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Abstract

Blockchain represents a distributed ledger or database technology that allows a group
of self-interested users to maintain a ledger without trusted party such as a bank. In
this paper, we develop a new, game-theoretic formulation of any blockchain where each
user decides how to update the distributed ledger. Blockchains are useful only in so
far as the updating strategies of users attain consensus—users agree on which version
of the ledger is “correct”—and permanence—users do not have incentives to omit or
modify past data. We show currently-implemented strategies—longest chain rules—do
not achieve consensus or permanence when users are sufficiently heterogeneous. We
go on to prove existence of new equilibrium strategies that attain both consensus and
permanence for any degree of heterogeneity. In practice, these equilibrium strategies are
robust to so-called 51% attacks. Our results shed light on the important role economic
incentives play in determining the resilience of blockchain ledgers.
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1 Introduction

In this paper, we propose a new model to analyze blockchain outcomes. By blockchain, we

mean a distributed ledger—a record of data, possibly transactions as with bank ledgers—

that is maintained by a disperse group of self-interested individuals or users. Unlike ledgers

maintained by banks, governments, or other parties, in a blockchain setting, there is no party

responsible for maintenance and security of the ledger. The paper’s main contribution is

to propose a new consensus protocol for blockchain-based distributed ledgers that is more

robust—it generates consensus and permanence of the underlying data for a significantly

wider range of situations than existing protocols.

One novel aspect of a blockchain ledger is that each “write” operation performed on the

ledger is “chained” to a previous piece of information. In this sense, one may think of a

blockchain as directed graph—a tree—where each node represents a set of information and

each path from the origin node to each terminal (leaf) node contains a possible ledger.

Since all self-interested users have both read and write access to the blockchain, each user

may essentially propose their own version of the ledger. In other words, there may be many

possible terminal leafs and, since each path from the origin to a terminal leaf represents a

possible ledger, there may be many possible ledgers. For a blockchain ledger to function,

then, a necessary condition is that users agree on which is “the” correct ledger—that is,

users require consensus.

The fact that all users have write access also implies that blockchain ledgers must attain

permanence. In other words, users must know that old data represented on the ledger cannot

be changed. Users may change old data by proposing new paths through the blockchain

that omit or modify information that resides in other possible ledgers that already exist in

the blockchain. If one user can induce the consensus to switch from one path to another,

then that user can effectively change the history of data on the consensus chain. For users

to be able to trust the data on the ledger, they must know that users are not able to induce

such switches in the consensus chain. In this sense, a second necessary condition for a

blockchain ledger to function is permanence.

In Bitcoin, the most well understood blockchain, the proposed consensus protocol (or strat-

egy) is for users to agree that the longest chain—technically, the chain that represents

the most computational work—is the correct chain. This ad hoc method of consensus has

functioned remarkably well since Bitcoin’s creation and yet under some conditions may not

attain permanence. For example, Budish (2018) and Biais, Bisiere, Bouvard, and Casamatta



(2018) have both shown that if users’ ability to write data to the blockchain is not evenly

distributed or the value of modifying the data on the blockchain is sufficiently large, then the

longest chain consensus protocol is not sufficient to prevent users from modifying past data.

Such critiques call into question the economic viability and security of blockchain-based

ledgers.

Our paper develops a theoretical model to formally analyze blockchain consensus and per-

manence. In our model, in each period, rational—self-interested—users we call “miners”

decide where to write a block of data to the blockchain. Given a locational choice, the like-

lihood a miner’s bock is added to the blockchain depends on her (exogenous) mining power

(a probability). If a miner’s block of data is added, the block includes a mining reward for

that miner—the reward is an increment to the miner’s balance of a unit of account on the

blockchain.

