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Abstract

Many central banks are considering issuing digital cash substitutes. An important property

of physical cash payments is resilience—for example, imperviousness to power outages and

independence of electronic/network coverage. These properties also make cash payments im-

portant in remote communities. Policy makers are considering building similar offline payment

functionality into digital cash substitutes, while their digital nature allows for novel features

that could make them more desirable than physical cash. This paper analyzes the possibil-

ity of introducing an expiry date for offline digital currency balances to automate personal

loss recovery. Our results show this functionality could have a substantial positive impact on

consumer demand for offline digital currency balances. We also examine the welfare effects of

adjustments to the expiry date: small increases from the optimum cause little damage, but

small decreases from the optimal expiry date can have a large negative impact. More infor-

mation sharing between consumers and the central bank can improve loss recovery but has an

ambiguous impact on social welfare.
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1 Introduction

Many central banks are considering issuing digital cash substitutes as the transactional demand

for physical cash wanes (Boar et al., 2020). An important property of a digital cash substitute

is its resilience: Physical cash allows for economic exchange even in conditions without electrical

power or network access. Policy makers are seeking to build similar offline payments functionality

into digital cash substitutes, which could be used in remote communities and serve as a backstop

system when any disruption occurs (Bank of Canada, 2020; Bank of England, 2020; Group of Seven

Central Banks, 2020).1 At the same time, a digital cash substitute with offline functionality could

have features that would make it more desirable to use than physical cash.

This paper considers one possible feature: the introduction of an expiry date on offline digital

currency balances. Although such functionality might seem inconvenient at first sight, it has one

major advantage, previously unconsidered: It would facilitate personal recovery of funds acciden-

tally lost.2 An inconvenience of a bearer instrument such as cash is that it is easily lost with little

possibility of recovery by the owner.3 One reason for the lack of opportunity for recovery is that it

is usually difficult for the owner to prove that cash is truly lost and will never be used for payments

in the future.4 This is different for a digital currency that is allowed to expire over time. Since

money balances that remain unspent after their expiry date cannot be spent in the future, it would

be safe for the central bank to reimburse the (most likely) owner in terms of online balances. The

reimbursement of expired funds could be implemented in a fully automatic fashion without the

1Offline payments functionality may be even more important in developing countries where substantial shares
of the population have unreliable access to electricity or no access at all (data collected by the World Bank suggest
that about 10 per cent of the world population had no access to electricity in 2019).

2Protecting individuals against accidental loss of cash is a new rationale for an expiry date. Others have inves-
tigated alternative rationales, such as stimulating spending at the macro level; see the literature review for details.

3In bitcoin, the problem is even more dramatic. According to the New York Times, “Of the existing 18.5 million
Bitcoin, around 20 percent — currently worth around $140 billion — appear to be in lost or otherwise stranded
wallets, according to the cryptocurrency data firm Chainalysis.” (Popper, Jan. 12, 2021).

4This statement does not consider mutilated and contaminated bank notes (in which case, often, the loss can be
proven). Some central banks spend considerable effort to reimburse owners of damaged bank notes. An infamous
anecdote is the story about a Dutch cow who ate a wallet without realizing that it would be her most expensive,
and alas, also her last meal. The cow was slaughtered and her tripe was delivered to the Dutch Central Bank where
currency recovery experts retrieved the remains of seven bank notes of a thousand guilders each (Dutch News Report,
1974).
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need for the owner to file a loss claim. Similarly, the expiry date could automatically be refreshed

whenever users’ devices connect to the network before the funds expire.

The features that are necessary to rule out double-spending in a payment system for offline

payments also cause digital currency balances to be subject to loss events. To completely rule

out double-spending in offline environments, it is necessary to uniquely store offline digital currency

balances in a single local device.5 To see this, consider the situation where copies of the same offline

digital currency balances could be stored in multiple local devices. In this situation, the payer could

simply double-spend the same funds by using different devices to pay different offline payees.6 By

definition, offline payments do not allow verification of a payment based on real-time information

in a central ledger, so it would be impossible for offline payees to be informed in a timely manner

as to whether the payer is attempting to double-spend.7 Similarly, it is necessary to separate (or

“earmark”/“lock”) digital currency balances available for offline spending with a local device from

balances that can be spend without that device.8 Otherwise, after storing funds in a local device

for offline payments, a payer could continue to spend the same funds to pay an online payee while

using the offline device to pay a different offline payee. There would be no way for either payee

to be aware of the attempt to double-spend at the time of the payment. The separation of offline

digital currency balances while storing them uniquely in a single local device makes those funds

subject to loss due to, e.g., malfunctioning, physical theft, or loss of the device.

5In practice, the design of a payment instrument for a generally accepted money is subject to a trilemma. As
we will see, it can only have two out of three properties: “offline payment functionality”, “no double-spending” and
“loss of funds not implied by device loss”.

6Note that uniquely storing funds in a single local device also rules out the possibility of the owner to create a
back-up. The absence of the possibility to restore a back-up is necessary to prevent double-spending. Otherwise, an
agent could pretend to have lost a local device and restore the funds on a second local device, which would allow the
agent to use the two devices to double-spend at two different offline locations.

7A separate but related point is that the device to store funds needs to be tamper-resistant so that it is pro-
hibitively expensive to restore a previous level of balances after making a payment, or to copy its contents to another
device. Physical cash achieves this through its physical nature and security features that make it hard to copy (i.e.,
counterfeiting is difficult). An offline CBDC system may require additional security measures to mitigate the impact
of a breach of tamper-resistance (Minwalla, 2020).

8E.g., when withdrawing physical cash, this occurs when the bank debits the withdrawer’s account with the
amount withdrawn.
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The present paper starts from the position that the central bank would like to rule out double-

spending, so that offline money balances will be separated and uniquely stored in a single local

device, and, hence, will be subject to loss. We do so for two reasons. First, financial inclusiveness

and universal access are regularly raised as core public policy goals for issuing digital cash substi-

tutes (Miedema et al., 2020). Limiting fraud in a system that does not rule out double-spending

may be prohibitively expensive if there are no possibilities to exclude bad actors who abuse possi-

bilities to double-spend.9 Second, this is the combination of features that is most like the existing

arrangements for cash. Currently, “offline money balances” consist of physical bank notes. They

are “moved offline” by withdrawal from a bank account, and banks typically debit the account

immediately when cash is withdrawn.

Given this design choice, the present paper studies the economics of introducing an expiry date

to facilitate loss recovery for offline money balances. Consumers in our model need to choose the op-

timal distribution of their money between offline and online balances. Both types of balances can be

used to pay in environments where consumers have network connectivity (“centralized meetings”).

During an outage, consumers can exclusively trade in an environment without network connectivity

(“decentralized meetings”), in which only offline money balances can be used. A difference with

typical monetary models (for example the centralized/decentralized markets models such as Lagos

and Wright, 2005) is that both the occurrence and the length of decentralized periods are stochastic.

In our model, an outage occurs occasionally and last for a number of periods. A disadvantage of

offline money balances is that they can be lost. Users may be reimbursed automatically for lost

offline balances after they expire.10 Without an expiry date, balances are irrecoverable, as is usually

9Some traditional systems for offline payments that do not completely rule out double-spending include cheques
and store-and-forward payments with credit cards. In these settings, individuals can be excluded after abuse by
denying them as client for a chequing account or credit card. Fraud may also be mitigated by introducing penalties
for bad actors through law enforcement. Even with exclusion and law enforcement, the costs of fraud to payees can
be considerable. Fraud with paper cheques continues to increase even as they are used less and less for payments
(American Bankers Association, 2020). Moreover, Adyen (2020) indicates that authorization for offline store-and-
forward payments with credit cards may be as low as 95 per cent.

