ(M)τ(ñ(M))ñ(M)−1 > 2 or ñ(M) ≥ 12 (see Table 1). By definition of ñ(M), this
would indeed be the case if, for example, C is sufficiently low.

The key observation is that, despite the fact that ICOs decrease each developers’
incentive, they also stimulate entry. Overall, welfare will be higher with ICOs (than
without) when the loss of incentives is contained (becauseQ∗1 is sufficiently large) and
when ICOs allow sufficiently many developers to enter. An interesting implication
is that welfare is non-monotonic in the fixed cost: welfare may be higher when C is
high (and hence ICO occur in equilibrium) than when C is low (and hence no ICO
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occurs in equilibrium).

5 Conclusion

ICOs have received several criticisms, both in the popular press and in the aca-
demic domain. In particular, Canidio (2018) considers a single developer and shows
that ICOs, like all forms of outside financing, weaken incentives. More precisely,
if a developer holds an ICO, then this developer may exit the market prematurely.
Here we show that this result is robust to the introduction of multiple developers.
However, precisely because of that, ICOs also stimulate entry.31 This has a positive
effect because entry stimulates competition and effort.

From the viewpoint of the regulator, our model highlights two things. First,
in the model, an inferior equilibrium without ICOs nor entry could exist next to
superior equilibria with ICOs and entry. However, if we introduce the possibility of
automatically using the ICO’s proceedings to pay the fixed cost, then the inferior
equilibrium disappears. This observation suggests that the regulator could ask the
developers to commit to using the funds raised at ICO in specific ways, for exam-
ple, by registering their ICOs and the intended use of the funds with some official
authority. Second, as already discussed, welfare is sometimes larger when there is
entry with ICOs than without ICOs. This observation implies that a regulator may
want to increase the cost of developing decentralized digital platforms (possibly via
a tax) to induce developers to hold ICOs.

We believe that the model can be extended in several directions. For example,
there could be a second dimension of effort (for example, marketing effort) affecting
the probability that a platform is the winner, without changing its underlying value.
This effort is therefore welfare reducing, because it may induce users to adopt an
inferior platform. Introducing this second dimension of effort may make competition
less desirable. The reason is that, when a single developer pays the fixed cost, all
effort is productive. When multiple developers are present, however, some effort

31 It is crucial to stress that, whereas all forms of external financing weaken incentives, not all
forms of external financing stimulate entry. So, for example, the sale of equity weakens incentives
because it reduces effort, which, however, will be exerted with probability 1. If market competition
is winner take all, then at most one entrant can earn strictly positive profits, which is the same
with or without external financing.
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may be unproductive. Studying the equilibrium competitive dynamics and welfare
properties under this different assumption is left for future work.

A Mathematical Appendix

Proof of Proposition 2. A player’s equilibrium strategy is a function F i(x) = pr{ei ≤
x}, representing the probability that developer i chooses effort level below a given
threshold x. Remember that the existence of the equilibrium is already in Siegel
(2014). The goal here is to derive the equilibrium strategies, for then determining
the equilibrium prices and equilibrium value of the winning platform.

A couple of preliminary observations. First, there cannot be a pure strategy
equilibrium and hence at least two players must randomize over positive effort values.
We say that developers i ≤ z with 2 ≤ z ≤ k set strictly positive effort with strictly
positive probability, while the other developers set effort equal to zero. Hence, for
i > z we have F i(x) = 1 for all x ≥ 0. The second observation is that, for every
i ≤ z and possible equilibrium effort level x > 0, the developer earns zero expected
utility, and hence

pr{x > max
j 6=i
{ej}}Q

l

M
=
x

2
.

Note that
pr{x > max

j 6=i
{ej}} =

∏
j 6=i

F j(x),

so that developer i earns zero profits by choosing effort x if and only if:

∏
j 6=i

F j(x) = x
M

2Ql
(18)

Consider an equilibrium. For this equilibrium, write the CDF of ew = maxi{ei}
as

Fw(x) =
∏
j

F j(x) = F i(x)
∏
j 6=i

F j(x) = xF i(x)
M

2Ql
,

where the first equality follows from the fact that the probability that the maximum
of multiple random variables is below a given threshold is equal to the probability
that all these random variables are below this same threshold.
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The above expression implies that for i, j ≤ z we have Fi(x) = Fj(x) ≡ F (x).
That is, if two leaders i and j set strictly positive effort with strictly positive prob-
ability, their equilibrium strategies must be the same. Knowing this, by (18), we
have that

F (x) =

(
x
M

2Ql

) 1
z−1

Hence, for every z such that 2 ≤ z ≤ k we can compute

Fw(x) =

(
x

(1− γ)M

2Ql

) z
z−1

fw(x) =
z

z − 1
x

1
z−1

(
M

2Ql

) z
z−1

E[ew] =
z

z − 1

(
M

2Ql

) z
z−1
∫ 2Ql

M

0

x
z

z−1dx =
z

z − 1

(
M

2Ql

) z
z−1 z − 1

2z − 1

(
2Ql

M

) 2z−1
z−1

=
z

2z − 1

(
2Ql

M

)
.