We first show that longest chain consensus features the same flaws in our model as found

in earlier work: longest chain consensus fails to be an equilibrium when mining power is

concentrated or when an individual miner has sufficient balances of unit of account on some

path that is not the longest chain. These results resemble those found in Budish (2018)

and Biais, Bisiere, Bouvard, and Casamatta (2018). We then show that the model admits

other equilibria which are more robust—they remain equilibria even when mining power

is concentrated or individual miner’s have large balances of the unit of account on the

blockchain.1

The equilibrium strategies we construct have two novel features relative to longest-chain

consensus. First, we show that when miners have no incentive to remove data from

the blockchain—essentially by mining blocks that omit data previously recorded on the

blockchain—then there exists an equilibrium which relies on a form of mining-weighted ap-

proval voting. We term this strategy the approval weighted chain strategy. The approval

weighted chain equilibrium strategy calls on miners to add blocks to the chain where the

total mining power (probability) of miners who have previously mined blocks on the chain is

largest. On the equilibrium path, the approval weighted chain consensus generates a graph

with a single path of data and thus perfect consensus while disincentivizing deviations by

miners with large mining power. In practice, such a strategy is a mild modification of the

longest chain strategy.

Second, we show that when miners may have incentives to propose new paths through the

blockchain—which admits the possibility of “double-spend” attacks where miners spend

1Other related papers the look at blockchain equlibrium include Saleh (2018), Chiu and Koeppl (2017).
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their balance of the unit of account multiple times—then a modified version of heaviest-

chain consensus which features “checkpoints” is an equilibrium. The checkpoints ensure

that if any miner attempts to omit data or blocks behind the current consensus checkpoint,

then no miners will treat this new deviation chain as the correct chain. And, if no mining

rewards vest before they are behind a checkpoint, then miners have no incentives to omit

data ahead of the checkpoint. In this way, checkpointed-approval-weighted-chain consensus

is a robust equilibrium in the model. Based on our checkpoint results, we show that our

model has interesting implications for the types of transactions blockchain-based ledgers

are likely to facilitate well.

2 A Model of Blockchain

In this section, we develop a model to analyze blockchain consensus. In this model, in each

period, miners add a block of data to an existing graph of blockchain data. A block includes

units of account on the blockchain ledger as well as, in principle, other data. This model

features no latency in the sense that each individual in the model perfectly observes each

addition to the blockchain.

Preliminaries. Time is discrete, t = 0, 1, 2, . . .. There are M miners each with a rate

of time preference δ. In each period, each miner i proposes a location to add a block, bi,

of data. We index the block by the name of the miner since each miner may propose to

encode different data onto the blockchain. A block consists of three components: hash

data, transaction data, and mining rewards.2 The hash data is determined technologically

and is not relevant for our model beyond the fact that it implies a chained data structure.

We treat the transaction data as exogenous but consider mining incentives for any possible

transaction data (of fixed size). We represent the transaction data in any block bi as a

vector, ~Ybi = (Yj,bi)j=1,...,M which represents a vector of values for each miner j in the block

proposed by miner i, bi. In addition, we let the vector ~ybi denote the mining rewards in

block b for miner i. We assume that mining rewards have the property that yj,bi = ȳ if

i = j and yj,bi = 0 for j 6= i implying that only miner i earns a reward if block bi is added

to the blockchain.

A blockchain, in the language of graph theory, is an arborescence. It is a directed graph

in which from the genesis block b0 to any other block b there is exactly one directed path

2Technically, mining rewards are simply a transaction, but it is useful for us to separate them.
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from b0 to b. Let Bt(Gt) denote the set of all blocks in the graph Gt. And let Et(Gt) denote

the set of all edges that link the blocks in graph Gt. Let Gt represent the set of all possible

graphs with t blocks and G =
⋃∞
t=0 Gt.

Each miner’s action in period t is to choose a location to attempt to add block bi,t. A

location choice of miner i in period t is a mapping ai,t : Gt → Bt(Gt). Miners’ location

choices stochastically determine the state of the graph in the subsequent period. Specifically,

we assume that each miner’s block is added (in the location of choice chosen by miner i)

probabilistically with at most one miner adding a block in a given period.3 Let pi denote

the probability that miner i successfully adds a block to the existing graph with
∑

i pi ≤ 1.

This probability represents the mining power of miner i and we treat it as exogenous.

Given a graph Gt and the location choices of each miner ~a, the graph in the subsequent

period is Gt+1 = Gt
⊗

(ai, bi) with probability pi for each i where our notation represents

Gt
⊗

(ai, bi) = Gt
⋃

(bi, [ai → bi]). In words, the graph Gt+1 is the same as the graph Gt

but includes a new node, bi and a new edge from ai to bi.