10For this mechanism to be effective, it requires that spending electronic cash stored in a local device will require
some form of user authorization (e.g., unlocking a phone when electronic cash is stored in a smart phone or entering
a pin code when electronic cash is stored in a card), so that it is unlikely that someone finding or stealing a local
device will result in the stored electronic cash being spent.
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the case with cash. With expiry date, users can be reimbursed for losses, but it may not always be

optimal for merchants to accept offline money.

Our calibration results suggest that the introduction of an expiry date to facilitate loss recovery

can have a substantial positive impact on consumer demand for offline digital currency balances.

The reason is straightforward: The ability to reimburse individuals for personal losses once the

lost digital currency expires reduces the cost of losses from the full amount to the inconvenience of

temporarily not having access to the funds (until after they expire). This addresses a potentially

significant cost to the users of offline money balances: A small survey we conduct suggests that,

without an expiry date, the device losses might add an annual cost to offline money users that is

roughly estimated to be in a range between 8 per cent (for funds stored locally in a smart phone)

to 16 per cent (for funds stored locally in a payment card) of the offline money balances.11

Starting from the optimal expiry date, we find that the cost of small deviations is strongly

asymmetric. There is a high cost associated with setting an expiry date that is shorter than

optimal, while the cost of setting an expiry date somewhat longer than optimal is limited. The high

cost associated with setting an expiry date that is somewhat too short, is that it may prevent the

ability to conduct any transactions when payees expect to remain offline for a period that exceeds

the expiry date. Payees will refuse to accept offline transactions, and in the limit an extremely

short expiry date is equivalent to a situation with no offline cash. The only inconvenience to the

users from setting an expiry date that is longer than optimal is the additional delay in recovering

lost offline digital currency balances. An infinitely distant expiry date is equivalent to physical cash

(which does not facilitate loss recovery).

Determining the likely owner of expired offline digital currency balances requires exchange of

information between the central bank and the devices of consumers when the devices are online.

We consider a low- and a high-information model for how the central bank infers whether an agent’s

expired digital currency balances remained unspent. The low-information model places the onus

11The details of the survey are reported in Appendix A.
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fully on the payee to deposit offline digital currency balances before the expiry date. This model

provides a higher level of privacy in that it does not require the payer’s device to reveal whether

and where offline digital currency balances have been spent. However, loss recovery in this model is

less precise in that the payer may be reimbursed for expired funds that a payee failed to deposit in

a timely manner.12 The high-information model provides less privacy to the payer by requiring the

payer’s device to reveal whether and where funds have been spend when connecting to the central

bank. Again, the payee is required to deposit received offline digital currency balances before the

expiry date. However, whenever a payee fails to do so, then disclosure by the payer’s device may

allow the central bank to reimburse the payee rather than the payer. Our results suggest that more

information sharing has an ambiguous impact on social welfare. Whether it improves social welfare

depends on whether payers allow their devices to reconnect with offline digital currency balances

after making offline payments. Whether they do so, depends on how the amount of foregone interest

on unspent offline balances compares to the likelihood of a windfall gain if the payee fails to deposit

the spent balances. If payers were to choose to reconnect their devices, then loss allocation and

social welfare are higher in the high information model. However, if it were optimal for payers

to not reconnect, then the high information model would lead to lower social welfare. Payers will

forego interest over their offline balances for a longer period of time and are therefore inclined to

carry lower offline balances resulting in lower spending during offline periods.

The remainder of the paper is organized as follows. Section 2 discusses related literature. Section

3 illustrates the major trade-offs involving cash related to outages and loss events in the context of

simple finite-time model. Section 4 introduces a more complex infinite-time model with a stochastic

length for offline periods to obtain a better understanding of the quantitative impact of introducing

an expiry date to facilitate loss recovery. Section 5 discusses the results of calibrating the more

complex model. Section 6 concludes.

12A comparable windfall profit for the payee occurs in a traditional payment setting when a payee fails to deposit
a cheque written by the payer.
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2 Related Literature

Our paper fits into the quickly expanding economic literature on CBDC.13 Early economic

research on this topic focused primarily on whether it would be beneficial if central banks were to

issue CBDCs (Barrdear and Kumhof, forthcoming; Brunnermeier and Niepelt, 2019; Keister and

Sanches, 2019; Andolfatto, 2021; Chiu et al., 2019; Fernández-Villaverde et al., 2021; Schilling et al.,

2020). More recently, the focus has increasingly shifted towards design aspects of CBDC. These

include the security features of a CBDC (Kahn et al., 2020), the privacy it provides to its users

(Kahn et al., 2005; Garratt and Van Oordt, 2021; Lee and Garratt, 2021), whether CBDC should

generally be more deposit-like or more cash-like (Agur et al., forthcoming), the programmability of

payments (Kahn and Van Oordt, 2021), and whether CBDC balances should pay interest (Keister

and Sanches, 2019; Jiang and Zhu, 2021; Garratt and Zhu, 2021). Li (2021), Bijlsma et al. (2021)

and Huynh et al. (2020) estimate how some of these features could affect the demand for CBDC

based on survey data. Auer et al. (2020) study the technological approaches and policy stances

of central banks on the issuance of CBDC. Our paper contributes to this literature by studying

whether a digital cash substitute should be designed with a potential expiry date where users are

automatically reimbursed for expired balances in order to enable the recovery of lost balances.

The traditional Baumol-Tobin model to understand cash demand suggests that cash holdings

should explode as the interest rate approaches zero (Baumol, 1952; Tobin, 1956). More recent

literature has recognized that the cost of carrying cash consists not only of the foregone interest but

also of the risk of losing cash balances. Alvarez and Lippi (2009) approximate the costs of carrying

cash as the sum of the nominal interest rate and the probability of cash theft – as a source of

cash losses – when estimating a dynamic cash inventory model.14 Sanches and Williamson (2010)

explain theoretically how credit can co-exist with cash in an environment with limited commitment

when cash can be subject to theft. Moreover, the model of Williamson (2019) considers CBDC

13See Kiff et al. (2020) and Carapella and Flemming (2020) for early surveys.
14Kosse (2013) and Kahn and Liñares-Zegarra (2016) document some empirical evidence on the relationship

between perceived safety and cash use.
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while explicitly assuming that CBDC comes with the advantage over cash that it cannot be stolen.

Arguably, in the current low-interest-rate environment, one could reasonably take the position that

the risk of losing cash has become one of the major reasons why individuals don’t carry around

substantial amounts of cash (another being potential budget constraints). Our paper analyzes how

what may have become one of the major cost of carrying funds for offline payments can be limited

for a digital cash substitute.

The motivation for an expiry date on a digital cash substitute to enable recovery of lost balances

is distinct from that of putting an expiry date on stimulus money in order to encourage consumer

spending in recessions (Andolfatto, 2020).15 Imposing an expiry date on a digital cash substitute

without reimbursing the owner for expired balances effectively increases the cost of carrying those

balances: It imposes the threat of a tax on its owner if the funds are not spend before the expiry date.