Note that, because all developer i ≤ z have the same strategy, they must have the
same probability of succeeding. Hence, the price of each token i ≤ z is

E[pi2] =
1

2z − 1

(
2Ql

(1− γ)2M2

)

Proof of Proposition 3. Consider a poor developer i. Suppose that, in equilibrium
Qi

2 is sufficiently large so that i’s expected effort is strictly positive, either because
he is the follower in a mixed strategy equilibrium, or because he is one of multiple
leaders. If there is also a rich developer, however, developer i’s continuation utility
is zero. But because expected effort is strictly positive, then pi1 > 0. This cannot
be an equilibrium because, clearly, if pi1 > 0 the developer is better off to sell all his
tokens in period 1 and exert no effort in period 2.

Hence, in equilibrium Qi
2 must be such that period-2 effort is zero and hence

pi1 = 0. Clearly, Qi
2 = 0 is an equilibrium.
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Proof of Proposition 4. Suppose Qi
1 > 0 for some i.

Step 1: in equilibrium, at least one developer earns strictly positive profits.

In any equilibrium, there must exist a developer y with Qy
1 > 0 who earns strictly

positive profits. Suppose not. In this case, the only possible equilibrium is one in
which pi1 = 0 for all i. The reason is the same discussed in the proof of Proposition
3: if period 1 prices were positive, then developers would be better off to sell all their
tokens in period 1, which cannot be an equilibrium. But because there are no rich
developers, pi1 = 0 for all i is not an equilibrium either. The reason is that a single
developer could hold on to his tokens, become the unique leader in the following
period and earn strictly positive profits.

Step 2: in equilibrium, the developer earning strictly positive profits ran-

domizes. If developer y earns strictly positive profits, then he is the unique leader
for some Qy

2 and some (or all) realizations of Qy. For given investors’ belief about
period-2 effort (and period-2 prices) period-1 prices are fully determined and equal to
py1 = E[ey]pr{y = w}/R. Hence, developer y’s objective function is convex (strictly
so somewhere) in Qy

2, and his maximization problem must have a corner solution.
Therefore, we can represent each developer’s equilibrium strategy by τy ∈ [0, 1] the
probability that developer y sets Qy

2 = 0, with 1− τy being the probability that the
developer sets Qy

2 = Q̄y.
Consider now the investors. If in equilibrium τ y = 0, then, with probability

1, effort will be high in period 2. This effort will be priced into period 1 price.
But given this, the developer should sell all his tokens and invest in the risk-free
asset. This way, he can benefit from his future effort before exerting any, and hence
without paying the cost of effort. This establishes that, in any equilibrium, it must
be that τ y > 0. If, in equilibrium, τ y = 1, then because ey2 = 0, the period 1 price
of token y is zero. The developer can earn the exact same payoff by holding on to
his token until period 2 and setting ey2 = 0. He can do strictly better if he holds
on to his token until period 2 and sets ey2 optimally. Hence τ y = 1 cannot be an
equilibrium.
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Hence, in equilibrium it must be that τy ∈ (0, 1), which can only be the case if
developer y is indifferent between setting Qy

2 = 0 and Qy
2 = Q̄y, which is equivalent

to:
py1Q

y
1R = E

[
U2(Q̄y,Qy)

]
− py1

(
Q̄y −Qy

1

)
R

so that

py1R =
E
[
U2(Q̄y,Qy)

]
Q̄y

.

Step 3: all developers with Qi
1 > 0 randomize. Conditional on developer y

liquidating all his tokens, by repeating the same argument in Step 1, there must be
another developer x that will be the unique leader for some Qx

2 and some realizations
of Qx. By step 2 above, this developer must randomize between Qx

2 = 0 and
Qx

2 = Q̄x.
By repeating the same argument, every developer with Qi

1 > 0 has a strictly pos-
itive probability of being the unique leader in period 2 for some Qi

2. This probability
is equal to the probability that all other developers sell all their tokens in period 1.
Hence, in equilibrium every developer with Qi

1 > 0 must randomize between Qi
2 = 0

and Qi
2 = Q̄i.