Let HG
t ∈ H=

t

⋃t
τ=0 Gt denote the public history of the graph in each period. The private

history for a miner is the public history combined with the miner’s own history of locations

where she tried to add blocks in the past. We denote this private history H i
t ∈ Hit =⋃t

τ=0 Gt × B(Gt) and Hi =
⋃∞
t=0Hit. A strategy for miner i is mapping from the set of all

possible miner i histories into a set of pure actions,

σi : Hi → B(Gt). (1)

In any period t, given any graph Gt and any set of strategies of miners ~a = (a1, . . . , aM ),

we let ui(~a;Gt) denote the period payoff of miner i and U it (σ;H i
t) denote the discounted

continuation payoff miner i obtains from period t onwards (where σ = {σi}mi=1) for a generic

history H i
t .

Chains. Before turning to the structure of preferences and payoffs, it is useful to create

notation to describe the various databases that are represented in a graph, Gt. We interpret

each path through the graph, from the origin node to any other node as a chain and note

that each chain may represent a different database than any other chain. For any graph,

Gt and block b̂ ∈ B(Gt), define the chain, C(b̂, Gt) as the unique path from b̂ back to the

3We explore the implications of blockchain latency—that is, the possibility that multiple blocks may be
added in a given period although miners may only observe one block addition per period—later.
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Genesis block b0 (and note that , C(b̂, Gt) is a subset of B(Gt) where we suppress the specific

links that form the chain from b̂ to b0):

C(b̂, Gt) =
{
{b̂, bn, . . . , b1, b0} ∈ B(Gt)

∣∣ (b̂, bn), (bn, bn−1), ..., (b1, b0) ∈ E(Gt)
}

(2)

Recall the blockchain protocol imposes that every block has a unique predecessor. Hence,

the path backwards from any block, b, to the Genesis block is unique. Define #C(b̂, Gt) as

the number of blocks in the chain or the length of the chain. And we say that block bn is

on the blockchain C(b̂, Gt) if bn ∈ C(b̂, Gt).

Consensus and Payoffs. To better understand payoffs, we now propose a specific func-

tional form for the period payoff ui that represents key features of existing blockchain

networks. We base our functional form on a blockchain whose sole purpose is to serve as

money (as in Bitcoin). In a monetary setting, it is simplest to think of the data Y and y

as representing units of account—coins—held on the graph Gt. These coin data could be

positive or negative with the interpretation that positive data represent transfers received

while negative data represent transfers sent. Alternatively, if the underlying data for miner

i in block b is denoted Ŷi,b, we may assume Yi,b = v(Ŷi,b) where v(·) represents each miner’s

preferences over underlying data. If the miner’s preferences over data and units of account

(y) are quasi-linear, then Yi,b + yi,b represents miner i’s value in block b.

For any block b̂ ∈ B(Gt), a miner’s balance of coins on any chain may then be represented

as ∑
b∈C(b̂,Gt)

(Yi,b + yi,b). (3)

Whether these coins or balances are valuable—that is, whether miners have the option to

sell them to others for real-valued goods—depends on whether the coins lie on a ledger in

the graph (a path from the origin to a terminal node in Gt) that other users use. We link

validity to miners’ location actions. That is, if a miner choose a location in B(Gt), then that

we say that miner uses the data along the path or chain from the origin to that existing

block. If more miners use the same chain, then the coins on that chain are more valuable.

A particularly simply way to model the dependence of the value of coins on miners’ actions

is to assume that only coins that all miners agree are on the chain are valuable. In this

case, we may define the set of consensus blocks as

C(~a,Gt) =

m⋂
i=1

C(ai, Gt). (4)
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Then, a miner’s balance aggregated across consensus blocks is simply∑
b∈C(~a,Gt)

(Yi,b + yi,b). (5)

The set of consensus blocks represents the set of blocks that all miners agree (based on

their location choices in the current period) are on the blockchain. Note that C(a,Gt) is

not empty by construction since it includes b0, the genesis block.