This has quite the opposite effect of the introduction of an expiry date to enable recovery of lost

balances, which reduces the cost of holding balances. Imposing an expiry date without reimbursing

owners for expired balances leads to worse outcomes in our model, as our model includes no rationale

for the government to stimulate spending.

3 A Model of Lost Cash and Outages

The major trade-offs involving cash related to outages and loss events can be illustrated in a

simple discrete finite-time model. In this setup, we analyze the incentives of a consumer to hold

cash based on the properties of the cash issued by the central bank in an environment where outages

may occur. We consider a broad concept of “cash”. The essence of cash in our model is that it

is a bearer instrument that can be used for making offline payments during outages. It may be

physical cash in the form of coins and bank notes, or it may be stored-value in a payment card or

smartphone. Carrying cash provides the ability to purchase consumption goods during an outage,

15Some stimulus programs provided shopping vouchers with expiry dates (Kan et al., 2017).
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but entails the cost of foregone interest as well as the risk of losing the cash. The properties of the

cash issued by the central bank determine whether cash lost once is lost forever.

All agents are assumed to have quasi linear preferences; in the simple model this assumption

will reduce to risk neutrality. Agents discount time with factor β < 1. There are two categories

of agents–producers (she) and consumers (he)–and two types of consumers, denoted by s ∈ {1, 2}.

A consumer of type s will have a demand for at most s units of the good manufactured by the

producer. A consumer starts out with m units of money balances. He will divide them between

cash and online money holdings. Cash pays no interest; online holdings pay interest at the rate

i = β−1 − 1.

The timeline of the model is shown in Figure 1. At the initial date t = 0, the consumer decides

what part of his money balances to hold as cash, denoted by z. (For simplicity, we treat cash

holdings in excess of m as borrowings of online money balances at interest rate i.) At the end

of t = 0, the consumer discovers his own type (we assume the two types are equally probable).

Producers cannot observe the consumer’s type.

At t = 1, there is a possibility for the consumer to purchase units of the good from producers

and to consume them. Each producer can supply at most one unit of the good at a cost of β. The

value of each unit to the consumer is v, up to the capacity determined by the consumer’s type (1

or 2). Every consumer has the possibility to meet multiple producers at t = 1. Trading during a

meeting works as follows: The consumer makes a take-it-or-leave-it offer that consists of a price per

unit pj and a method of payment j ∈ {c, d}, where c stands for cash and d stands for online money.

Then the producer makes an acceptance decision a ∈ {0, 1}, where a = 1 stands for accepting the

offer and producing the good. The transaction technology allows for an exchange of the good and

money based on the agreed-upon price and method of payment.

Two types of adverse events may occur before the consumer gets to make an offer at t = 1.

First, with probability δ the consumer may lose his cash. The occurrence of the loss is denoted

8



Figure 1: Model of Lost Cash and Outages: Timeline

t = 0 t = 1 t = 2 t = 3

Withdraw/deposit cash
Consumer learns her type (s)

Earn interest
Potential outage starts (λ̃)
Consumer may lose cash (δ̃)
Withdraw/deposit cash (no outage)
Consumer and producers trade

Earn interest
Potential outage ends
Producer may lose cash (η̃)
Withdraw/deposit cash
Electronic payments arrive

Earn interest

Withdraw/deposit cash
Enjoy counting money

by δ̃ ∈ {0, 1}. Second, with probability λ an outage may occur. The occurrence of the outage is

denoted by λ̃ ∈ {0, 1}. If there is no outage, then the consumer can pay with both online money

balances and cash. Payments with online money take one period to settle, so that an online payment

made by the payee at t = 1 starts earning interest for the payee from t = 2 onward. If there is an

outage, then the consumer can pay with cash only. So, no consumption is possible in the unhappy

state where there is an outage and the consumer has lost his cash. If the consumer pays with cash,

then there is a probability η that the producer will lose the cash.16 The occurrence of the loss

is denoted as η̃ ∈ {0, 1}. All chance events are drawn independently. We assume the following

parameter restriction:

v > 1/(1− η). (1)

Otherwise, the probability of the producer losing cash would be so great that she would have no

incentive to accept it.

Formally, the payoff of the consumer as a function of consumption at t = 1 and the consumer’s

terminal money holdings wc at t = 3 is given as

u(q, wc; s) = βmax{q, s}v + β3wc, (2)

where q denotes the number of accepted offers, which is the sum of the number of accepted cash

offers, qc, and the number of accepted offers involving online payments, qd.

16Part of η may also be thought of as the cost of handling cash; this leaves the results in conditions (6) and (7)
unaffected.
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The consumer chooses a combination of (z, pj , j) to maximize the payoff function in (2) subject

to a cash-in-advance constraint for offers involving cash payments

qcpc ≤ z(1− δ̃) (3)

and a no-outage constraint for offers involving online payments

λ̃qdpd ≤ 0. (4)

The producers simply need to decide whether to accept the offer they receive; the payoff function

of a producer is given by

up(a,wp) = −β2a+ β3wp. (5)

The income of the central bank consists of the seigniorage from cash losses, foregone interest on cash

holdings and foregone interest on online money in transit. All the cost from money and payments

for the consumer and producer are income for the central bank.

Welfare is defined as the sum of the payoffs of the consumers, the producers and the central

bank. Welfare analysis in the model is simple and in essence boils down to analyzing the expected

number of units that will be sold to each consumer.

3.1 Cash lost is lost forever

We first consider the case where, as with physical cash, there is no possibility for the consumer

to recover lost balances. In this situation, the ultimate money holdings of the consumer are given

by

wc =
[
(m− z)(1 + i) + z(1− δ̃)− qpj

]
× (1 + i)2,
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where the elements within brackets are the sum of the online money holdings and the cash that has

not been lost minus the money used to pay the producer. Similarly, the ultimate money holdings

of the producer are given by the sales revenue—unless sales were paid with cash and lost—i.e.,

wp = apj(1− η̃1j=c)(1 + i).

Online money will be the default payment instrument of choice for the consumer, since the

producer needs to be reimbursed for the risk of losing cash: If the consumer were to offer an online

payment, then the producer accepts any offer with a price greater or equal than pd = 1. If the

consumer were to offer a cash payment, then the producer rejects the offer unless the price is greater

or equal than

pc =
1

1− η
.

It is optimal for the consumer to make a take-it-or-leave-it-offer of an infinitesimal amount above

these prices. So, it is cheaper from the consumer’s point of view to pay with online money whenever

possible, that is, whenever there is no outage. Moreover, restriction (1) implies that, if an outage

were to occur so that the consumer cannot pay with online money, he would always be willing to

buy the quantity of goods he wants to consume at the higher price when carrying enough cash.

The only remaining question is whether the consumer is willing to carry enough cash to be able

to pay during an outage. Carrying cash is costly because of foregone interest and the risk of losing

it. So, the consumer will either choose not to carry cash at all, or to carry exactly enough to pay

pc for one unit during an outage, or the amount to pay 2pc for two units during an outage. Which

amount the consumer chooses depends on whether the cost of carrying cash is less than the benefit

of the insurance for consumption during outages. The consumer is willing to carry enough cash to

purchase at least one unit of the good during an outage if and only if

i+ δ < λ(1− δ)× [ν(1− η)− 1] . (6)
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The condition means that, for the consumer to hold one unit of cash, the cost of doing so – the sum

of foregone interest and expected costs of losing cash – on the left-hand-side needs to be less than

the probability that it can be used in an outage multiplied with the marginal benefit of spending

with cash during an outage on the right-hand-side.