Step 4: characterization of the equilibrium probabilities for the case of iden-

tical developers. To characterize the equilibrium probabilities, assume that all
developers are identical (so that Q̄i = Q̄ for all i) and consider the symmetric equi-
librium. In this case, a developer is indifferent between holding zero tokens and
holding Q̄ whenever

pi1R =
E
[
U2(Q̄,Q)

]
Q̄

= τn−1 · 1

2

Q̄

M2

At the same time, by (6), for investors to be indifferent it must be that

pi1R = (1− τ)
n−1∑
j=0

(
n− 1

j

)
(1− τ)jτn−1−j · Q̄

M2
· 2

2(j + 1)− 1{j > 0}
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where
(
n−1
j

)
(1− τ)jτn−j−1 is the probability that, among all developers other than

i, there are j developers who do not liquidate their tokens. Because (1 − τ) is the
probability that developer i did not liquidate his token, the entire expression

(1− τ)

(
n− 1

j

)
(1− τ)jτn−1−j

is the probability that player i and j other developers did not liquidate their tokens,
and hence in the following period there are j + 1 leaders with Q̄ tokens. By using
the above two expressions for pi1, we establish that τ is implicitly determined by

1

2
= (1− τ)

n−1∑
j=0

(
n− 1

j

)(
1− τ
τ

)j
2

2(j + 1)− 1{j > 0}

Note that the RHS of the above expression is strictly decreasing in τ , goes to infinity
for τ → 0 and to zero for τ → 1. It follows that the above expression has a unique
solution. Furthermore, because the RHS of the above expression is strictly increasing
in n, the equilibrium τ must be increasing in n.

Finally, by (7), the expected value of the winning platform is

E[ew] = nE[pi2]M = npi1RM = nτn−1 · Q̄
2M

where the last equality follows from the expression for pi1R derived earlier.

Remark on Proposition 6. To characterize the full set of equilibria, Proposition 6
should be modified in the following way:

Proposition 8. Suppose that r̃ = 0, that (12) holds, and that all developers are
identical. The equilibria robust to our forward-looking refinement are:

• if either ñ < n̂(Q̄) or

τ(n̂(Q̄))n̂(Q̄)−1 · 1

2

(
Q̄

M

)2

> C ·R

then n developers pay the fixed cost, where n = min{ñ, n̂(Q̄)}.
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• if ñ ≥ n̂(Q̄) and

τ(n̂(Q̄))n̂(Q̄)−1 · 1

2

(
Q̄

M

)2

= C ·R

then in all equilibria n̂(Q̄)−1 developers enter with probability 1, while a single
additional developer enters with probability between 0 and 1 (included).

It is therefore possible that when n̂(Q̄)−1 developers enter they all earn positive
profits, but if an additional developer enters all developers earn zero profits (in the
sense that their continuation utility equals C). This additional developer is therefore
indifferent between entering or not and, in equilibrium, may randomize. Note also
that this equilibrium survives our forward looking refinement because the additional
developer is indifferent between entering or nor—even if he knows for sure that the
other n̂(Q̄)− 1 developers will enter for sure. Note also that when ñ ≥ n̂(Q̄) there
is no symmetric equilibrium because all developers are identical but some developer
will pay the fixed cost and some will not.

If, in equilibrium, n̂(Q̄)−1 developers enter for sure with an additional developer
randomizing, then the expected period-1 price of token i ≤ n̂(Q̄)− 1 is

E[pi1] ∈

[
τ(n̂(Q̄)− 1)n̂(Q̄)−2

R
· 1

2

Q̄

(M)2
,
τ(n̂(Q̄))n̂(Q̄)−1

R
· 1

2

Q̄

(M)2

]
, (19)

that is, depending on how the additional developer randomizes, any E[pi1] within
the above interval can emerge in equilibrium. The n̂(Q̄)th developer, instead, ran-
domized and therefore we have

E[p
n̂(Q̄)
1 ] ∈

[
0,
τ(n̂(Q̄))n̂(Q̄)−1

R
· 1

2

Q̄

(M)2

]
(20)

The problem with this equilibrium is that, from period 0 viewpoint, it implies
that n̂(Q̄) identical developers are able to raise funds at ICO, but not all at the
same price. But this cannot happen in equilibrium: identical developers cannot all
raise C

R
− a at ICO by selling he same amount of tokens but at different prices.