Given a structure to value coins in any graph, we may then define preferences. In particular,

we will assume that

ui(~a;Gt) = (1− δ)
∑

b∈C(~a,Gt)

(Yi,b + yi,b) . (6)

As an example, consider one miner, “Satoshi.” Suppose Satoshi has 1 unit of account on the

genesis block ySatoshi,b0 = 1 and no units of account in any other block on the graph at any

future date. Since, by construction, the genesis block is on the consensus chain for any graph

and any period, Satoshi’s balance on the set of consensus blocks is 1. Then, for every period,

for any actions of miners and any graph, Satoshi’s utility is simply (1 − δ). Aggregating

Satoshi’s utility over time along any infinite history then delivers
∑∞

t=0 δ
tui(~at;Gt) = 1.

Restricting value to only those coins that lie on consensus blocks is a strong notion of

consensus. A relaxed—and smoother—construct that simplifies our subsequent analysis is

to value blocks according to the computational mining power allocated to those blocks. We

refer to such a valuation as computational power weighted preferences. We define preferences

as

ui(~a;Gt) = (1− δ)
∑

b∈B(Gt)

∑
{j 6=i:b∈C(aj ,Gt)} pj (Yi,b + yi,b)∑

{j 6=i} pj
. (7)

Under computational power weighted preferences represented by (7), miner i receives value

for any units of account held on blocks that are on the blockchain associated with some

(other) miner’s location choice aj . Again, since Satoshi’s unit of account is on every miner’s

blockchain, his or her utility is unchanged. Now, however, to the extent there is disagree-

ment, miners still obtain value from their units of account as long as some other miners

apply their mining power to these blocks. Of course, when there is full consensus in the

sense that all miners choose the same location, then there exists a single blockchain and in

this case only blocks on the blockchain receive their full value.
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3 Equilibrium Consensus Protocols

In this section, we analyze equilibrium strategies in the blockchain model with no latency.

We first develop conditions under which the longest chain strategy fails to be an equilibrium

in the blockchain. We then show how the longest chain strategy may be modified to deliver

both consensus and permanence of the blockchain for a wider range of parameters improving

its security and resilience.

3.1 Longest Chain Equilibria

Consider first Bitcoin’s proposed equilibrium strategy: the longest chain rule (Nakamoto

(2008)). The gist of the longest chain rule is that miners choose the block that defines

the longest chain as the predecessor for her potential block. This is a simple coordination

mechanism in that it depends only on the current graph Gt.

To ease notation, let

BLC(HG
t ) = argmax

b∈Gt
#C(b,Gt) (8)

denote the set of blocks in the graph in (public) history HG
t such that the chain to b has

the largest number of blocks. In our model, we may represent the longest chain rule as the

strategy satisfying

σLCi (H i
t) = BLC(HG

t ) (9)

along with a tie-breaking rule in case the graph features multiple longest chains so that

BLC(HG
t ) is not a singleton. For simplicity, suppose the tie-breaking rule is that all miners

choose each block in BLC(HG
t ) with equal probability.

We now argue that under a restriction that all transactions are positive, the longest chain

rule is a Nash equilibrium. To prove this result, we show that no one-shot deviations are

profitable along the equilibrium path where all other miners play the longest chain rule.

Notice that along the equilibrium path associated with the longest chain rule, in each period,

the graph takes the form of a single chain.

To see why along such a path no one-shot deviations are profitable, first note that it is

sufficient to restrict attention to one-shot deviations that mine the next-to-last block on
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the chain. For any other block, if the miner successfully adds her block and then reverts

to the equilibrium strategy, then she immediately abandons her block mined away from

the longest chain and forgoes the opportunity to have earned the rewards and transactions

associated with mining that block to the longest chain.

Consider then the period t tradeoff for miner i of appending her block to the current longest

chain—denote the block at the end of the existing chain b∗—as opposed to appending her

block to the block that precedes b∗. In Appendix A, we show that the net benefit of choosing

the longest chain over the preceding block satisfies

piδ

2
(Yi,b∗ + yi,b∗) +

piδ

2
(Yi,bi,t + ȳ). (10)

The net benefit (10) of following the equilibrium over a one-shot deviation follows from

thinking through the outcome should miner i successfully appends her block away from the

last block in the current chain. Such a successful deviation the resulting graph features

a fork where in the subsequent period, there are two terminal blocks each with the same

chain length. The block which was the unique longest chain block in period t is b∗, and

the additional longest chain block in period t+ 1 includes the block added by miner i, bi,t.