For the consumer to be willing to carry more cash, a stronger condition needs to hold true. In

particular, the consumer would be willing to carry enough cash to purchase two units of the goods

during an outage if and only if

i+ δ <
λ

2
(1− δ)×

[
ν(1− η)− 1− i

1 + i

]
. (7)

This condition is stronger for two reasons. First, the probability that the consumer wants to

consume the second unit during an outage is half the probability that he will want to purchase

the first unit. So carrying additional cash insures against a smaller probability event. Second, and

more subtly, the consumer will forego interest over two periods on the additional cash if he turns

out not to need the larger amount during the outage.

Social welfare depends on the cost of carrying cash, i.e., the level of i + δ. Social welfare

is lowest if the cost of carrying cash is sufficiently high that condition (6) is violated. In this

situation, consumers carry no cash and transactions between producers and consumers occur only

when there is no outage. The expected number of units sold per consumer equals 3
2 (1− λ). If the

cost of carrying cash is at an intermediate level such that condition (6) is satisfied but (7) is not,

then consumers carry sufficient cash to purchase only one unit when there is an outage. If there

is no outage, then consumers buy all the goods they would like to consume, and when there is an

outage and they haven’t lost their cash, then they purchase one unit. The expected number of units

sold per consumer equals 3
2 (1− 2

3λδ −
1
3λ). Social welfare is highest if the cost of carrying cash is

sufficiently low that condition (7) is satisfied. In this situation, consumers always purchase all the

goods they would like to consume, except in the joint event where there is both an outage and the
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consumer loses his cash. The expected number of units sold per consumer equals 3
2 (1− λδ) in this

situation.

3.2 Cash with loss recovery and no information exchange

The conditions in (6) and (7) show that the probability of cash losses may induce consumers

to carry too little cash to insure themselves against outages. Next, we consider schemes involving

an expiry date on cash that could help to weaken those constraints by alleviating the consequences

of cash losses. The idea of introducing an expiry date on digital cash is that all cash that expires

will be treated as lost and can be automatically reimbursed by the central bank in terms of online

money balances to the agent who (most likely) lost it. Deriving which agent most likely lost the

cash depends on the information exchange that occurs between the devices of consumers and the

central bank when the devices are online.

We first consider the environment without any information sharing between the consumer’s

device and the central bank, so that connecting the consumer’s device does not reveal to the central

bank whether and where the consumer spent offline balances. As a consequence, the onus will be

on the producer to deposit the cash received from the consumer before it expires (note that the

producer may fail to do so if she lost the cash). If no one deposits the cash before the expiry date,

then the central bank will infer that the consumer still owns the cash when it expires.

A shelf life of t + 2 allows the consumer to pay the merchant during an outage at t = 1 with

money withdrawn at t = 0 while leaving enough time for the merchant to deposit the money in

her online account at t = 2 before it expires. Since no information is provided to the central bank,

the consumer’s decision to deposit unspent balances after an outage at t+ 2 will not be affected by

the expiry date. If the money is not deposited at t = 2 by the merchant or the consumer, then the

central bank reimburses the consumer at t = 3 without any risk of losses to the central bank.

13



With an expiry date and no information sharing, the consumer would be willing to hold enough

cash to purchase a single unit during outages if and only if

i+ δ
(
1− β2

)
< λ(1− δ)×

[
ν(1− η)−

(
1− ηβ2

)]
. (8)

This condition based on cash with an expiry date is weaker than condition (6) for two reasons.

The main reason is the lower cost of cash losses to the consumer, which reduces the cost of holding

cash on the left-hand-side of the condition. Before, cash lost would be lost forever. With loss

recovery, there is only a cost of a delay during which the consumer cannot access the cash as he

has to wait until after the expiry date before the central bank can reimburse her. The second

reason is the more subtle impact of putting the onus on the producer to deposit the cash before

it expires. The producer will fail to do so if the cash is lost by the producer, in which case the

consumer will have the luck of being reimbursed for cash that was lost by the producer. Note from

before that the potential of cash losses lead the producer to require higher prices for cash payments.

With the expiry date, the consumer has a small chance of being reimbursed without losing cash,

which reduces the wedge between the costs of cash and electronic payments to the consumer. The

reduction in the wedge increases the marginal benefit of spending with cash during an outage, as

shown on the right-hand-side.

With an expiry date and no information sharing, the consumer would be willing to hold enough

cash to purchase two units during outages if and only if

i+ δ
(
1− β2

)
<
λ

2
(1− δ)×

[
ν(1− η)−

(
1− ηβ2

)
− i

1 + i

]
. (9)

This condition compares to condition (7) in a very similar manner as the conditions for holding

enough cash to purchase a single unit.

In summary, the introduction of an expiry date with the objective of loss recovery has the

potential to improve social welfare in an environment without information exchange between the
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consumer’s devices and the central bank. A potential disadvantage of the model with an expiry date

but no information exchange between the consumer’s device and the central bank is the imprecise

nature of loss recovery in that consumers may receive windfall reimbursements after spending cash

when producers lose the cash.

3.3 Cash with loss recovery and information exchange

As a potential solution to the imprecise nature of loss recovery without information exchange,

we explore an alternative scheme where the consumer’s device reveals whether and where cash

balances have been spent. The information released by the consumer’s device can then be used by

the central bank to reimburse the producer for cash she received and lost, rather than causing a

windfall profit for the consumer. Whether this improves social welfare depends on the incentives

for consumer’s to connect their devices to the central bank since they cannot be required to do so.17

Suppose the environment is such that the consumer holds only enough cash to purchase a single

unit. In this situation, the consumer has no incentive to reconnect after an outage. (The consumer

would have spend all his money, so reconnecting only eliminates the probability to get the windfall

profit of having the spent money returned when lost by merchants). So, information exchange

or no information exchange between the consumer’s device and the central bank does not change

condition (8) which determines whether consumers carry any cash at all.

Things are different if the environment is such that consumers hold enough cash for two units.

In this situation, consumers who spent all their cash still have no incentives to reconnect. However,

a consumer who does not spend all his cash may have incentives to reconnect, since depositing

unspent cash allows him to earn interest. This also comes at a cost to him as he foregoes the

windfall from being reimbursed by the central bank for cash previously spent during an outage

17Requiring consumers to reconnect their device before receiving a reimbursement for cash losses defeats the
purpose of loss recovery as they cannot connect lost devices.
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that was lost by the producer. So, the consumer decides based on trading off foregone interest on

unspent cash balances against the luck of getting back spent cash balances.