Proof of Lemma 1. By Proposition 5 we know that if every developer i ≤ r̃ holds
an ICO, then a single developer j ≤ r̃ is better off to not hold the ICO and conquer
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the entire market. Hence there is no equilibrium in which every developer i ≤ r̃

holds an ICO.
Given that at least one developer i ≤ r̃ does not hold an ICO, then no other

developer can sell tokens at ICO at a strictly positive price. That is because, by
Proposition 3, their token will be worth zero in the following period.

If at least one developer i ≤ r̃ does not hold an ICO, all other developers are
indifferent between not holding an ICO and holding an ICO in which their tokens
are sold at zero price. In the symmetric equilibrium no developer i ≤ r̃ holds an
ICO. The other developers i ≥ r̃ may break their indifference either way.

The lemma follows by considering the case of “ICO with price zero” equivalent
to “no ICO”.

Proof of Proposition 7. Suppose investors expect that, if a developer raises enough
funds to pay the fixed cost, then (12) will be violated in period 1. Then pi0 = pi1 = 0.
No developer is able to raise funds at ICO. Although whether (??) holds or not is
never observed (i.e., the investors beliefs are off equilibrium), no ICO is indeed an
equilibrium.

Suppose investors expect (12) holds. Again, we focus on the symmetric equilib-
rium, in which all firms holding an ICO sells the same number of tokens. Call n∗

and Q∗1 < M the equilibrium number of firms holding an ICO and number of tokens
not sold at ICO, respectively. Note that, for given Q∗1, it must be that n∗ = n̂(Q∗1)

(where n̂() is defined in 15). If n∗ > n̂(Q∗1) then some of the developers holding
the ICO will not pay the fixed cost, which quickly leads to a contradiction (these
developers should not be able to raise funds at ICO in the first place); if n∗ < n̂(Q∗1)

then some developers who are not holding an ICO could successfully hold one, pay
the fixed cost and earn positive profits in equilibrium. It follows that n∗ = n̂(Q∗1) is
a piecewise increasing function of Q∗1.

For given Q∗1, therefore, we have a unique n∗ = n̂(Q∗1). We can therefore define

pi1(Q∗1) ≡ τ(n̂(Q∗1))n̂(Q∗
1)−1

R
· 1

2

Q∗1
M2

.

as the period-1 price as a function of Q∗1. Note that if Q∗1 increases without changing
n∗ = n̂(Q∗1), then the corresponding price pi1(Q∗1) increases as well. As Q∗1 increases
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further, however, n∗ = ñ may also increase. At such Q∗1, pi1(Q∗1) has a downward
discontinuity.

Knowing this, using (16) together with the fact that p0 = p1
R
, we can characterize

the equilibrium by the following equation

Q∗1 = M − C − aR
pi1(Q∗1)

,

If at Q∗1 solution to the above equation (12) holds, then such Q∗1 is an equilibrium.
Note that (12) holds at Q∗1 if and only if Q∗1 ≥M

√
2C.

As discussed in the body of the text, the above equation may not have a solution
(and hence an equilibrium with ICO may not exist) because of an integer problem:
there exist an X such that

X > lim
Q∗

1→X−

{
M − C − aR

pi1(Q∗1)

}
but

X < M − C − aR
pi1(X)

.

In this case, there is an equilibrium in which:

• ñ(X) developers announce the sale of M −X tokens at ICO. Investors submit
bids.

• using a fair public randomization device, a single developer is selected. This
developer then will cancel the ICO with some probability. If the ICO is can-
celed, then investors do not have to pay anything.

To start, note that each developer has the same probability of canceling his ICO, and
hence investors should submit the same bids to all developers. It follows that the
equilibrium ICO price is the same for all developers who run an ICO. Furthermore,
there exists a probability of canceling the ICO such that

X = M − C − aR
pi1(X)

.

and hence the price of the token is such that if all n̂(X) developers hold an ICO,
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they all raise enough funds to pay the fixed cost.
Finally, by definition, X is such that n̂(X) developers finds it (weakly) profitable

to pay the fixed cost. However, at any Q1 < X we have that strictly fewer than
n̂(X) developers find it profitable to pay the fixed cost. By definition of n̂(.), this
implies that

τ(n̂(X))n̂(X)−1 · 1

2

(
X

M

)2

= C ·R.

Hence, all ñ(X) developers will pay the fixed cost in period 1, but they all make
zero profits. This implies that knowing that the other X − 1 developers will hold
the ICO for sure, developer X is indifferent between holding it or not, and hence
may randomize. The other X−1 developers earn positive expected profits (because
with some probability there will not be an additional ICO) and hence they strictly
prefer to run the ICO for sure.
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