Following this graph, all miners mix between the two forks. Should all miners randomly

select miner i’s fork, then miner i forgoes the value she had on the previous longest block

(Yi,b∗ + yi,b∗). Moreover, should all miner’s randomly select the original longest chain, then

miner i forgoes her transactions in her fork (Yi,bi,t + ȳ). The probability of these outcomes

are pi/2.

It follows immediately from (10) that as long as Yi,b ≥ 0 for all blocks b, then there exist

no profitable one-shot deviations from the equilibrium path. We summarize this result in

the following proposition.

Proposition 1 (Longest Chain Rule is a Nash Equilibrium): Suppose Yi,b ≥ 0 for all b. Then

the longest chain rule is a Nash equilibrium.

We now emphasize two limitations associated with the longest chain rule strategy. First,

the proposed equilibrium strategy may fail to attain consensus following “small” deviations

from the equilibrium path. Specifically, we develop conditions for longest chain to be a

public perfect equilibrium and show that these conditions are easily violated. Second,

limiting a blockchain to only feature mining rewards or positive transaction data is a severe

restriction. In practice, miners (and other users) may wish to spend their mining rewards

and or receive units of account for providing off-line goods and services. Proposition 1 also
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immediately reveals that this equilibrium may fail to even be a Nash equilibrium when

transactions may be negative. With negative transaction data, miners may have incentives

to deviate from the Nash equilibrium to omit negative transactions from the blockchain and

in this sense the longest chain strategy may fail to attain permanence. Considering both

of these limitations in turn provides insights into what equilibrium strategies are likely to

attain both consensus and permanence.

3.2 Approval Weighting and Perfect Consensus

We first proceed by obtaining conditions such that the longest chain rule is a Perfect Public

equilibrium. These conditions shed light on whether the longest chain rule is likely to yield

consensus in practice as the data generating process for blockchains are likely to induce

forks. We therefore examine conditions under which no profitable one-shot deviations exist

from any possible graph of data.

As with studying Nash equilibrium, the only additional relevant (one-shot) deviations are

those from a graph which already features at least two equal length longest chains or those

which feature at least at least one fork that is at most one block shorter than the longest

chain. We argue that the former—incentives to abide the proposed equilibrium with two

(or more) equal length chains—requires a tie-breaking rule which calls on miners to choose

their most preferred fork. We then show that the latter—incentives to mine the longest

chain instead of the end of a shorter fork—imposes a set of restrictions of transactions and

mining power.

The necessary tie-breaking rule is intuitive. One miner’s location decision does not influence

her static payoffs from the graph. However, starting from a graph with multiple longest

chains, if the miner has strictly higher transaction data on one of the longest chains, than by

mining in that location she strictly increases the likelihood that her preferred chain becomes

the consensus chain the in next period. Hence, the only tie-breaking rule that is immune

to one-shot deviations is the rule that prescribes miners choose the block on their most

preferred longest chain. We define the longest chain rule accounting for such a tie-breaking

rule as

σLCi (H i
t) = argmax

b∈BLC(HG
t )

∑
b′∈C(b,Gt)

(Yi,b + yi,b). (11)

Under the tie-breaking rule implied by (11) and the assumption that transaction data is

positive (Yi,b ≥ 0), the only one-shot deviations that could be profitable for miners are those
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that occur when the graph features a fork whose length is exactly 1 less than the length of

the longest blockchain. For such graphs, there is a unique longest chain where BLC(HG
t ) is

a singleton.

In any period t for any such graph, it is then useful to define the weight of miners who

would like to see a given block bt added to a block at the end of a fork shorter than the

longest chain, b. These are miners for whom if there were in period t+ 1 a tie between the

longest chain in period t and this other chain, they would prefer the new chain. We denote

this weight W (bt, b, Gt) and it satisfies

W (bt, b;Gt) =
∑
j

pj1

 ∑
b′∈C(b,Gt)

(Yj,b′ + yj,b′) + Yj,bt + yj,bt >
∑

b′∈C(BLC(HG
t ),Gt)

(Yj,b′ + yj,b′)

 .