We first derive the condition under which consumers who did not spent all cash balances would

be willing to reconnect to the central bank and, as a consequence, inform the central bank when and

where they spend cash. Suppose those consumers who purchased a single unit were to reconnect at

t = 2, then the lowest cash prices that risk-neutral producers would accept for any unit sold equals

pIc =
1− 1

3η

1− η
,

where the one-third in the numerator comes from the fact that the producer will be reimbursed by

the central bank for lost cash when the consumers who purchased a single unit connect to deposit

their unspent cash. The possibility of reimbursement for lost cash reduces the cost of accepting

cash. Given the cash price pIc for products, it is optimal for a consumer who bought a single unit

and held enough cash to purchase two units to reconnect if

i ≥ η. (10)

With information exchange and reconnect condition (10) holding true, then consumers would

be willing to hold enough cash to purchase two units during an outage if:

i+ δ
(
1− β2

)
<
λ

2
(1− δ)×

[
(ν − 1)

1− η
1− 2

3η
− i

1 + i

1− 1
3η

1− 2
3η
− 2β2η2

1− 2
3η

]
. (11)

If the reconnect condition (10) holds true, then condition (11) is weaker than condition (9).18 In

other words, individuals are more inclined to hold high cash balances with information exchange

when it is optimal for them to re-connect than without information exchange. This comes from

the fact that, thanks to the better targeted loss recovery, producers can accept more favorable

18This is not immediately clear from the expressions. One can easily derive that the right-hand-side of condition
(11) is larger than the right-hand-side of condition (9) by ignoring the fact that the right-hand-side of condition (11)
is divided by (1 − 2

3
η) and using i ≥ η from condition (10).
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prices when customers pay with cash. Hence, if customers reconnect condition (10) holds true, then

enabling more targeted then enabling better targeted loss recovery through information exchange

could improve social welfare.

If the reconnect condition (10) is violated, then consumers would not reconnect because they

don’t want to forego the possibility of being reimbursed for spent cash balances. In this situation,

the cash prices will be unchanged from before, i.e., 1/(1 − η). The average cost of carrying cash

balances to consumers increases, because they have an incentive to delay depositing unspent cash

balances after an outage. By not reconnecting and depositing unspent cash balances directly after

the outage, they have a chance of obtaining cash lost by retailers. Under information exchange, if

condition (10) violated, consumers will only hold enough cash to purchase two units of consumption

if:

i+ δ
(
1− β2

)
<
λ

2
(1− δ)×

[
ν(1− η)−

(
1− ηβ2

)
− i

1 + i

2 + i

1 + i

]
. (12)

The higher cost of carrying cash compared to the case without information exchange is captured

in the last element of the inequality which reflects the delay in depositing unspent cash balances,

which makes this a stronger condition than the one without information exchange in (9). Hence,

information exchange could reduce social welfare if the reconnect condition in (10) is violated.

In summary, the conclusion is that information exchange can make matters both better and

worse. This comes from the fact that consumers strategically may chose to avoid reconnecting

devices for offline payments in case of information exchange. Doing so increases the effective cost of

carrying cash, which may induce consumers to carry less cash compared to the case where there is

no information exchange. Finally, regardless of whether information exchange occurs, loss recovery

is never fully precise as some consumers have no incentives to reconnect (in the model those who

spent all their cash).
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4 An Infinite Horizon Model

To better study the impact of an expiry date on the demand for cash and the optimal length

of the period before cash expires, it is convenient to consider a model with no limit on the number

of periods. Time is discrete as before and periods are numbered 0, 1, 2, .... An outage begins at a

random date t ≥ 1. Once the outage is over, no further outages occur. (This assumption allows us

to avoid some technical complications arising when successive surprise outages occur with no gaps.

Given that outages occur infrequently, this assumption is a reasonable approximation.) Conditional

on the outage not having occurred by period t− 1 the probability that the outage begins in period

t is a constant λ. The outage is of stochastic length; gτ is the probability it lasts τ periods. The

length of the outage is revealed at the first period of the outage and known to all agents.

Following Lucas (1982) and King et al. (1992), we assume that every producer, who is in charge

of selling, forms a household with a consumer, who is in charge of shopping. Every consumer can

use only the offline cash that his partner accumulated in the last normal period. Consumers cannot

consume the production by members of their household. In a normal period, agents derive utility

u(x) from consuming x units of the numeraire good, which can be produced a at constant marginal

cost which is normalized to one. We assume that u(x) is concave and strictly increasing in x and

u(0) = 0. Agents decide the real value of offline money brought into the next period. To focus on

the essence, we assume that post-outage, the real value of offline money is constant over time, i.e.,

inflation is zero. As in the normal periods, buyers want to consume the good in the outage, but

the utility of the consumption of x units depends on the length of the outage. At the beginning of

the outage, buyers buy all goods needed from sellers and then consume them during the outage.

We assume each period in the outage, buyers consume the same amount.19 Hence, their indirect

utility from consuming x during the outage is U(x, τ), where

U(x, τ) = u(x/τ)
1− βτ

1− β
.

19This assumption is not necessary but makes computation simpler.
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During the outage, any transaction must be facilitated by offline cash due to the lack of double

coincidence. Offline cash expires after T periods and, unless it is deposited by another agent, it

will be reimbursed to the account of the buyer in the first period after the outage as before. If

a seller receives offline cash, then she can deposit it by connecting to the central bank before the

cash expires. But if the seller has no opportunity to connect to the central bank before the money

expires, then she would not be willing to accept cash. Therefore, no producer is willing to accept

the offline money if τ ≥ T in an outage (Figure 2, panel a). If, however, τ < T , there can be trade

(Figure 2, panel b). Each period, buyers may lose their devices with probability δ and sellers may

lose their devices with probability η. The event of loss occurs at the beginning of each period before

any other actions as in the simple model.

We solve the model backwards. First, we consider the first period after the outage. Let a be

the value in the buyer’s online account, plus the expected value of reimbursements still due to be

received for cash losses up to the present, discounted by the wait time until those reimbursements

will be made, and let z be the current offline cash holding. Then the buyer’s value function is

Q(a, z) = (1− δ)Q̄(a, z) + δQ̄(ā, 0)

where Q̄(a, z) and Q̄(ā, 0) are respectively the value functions when the buyer keeps her device or

loses her device at the beginning of this period. Suppose the buyer loses the remaining cash balances

in the first period after the outage ends (that is, just before reconnection is established), then the

buyer will be reimbursed for those losses by the central bank after max(T − τ, 0) periods, where τ

is the realized length of the outage period. So, the discounted value of reimbursements increases by

zβmax(T−τ,0) when he loses the cash in the first period after an outage, hence, ā = a+zβmax(T−τ,0).

After the outage, there are no further incentives for the buyer to hold cash because no further

outages occur and cash is costly to hold due to discounting and the possibility of a loss.

In a more general formulation it might be necessary to keep track of the entire history of cash

losses by the buyer, since reimbursements of different losses could occur in different future periods.
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Fortunately, given the quasi-linear utility, only the expected present value of the reimbursement is

relevant: actual value functions are equal to those in a scenario where agents get offline money re-

imbursed immediately after the loss, as long as the reimbursed value equals the expected discounted

value of the future reimbursement. This allows us to write

Q̄(a, z) = max
x,`

u(x)− `+ βQ̄(0, 0),

st x = `+ z + a.

In this formulation, agents are reimbursed the expected discounted value a right away and have no

future reimbursement; thus a enters the budget equation but not the continuation value function

Q̄. Also, notice that agents do not hold offline money after the outage. Therefore, the continuation

value function is Q̄. An immediate consequence is that Q̄a(a, z) = Q̄z(a, z) = 1. Therefore,

Qa(a, z) = 1 and Qz(a, z) = (1− δ) + δβmax(T−τ,0).

Now we consider the problems before and during the outage. Let W (a, z) be the value function

at the beginning of a period. It equals the sum of the value function of a normal period and the

value function of an outage weighted by the probability of an outage:

W (a, z) = (1− λ)Wn(a, z) + λW o(a, z),

where Wn and W o are the value functions in a normal period and an outage period, respectively.