(12)

Proposition 2 (Longest Chain Rule is a Perfect Public Equilibrium): Suppose for all blocks

Yi,b ≥ 0. The longest chain rule is a perfect public equilibrium if for every graph Gt and for

every block b ∈ {b′ : #C(b′, Gt) = #C(BLC(HG
t ), Gt)− 1}, ∀i:

Yi,bi,t + ȳ

≥
(

(1− δ)W (bi,t, b;Gt)− pi
1− pi

+ δW (bi,t, b;Gt)

)(Yi,bi,t + ȳ) +
∑

b′∈C(b,Gt)

(Yi,b′ + yi,b′)−
∑

b′∈C(BLC(HG
t ),Gt)

(Yi,b′ + yi,b′)

 .

(13)

The set of conditions represented by (13) ensures that miners prefer to attempt to add

their block to the longest chain for any graph. One interpretation of these conditions is to

consider a thought experiment where miner i may add one block bi,t to the graph for sure in

period t. If she adds her block to the current longest chain, that chain remains the consensus

chain the subsequent period and miner i earns Yi,bi,t + ȳ (in perpetuity) with probability 1.

If instead she adds her block to a fork of shorter length, then she earns rewards only if her

fork becomes the longest chain. The first term represents the chance her fork becomes the

longest chain (after inducing a tie in period t+ 1). When this event happens, she earns her

the transaction value associated with her block, bi,t, the value of transactions in any block

on the location she chose in period t (b), and she forgoes any value on the longest chain

from period t (transactions on the chain C(BLC(HG
t ), Gt).

To visualize the constraints that arise from (13), consider the graph displayed in Figure 1.

The figure shows an example of the graph in period t. The graph exhibits a fork where
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a parent block, bR has two subsequent edges, one leading to block bl1 and one leading to

block bf1 . Since arg max #C(b,Gt) = bl2 , the longest chain strategy calls for all miners to

choose location bl2 . Suppose now that miner 1 has earned the mining rewards in block bf1
but miners 2 and 3 have the mining rewards on blocks bl1 and bl2 respectively. Consider the

net benefit to miner 1 of deviating from longest chain and choosing block bf1 . Suppose for

this example there are no transaction data so Yi,b = 0 and the chain only features mining

rewards, yi,b.

bR bl1 bl2

bf1

y2,bl1 > 0 y3,bl2 > 0

y1,bf1 > 0

Figure 1: An illustration of incentives to deviate from the longest chain strategy.

Given the mining rewards illustrated in Figure 1, the weight of miners who would like to

see fork bf1 extended is simply p1. Hence, condition (13) requires ȳ ≥ δp12ȳ or p1 ≤ 1/(2δ).

In other words, should forks appear, if miner 1 has too much weight (say if δ ≈ 1 and

p1 > 0.5) than she can direct consensus to her most preferred chain. And, when her most

preferred chain does not coincide with the longest chain, she has incentives to deviate from

the longest chain.

More generally, we argue that Proposition 2 likely imposes stringent limits on the distri-

bution of mining power and these limits are likely to be violated (or provide miners with

incentive to acquire mining power such that they are violated). To see these potential

constraints, consider (13) as δ → 1. In this case, (13) simplifies to

Yi,bi,t + ȳ ≥ W (bi,t, b;Gt)

1−W (bi,t, b;Gt)

 ∑
b′∈C(b,Gt)

(Yi,b′ + yi,b′)−
∑

b′∈C(BLC(HG
t ),Gt)

(Yi,b′ + yi,b′)

 .

(14)

If, for example, W (bi,t, b;Gt) = pi so that miner i is the only miner who would like to see

block bi,t added to the fork ending at block b, then (14) imposes an upper bound on pi.
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Of course, this upper bound may not suffice should other miners have value on the chain

ending at block b suggesting that (13) is likely to bind in general.

Proposition 2 reveals that even when a blockchain only features mining rewards, the longest

chain rule may not robust as an equilibrium (in the perfect public sense) to general distribu-

tions of mining power. In practice, use of Bitcoin reveals that mining power is concentrated

(see https://www.blockchain.com/en/pools). As a result, it is necessary to develop equi-

librium strategies that are robust to concentrated mining.

We now develop an equilibrium strategy we call the approval weighted chain rule that yields

the same outcomes as the longest chain rule along the equilibrium path, but provides better

incentives to miners with high degrees of mining power. In other words, we show that the

approval weighted chain strategy remains a perfect public equilibrium even when mining

power is concentrated.

The idea behind the approval weighted chain rule is require miners to coordinate their

mining effort on the chains that deliver (any) value to the group of miners with the most

mining power. We show that off the equilibrium path, this coordination device induces

miners to follow the proposed equilibrium strategy even when they have a large degree of

mining power.

We define the approval weighted chain strategy in steps. First we determine the common

part of all chains that include a terminal block in any graph. Next we divide every chain

into this common part and an idiosyncratic part. Finally we calculate the approval weight

of the idiosyncratic part of each chain as the sum of mining power of miners with positive

balances on this idiosyncratic part of the chain. We iterate on this procedure removing

terminal blocks with the lowest approval weight until a single chain remains.

We proceed by developing a set operator that refines the set of terminal to only those with

the highest approval weight recursively. Let T (Gt) ⊂ B(Gt) denote the set of terminal

blocks of the graph Gt—these are blocks with no edges leading away from the genesis block.

To build the operator, we consider first an arbitrary set of terminal blocks, S. The consensus

blocks in the set S are those which lie on every chain associated with every block in S:

C(S,Gt) =
⋂
b∈S

C(b,Gt). We define the common root of each of these chains bR(S,Gt) =

{b ∈ B(Gt)|C(b,Gt) = C(S,Gt)}. Note that by construction, for any set of blocks S, the

root bR(S,Gt) is both nonempty and a singleton block. It is of course straight-forward to
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compute each miner’s balance along the common root chain. Let

Yi,R(S,Gt) =
∑

b∈C(bR(S,Gt),Gt)

(Yi,b + yi,b) . (15)

Next, we construct the approval weight of each path leading away from the common root

block (net of the balances miners hold on the root chain)—the idiosyncratic part of each

chain—as, for each b ∈ S,

P(b, S,Gt) =
M∑
i=1

pi1

 ∑
b′∈C(b,Gt)

(
Yi,b′ + yi,b′

)
> Yi,R(S,Gt)

 . (16)

One may view the approval weight as a score for each unique branch of the blockchain

leading to a terminal node. This score adds up the mining power of those miners who

attain a positive balance on the idiosyncratic component of each branch.

We now define a set operator, T : S → S. The operator selects those blocks whose chains

have the highest approval weight:

T (S) = {b ∈ S|P (b, S,Gt) ≥ max
b′∈S

P (b′, S,Gt)}. (17)

Given the set operator, T , the approval weighted chain strategy satisfies

σAWi (Hit) = lim
k→∞

T k(T (Gt)). (18)

We now argue that the approval weighted chain strategy is an equilibrium for any distri-

bution of mining power when the blocks only contain mining rewards, or Yi,b = 0 for all

blocks b. The approval weighted chain strategy has two important properties that disin-

centivize miners from deviating from the candidate strategy. First, the mining power of

miner i is already included in the approval weight of any chain which miner i might like

to select as the consensus chain. Consequently deviating to such a location cannot change

the approval weight of the chain. Second, miner i has no incentive to deviate to any chain

where her mining power is not already included in the approval weight. As a result of these

two features, there is no self-interested deviation where miner i can induce a change in the

equilibrium behavior of all other miners which ensures the approval weighted chain strategy

is an equilibrium. We summarize this discussion in the following proposition.

Proposition 3 (Approval Weighted Chain Equilibrium): Suppose in every block Yi,b = 0 and

yi,b are positive. Then, the approval weighted chain strategy is an equilibrium.
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To illustrate why the approval weighted chain strategy is an equilibrium, consider Figure 2.

The blocks are labeled according to whether they are on the longest chain (bl1—bl4), the

initial fork (bf1—bf2) or a secondary fork (bk1). Suppose the transactions listed are the only

total transactions on each block (they include any relevant mining rewards and only those

listed are positive). For example, then, only miner 2 has a positive coin balance on block

bl1 . The approval weights associated with the chains to the terminal blocks are given by

P (bk1 , T (Gt), Gt) = p1 + p2, P (bl4 , T (Gt), Gt) = p2 + p3, P (bf2 , T (Gt), Gt) = p1. (19)

bR bl1 bl2 bl3 bl4

bf1 bf2

bk1

y2,bl1 > 0 y2,bl1 > 0 y3,bl2 > 0 y3,bl3 > 0

y1,bf1 > 0 y1,bf2 > 0

y1,bk1 > 0

Figure 2: An illustration of approval weighted chain strategies.