The value function of a buyer in a normal period can be written as

Wn (a, z) = (1− δ)W̄n (a, z) + δW̄n (ā, 0) ,

where a buyer’s value function is W̄n (ā, 0) if he loses his device and W̄n (a, z) otherwise. And

ā = a + Eβφ(T )z where φ(T ) is the random time required to get reimbursement of lost cash. It

depends on T and is random because it can be impacted by a potential outage, of which the arrival
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time and length are random. The calculation of the value of Eβφ(T ) is given in Appendix B. One

can write

W̄n (a, z) = max
ẑ,`,x

u(x)− `+ βW (0, ẑ),

st x = `+ a+ z. (13)

This implies that Wn
a (a, z) = 1 and Wn

z (a, z) = (1− δ) + δEβφ(T ).

Now move to the value function at the beginning of an outage. One implication of (13) is that

we can assume that buyers carry no a into the next period if the outage does not occur, i.e., they

use the discounted value of cash waiting for future reimbursement to consume now. Therefore,

without loss of generality, we only need to consider the case where a = 0 at the beginning of the

outage:

W o(0, z) =
∑
τ

gτJ
τ (z) (14)

where Jτ is the value function at the beginning of an outage conditional on an outage length of τ

periods. If τ ≥ T , offline cash expires in the middle of the outage and is reimbursed to the buyer after

the outage (Figure 2, panel a). Therefore, no transaction occurs because a seller anticipates that

she could not deposit the money before the expiration date. This implies that Jτ (z) = βτQ(z, 0).

If τ < T , a seller can deposit the offline balances she receives if she does not lose her device (Figure

2, panel b). Therefore, a buyer can buy goods if he does not lose his device. This implies that if

τ < T ,

Jτ (z) = (1− δ) max
x,p

[U(x, τ) + βτ (1− δτ )Q̄(0, z − p) + βT δτ Q̄(z − p, 0)] + δβT z, st p ≤ z. (15)

Here δτ = 1 − (1 − δ)τ is the probability that a buyer loses his device after trading in the first

period of the outage but before he can deposit the cash. This formula follows because a buyer can

lose his device with δ probability in each of the remaining τ − 1 outage period and also in the first
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Figure 2: Shelf life and outages

Panel (a): Shelf life does not exceed length of outage

Online Offline Offline Online Online Online

Shorter shelf life
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Panel (b): Shelf life exceeds length of outage

Online Offline Offline Online Online Online

Longer shelf life

0 τ T time

Accept offline Deposit Reimburse

period after the outage. The buyer decides his consumption x and payment p given that the terms

of trade are determined by buyers making take-it-or-leave-it offer.

Sellers lose their devices with probability ητ = 1 − (1 − η)τ after the trade and before they

can deposit the cash. If a seller loses her device, she cannot claim the money because it will be

reimbursed to the buyer. The buyer makes the seller indifferent between a trade and no trade,

which implies βτ (1 − ητ )p = x. The βτ captures the fact that sellers use the received funds to

consume only after the outage is over. Then the envelope condition of Jτ is

∂

∂z
Jτ (z) = (1− δ)(Λ(z, τ) + βτ (1− δτ ) + δτβ

T ) + δβT , (16)

where

Λ(z, τ) = max{βτ (1− ητ )Ux(βτ (1− ητ )z, τ)− (βτ (1− δτ ) + δτβ
T ), 0} (17)
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Then in a normal period before the outage, a buyer brings z∗ into the next period, where z∗ solves

the following equation in z:

1 =βλ

T−1∑
τ=1

gτ [(1− δ)(Λ(z, τ) + βτ (1− δτ ) + δτβ
T ) + δβT ]

+ λ

∞∑
τ=T

gτβ
τ+1 + (1− λ)β[(1− δ) + δEβφ(T )]. (18)

Because Γ is decreasing in z, the right-hand side of (18) is decreasing in z. Therefore, the solution

to this equation is positive and unique if T > 1. The equation highlights the trade-offs involved in

the choice of T . On the one hand a higher T , allows agents to trade in longer outages, which is

reflected by the first summation on the right-hand side of (18). This increases the right-hand side of

(18) and encourages the use of cash. On the other hand, it delays reimbursement of the lost offline

cash, which is reflected by the terms βT and βφ(T ). This decreases the right-hand side of (18) and

discourages the use of cash. As a result, both the optimal cash holdings (z∗) and consumption in

the outage may increase or decrease with T . Given z∗, the welfare of the buyer at period 0 is

Wn(0, 0) = u(x∗)− x∗ − z∗ + βW (0, z∗), (19)

where u′(x∗) = 1.

5 Quantitative Analysis

Theoretically, offline cash with a longer T enables consumers to consume in more outage states,

but consumers also need to wait longer to retrieve it if they lost their device. It remains an empirical

question as to how to optimally set T . In this section, we calibrate the infinite horizon model to

data and try to provide some insights to this question.
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5.1 Calibration

We first parameterize the model. For the functional form of the utility function, we choose the

familiar form u(x) = x1−σ/(1 − σ). The distribution of τ follows a Poisson distribution with a

parameter γ. Then the model is calibrated by specifying values for the unknown parameters of the

model (β, λ, σ, δ, η, γ).

We consider a daily calibration. We set β to match an annual discount factor of 0.96. The risk

aversion parameter σ determines the demand for offline cash. It is analogous to the curvature of

the utility function in the decentralized market in the literature on money search, e.g. Lagos and

Wright (2005). Many papers in this literature try to calibrate the curvature of this utility function.

And the resulting risk aversion parameter ranges from around 0.2 to more than 0.9. We set σ to

be 0.7 in our benchmark calibration, but we also experimented with other values.

Next, we calibrate the loss probability for consumers, δ. To pin down this parameter, we conduct

an online survey to estimate the probability of a consumer losing offline digital currency balances

that would be locally stored in a payment card (see Appendix A for more details). The results

suggest that the annual probability of a consumer losing digital currency balances stored locally in

a payment card is around 16%.20 We calibrate δ to match this probability. We assume that the

probability that a seller loses cash stored in her device (η) is the same as that for the buyer. In a

sensitivity analysis, we calibrate the model such that the loss probability corresponds to that when

digital currency balances were locally stored in a phone and obtain qualitatively similar results (see

Appendix C).

Lastly, we calibrate the parameters related to the likelihood and the length of an outage, λ and

γ. For the likelihood, we choose λ such that someone is expected to enter into an extended offline

20This is higher than the number used by Alvarez and Lippi (2009) to approximate the probability of losing
physical crash. They calibrate their model based on the annual probability that someone loses physical cash as a
consequence of crime, which was around 2 per cent in Italy in 2002. The difference can be explained by the substantial
probability of losing cash as a consequence of chance or carelessness.
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Table 1: Calibration

Parameter Daily value Annualized level
Discount factor (β) 0.99990 0.96

Risk aversion (σ ) 0.70

Loss probability consumer (δ) 0.0004845 0.162
Loss probability producer (η) 0.0004845 0.162

Outage probability (λ) 0.00061 0.200
– Length: Poisson distribution (γ) 6.375 0.0175

period about once every five years. For the length of the outage, we choose γ such that the offline

money balances are well over twice the level of daily spending as T →∞. The idea is that if T =∞

— that is, if it takes infinitely long before lost cash is returned to the owners — that then the costs

of carrying offline digital currency balances in the model should be equivalent to the cost of carrying

physical cash. Survey evidence of Greene and Stavins (2020) suggests that, on average, the level of

precautionary cash holdings is well over twice the amount of daily spending on purchases.21 Table

1 summarizes the calibration.

5.2 Effects of the expiry date

We now use the calibrated model to analysis how T affects the demand for offline money balances

and the welfare of buyers. Figure 3, panel (a) shows the demand for offline balances as T increases.

Recall that a higher T enables consumers to consume in outages that last longer but also makes

consumers wait longer to be reimbursed if they lose their device. The former effect increases the

demand for offline money while the latter effect reduces the demand. If T is small, the acceptance-

during-outages effect dominates because it is very likely that the outage is longer than T . Therefore,

21Survey evidence suggests that consumers in the United States spend on average $50.32 per day on purchases
($1559.9 divided by 31) while the level of precautionary cash holdings measured as cash held elsewhere is estimated
at on average $120.20 (Greene and Stavins, 2020, Tables 3a and 7). This suggests a ratio of about 120.20/50.32 ≈ 2.4.
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Figure 3: Cash holdings with expiry date and privacy

Panel (a): Optimal cash holdings as a function of the expiry date

Shorter expiry dates (0-50 days) Longer expiry dates (0-750 days)

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

With Expiration

Without Expiration

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

With Expiration

Without Expiration

Panel (b): Daily utility during outages as a function of the expiry date
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Panel (c): Daily consumption during outages as a function of the expiry date
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Note: Panel (a) shows the optimal cash holdings as a multiple of daily consumption for different lengths of the expiry
dates. Panel (b) measures the expected utility in the outage minus the cost of bringing offline money. Panel (c)
measures the expected daily consumption in an outage. The calibration of the model is reported in Table 1.



the demand for offline money increases. But if T is large, the slow-reimbursement effect dominates,

and the demand decreases. Notice that when T is small, the demand rises sharply with T , while

the demand decreases slowly if T is large. This is because consumption in outage is very valuable

and delay in reimbursement is not very costly because agents are patient. The demand for offline

money peaks at T = 19 days, but this is sensitive to the shape of the distribution function for the

length of the offline periods. Importantly, the demand for offline balances is substantially higher

with an expiry date and loss recovery. For our specific calibration, the maximum demand is about

136% higher than the demand for offline money when there is no expiry date, i.e., when T = ∞.

Panel (b) shows consumer welfare measured by the expected daily utility during the outage. We

also normalize the welfare without an expiry date to 1. The welfare maximizing expiry date T is

20 days. It increases welfare by 23% compared to the case of physical cash without an expiry date.

Similar to the impact on demand, the cost of setting a longer than optimal expiry date is small,

while setting an expiry date that is too short has a large negative impact. Lastly, panel (c) presents

the expected per period consumption in an outage. Its pattern is similar to that of offline money

balances and welfare. At the optimal T , the expected per period consumption is about 0.84 in an

outage. It is less than 1, which is the consumption during a normal period. This is because of the

cost associated with offline money balances. Compared to the case under T = ∞, the optimal T

increases consumption during outages by about 90%.

The main insights are not very sensitive to the choice of the risk aversion parameter σ, but

quantitative implications can be. Suppose, for example, σ = 0.5. Then, the γ needs to be set of

9.501 to match the diary data. The values of T that maximizes offline money demand and welfare

are 23 and 24, respectively. Compared to the case without an expiry date, the welfare-maximizing

T raises offline money holding by 194%, total welfare by around 65.3% and expected per period

consumption in an outage by 168%. Again, setting T larger than the optimal value leads to small

welfare loss, while setting it smaller than T is very costly.
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Figure 4: Expiry date with a low discount factor

Panel (a): Optimal cash holdings Panel (b): Consumption during outages
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Note: Panel (a) shows the optimal cash holdings as a multiple of daily consumption for different lengths of the expiry
dates. Panel (b) measures the expected daily consumption in an outage. The discount factor is set at an annualized
level of 0.76. The other parameter values are set as reported in Table 1.

The relative flatness of the optimal cash holdings for longer expiry dates is partially driven by

the choice for the discount factor. Our baseline calibration with an annualized level of 0.96 implies

that the waiting cost of the consumer for a refund after two years equals about 8 per cent of the

lost balance. One may argue that this calibration does not reflect scenarios where consumers are

financially-constrained or the situation in some developing countries with high inflation rates. As

an alternative, we set the discount factor at the more extreme annualized level of 0.76 – which

implies that the consumer’s waiting cost for a refund after two years equals about 42 per cent of

the lost balance – while keeping all other parameter values identical to those in Table 1. Figure 4

summarizes the results for this alternative calibration. The main difference with the baseline results

is that the levels of the optimal cash holdings and consumption during outages with expiry date

(blue lines) converge more quickly to their levels without expiry date (dashed lines). In other words,

it becomes more costly to set an expiration date that is longer than optimal, so the discount factor

is an aspect that the policy maker would need to take into account. That said, the asymmetry in

deviations from the optimal expiry date remains because optimal cash holdings and consumption

during outages converge to zero as the expiry date tends to zero on the left side of the chart.
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6 Conclusion

The robustness of physical cash as a means of payment comes at a cost: it is essentially im-

possible for a user of cash to convincingly demonstrate to the issuer that it has been lost and

should be replaced. In this paper we argue that central bank digital currency can be designed to

improve on physical cash–combining offline robustness with loss recovery–by including an expiry

date, automatically renewable whenever the holder is online.

We have provided a simple model of the process, and used it to examine the incentive issues

entailed by such an arrangement. While a facility for recovering lost cash would be welfare improv-

ing, the details of its design matter. Increasing the information shared between consumers and the

central bank in the loss recovery process could discourage consumers to carry cash.

We have also provided a more complicated dynamic model of outages and cash loss, one amenable

to calibration. Our results show that including provision for loss recovery through expiry dates can

have a significant welfare effect during outages, although it is clear that these calculations are only

a first step in such an analysis. We have also examined the question of the optimal expiry date,

and shown that the benefits are asymmetric: small upward deviations from the optimal duration

have only minor welfare effects, while small deviations downward can entail major welfare losses.

The preliminary conclusion then is that while a facility for limiting the life of offline CBDC is a

desirable part of the design, given the inherent uncertainties it will be safest to make the offline

CBDC relatively long-lasting.
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Appendix

A Survey

We obtain a rough estimate of the probability of individuals losing offline digital currency

balances based on two single-question online surveys. We do so for two potential modes to store

offline digital currency balances: when offline digital currency balances would be stored in a secure

element in a payment card and when offline digital currency balances would be stored in a secure

element in a smart phone. In either case, we will presume that the devices require some form of

user authentication (e.g., a pin code or unlocking the device), so that the balances cannot be spend

by others when the device is stolen or lost. The survey questions and the responses are reported in

Table 2.

Our service provider is Google Surveys. The responses are provided by users on websites in

the Google Surveys publisher network, who are asked to fill out a survey before they can continue

reading the content they would like to view (a so-called “survey wall”). Methodological details are

provided by Sostek and Slatkin (2018). Generally spoken, the service provider implements several

mitigation strategies to deal with response biases and provides weights to weight responses by age,

gender and region. Santoso et al. (2016) provide a relatively positive assessment of the service for

academic research in social science, albeit with some cautions. One concern they identify is the

potentially less substantive engagement of respondents when facing a survey wall. We include both

a “Don’t know” option and a “Don’t want to answer” option as potential responses to our survey

questions in order to mitigate the risk of this impacting our outcomes. We find that the percentage

of respondents who choose one of these options in our surveys is comparable to the percentage of

responses for the “Don’t know” option observed in the assessment of Google Surveys by (Santoso

et al., 2016, p. 364).
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Table 2: Survey questions and response rates

Panel (a): Over the past 12 months, did you replace or cancel a payment card (for example, a debit
or credit card) because it was damaged, physically stolen or lost?

Answer: Canada: United States:
Weighted Unweighted Weighted Unweighted

“No” 63.7% 60.6% 58.4% 59.2%
(-2.6%, +2.5%) (-2.2%, +2.1%) (-2.9%, +2.8%) (-2.2%, +2.1%)

“Once” 8.0% 7.1% 8.6% 8.2%
(-1.3%, +1.6%) (-1.1%, +1.2%) (-1.5%, +1.8%) (-1.1%, +1.3%)

“Twice, or more” 1.8% 1.6% 2.7% 2.2%
(-0.6%, +0.8%) (-0.5%, +0.7%) (-0.8%, +1.1%) (-0.6%, +0.8%)

“Don’t know” 4.2% 4.3% 5.1% 5.1%
(-0.9%, +1.2%) (-0.8%, +1.0%) (-1.1%, +1.4%) (-0.9%, +1.1%)

“Don’t want to answer” 22.3% 26.3% 25.2% 25.1%
(-2.1%, +2.3%) (-1.9%, +2.0%) (-2.4%, +2.6%) (-1.9%, +1.9%)

Respondents 1,376 2,001 1,146 2,001

Panel (b): Over the past 12 months, was your smart phone stolen, permanently lost, or broken so
that you could no longer start it?

Answer: Canada: United States:
Weighted Unweighted Weighted Unweighted

“No” 70.2% 67.1% 71.6% 72.7%
(-2.4%, +2.3%) (-2.1%, +2.0%) (-2.7%, +2.6%) (-2.0%, +1.9%)

“Once” 4.4% 4.5% 5.7% 4.0%
(-1.0%, +1.2%) (-0.8%, +1.0%) (-1.2%, +1.5%) (-0.8%, +1.0%)

“Twice, or more” 2.4% 2.7% 0.9% 1.2%
(-0.7%, +0.9%) (-0.6%, +0.8%) (-0.4%, +0.7%) (-0.4%, +0.6%)

“Don’t know” 2.9% 3.5% 2.4% 3.2%
(-0.8%, +1.0%) (-0.7%, +0.9%) (-0.8%, +1.1%) (-0.7%, +0.9%)

“Don’t want to answer” 20.1% 22.2% 19.4% 18.8%
(-2.0%, +2.2%) (-1.8%, +1.9%) (-2.2%, +2.4%) (-1.7%, +1.8%)

Respondents 1,419 2,001 1,118 2,001

Note: The table reports the responses for two single-question surveys held in both Canada and the United States.
Responses are provided by users of websites included in the Google Surveys publisher network over the period from
5 until 29 May 2021. The weighted responses weigh respondents by age, gender and region, and assign a zero
weight to respondents for which this information is not fully available (hence, the higher count of respondents for
the unweighted responses). The table reports the 95 per cent confidence intervals using the modified Wilson method
(Brown et al., 2001) in parenthesis.



The responses in Canada and the United States are generally quite comparable, as are the

unweighted and weighted responses. Based on the weighted responses in the United States, the

fraction of respondents who would not have lost stored-value in a payment card based on our

survey question is estimated to be about 0.584/(0.584 + 0.086 + 0.027) ≈ 0.837 on an annual

basis, which corresponds to an annual loss probability of 16.3%. For stored-value in a phone, the

corresponding estimate is about 0.716/(0.716 + 0.057 + 0.009) ≈ 0.916 on an annual basis, which

corresponds to an annual loss probability of about 8.4%. These are the loss probabilities that are

used for the baseline calibration and the calibration of the robustness check. For Canadians, the

estimated annual loss probabilities are respectively 13.3% for stored-value in a card and 8.8% for

stored-value in a phone. The pattern in both jurisdictions is that correspondents are less likely to

lose stored-value in phones, potentially due to features that allow them to locate their devices when

lost.

B Value of recovery with stochastic outage length

This appendix derives the value of Eβφ(T ), which is the expected value of loss recovery for a single

dollar to the consumer as a function of the expiry date in an environment where the occurrence and

the length of the outage are stochastic. The value of loss recovery is not straightforward because

outages with stochastic length introduce uncertainty around the moment when the consumer can

access recovered funds. Three different scenarios may materialize that need to be accounted for:

(i) no outage may occur until the moment of recovery, (ii) an outage may occur that ends before

the moment of loss recovery, and (iii) an outage may start before the moment of recovery but may

continue until after the moment of recovery. The probabilities in the equation related to these

scenarios are indicated below the equation

Eβφ(T ) = βT+1

(
(1− λ)T+1︸ ︷︷ ︸
No outage
until T+1
(inclusive)

+

T∑
s=1

T+1−s∑
t=1

λ(1− λ)s−1g(t)︸ ︷︷ ︸
Probability of outage
between now and T+1
that ends before T+1

)
+
∑∞
i=1 β

T+1+i

(
T+1∑
s=1

λ(1− λ)s−1g(T + 1− s+ i)︸ ︷︷ ︸
Probability of outage

between now and T+1 (inclusive)
that ends at T+i

)
.
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In scenarios (i) and (ii), the value of a recovered dollar simply equals βT+1. In scenario (iii), the

value of a recovered dollar depends on when it can accessed by the consumer (i.e., βT+1+i for

access at t = T + 1 + i). The function calculates the expected value of loss recovery by summing

the product of βT+1+i and the probability that an outage starts before T + 1 (inclusive) and ends

at t = T + 1 + i for each i = 1, 2, ...,∞.

C Sensitivity Analysis

According to our online survey, the probability of losing value stored in a secure element in a

smart phone is around 8.44%, which is lower than the probability of losing value stored in a payment

card. In this appendix, we analyze the sensitivity of our results to a lower probability of losing

digital cash. If the off-line money is store on a secure chip of the cellphone, a buyer loses offline

balance daily with a probability of δ = 2.42 ∗ 10−4. We again assume that δ = η and re-calibrate

the model. We then obtain γ = 4.47 for σ = 0.7. The results are shown in Figure 5. The qualitative

results are similar to those obtained using the baseline calibration. The value of T that maximizes

money holding is 16 days, while the one that maximizes welfare is 17 days. Compared to the case

without an expiry data, the optimal T increases money holding by about 70%, daily consumption

in an outage by 40% and daily utility during outages by 12%.
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Figure 5: Cash holdings with expiry date and privacy: Sensitivity to lower loss probability

Panel (a): Optimal cash holdings as a function of the expiry date
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Panel (b): Daily utility during outages as a function of the expiry date
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Panel (c): Daily consumption during outages as a function of the expiry date
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Note: Panel (a) shows the optimal cash holdings as a multiple of daily consumption for different lengths of the expiry
dates. Panel (b) measures the expected utility in the outage minus the cost of bringing offline money. Panel (c)
measures the expected daily consumption in an outage.
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