Suppose now that p1 > p2 > p3. Then, the approval weighted chain strategy calls for all

miners to mine bk1—and note this is not the longest chain. Consider next the interesting

case in which Y1,bf1 + Y1,bf2 > Y1,bk1 so that miner 1 has larger balances on the chain to bf2
than on the chain to bk1 . Here, miner 1 might have an incentive to choose location bf2 in

the hopes of enlarging her coin balances on the consensus chain. But doing so would not

cause the approval weight of any chain through bf2 to change and therefore miner 1 has no

ability to induce a switch in behavior by miners 2 and 3.

Notice that in equilibrium, since miners have no incentives to deviate from the proposed

strategy, there would no forks. As a result, the approval weighted chain resembles the

longest chain since all miners mine a single long chain. Any differences between the approval
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weighted strategy and the longest chain strategy appear only off the equilibrium path and

these differences are important in sustaining equilibrium behavior.

We argue that including these transactions by allowing Yi,b > 0 is problematic for both

longest chain and approval weighted strategies. To see why even restricting attention to

Yi,b > 0 may be problematic, consider again the example in Figure 2. Suppose miner 3 has

a block with transactions Yb that satisfy Y1,b > 0. The approval weighted strategy calls

for her to append her block to block bk1 . However, by appending her block to block bl4 ,

she may be able to induce a switch in the behavior of miner 1. The reason is that if she

successfully adds her block to bl4 , then the resulting approval weight of the chain through

block bl4 would be p1 + p2 + p3. In a sense, miner 3 is “bribing” miner 1 to join her block

which is valuable for miner 3 because it allows her to capture the utility associated with her

mining rewards in blocks bl3 and bl4 . For this reason, we pursue a new type of equilibrium

strategy which is robust to more general transaction data.

3.3 Checkpoint Strategies

We now consider equilibrium strategies that are robust to positive and negative transaction

data. We show that a modification of the approval weighted chain strategy that introduces

a form of history dependence is an equilibrium when the blockchain features transaction

data. We also modify our preferences to capture the idea that miners receive flow utility

associated with spend transactions but that those who deliver the real goods and services

associated with this flow only deliver this value once they are confident the spend transaction

cannot be removed. The resulting settlement lag, which is a feature of existing blockchains

plays a key role in disciplining double spend behavior.

Double Spending. To motivate this analysis, first note that one may interpret our pre-

vious restriction that the blockchain only represents positive transaction data is that the

blockchain data feature only “earnings” of units of account but no “spending.” For many

blockchains, of course, it is natural to think that miners accumulate balances of the unit of

account and then spend them—elements of the transaction data satisfy Yi,b < 0—for real-

valued goods and services. Spending, the transfer of the unit of account between miners

and/or others, can alter incentives. A miner who has a “spend” transaction in block b,

might have a preference for that block not to be part of the future consensus chain which,

in principle, would allow the miner to spend that unit of account once again.
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The incentive to change or un-do past spending is called “double spending” (a term coined

in Brands (1993)) and is a central concern of the Bitcoin protocol of Nakamoto (2008).

Double spending, in old-school banking, is very similar to bouncing a check. Satoshi buys

groceries and pays with a check. Usually, the grocery store “cashes” the check via a deposit

and the bank transfers money from Satoshi’s account to the grocery store. However, Satoshi

can bounce the check by withdrawing his funds after buying the groceries but before the

check is cashed. He then has groceries and the cash he can use to spend again.

On a blockchain, the analogous fraud can happen. See Figure 3. Think of a miner, Satoshi

(m), who owns Bitcoins in two accounts with public keys km and k′m. Satoshi transfers his

Bitcoin from account km to a grocery store in exchange for groceries (and in particular,

value not represented on the blockchain). The transaction is broadcast and eventually ends

up in a block. For example, suppose the transaction is part of block bt+1. Notice block bt+1

is chained to bt and has subsequent block bt+2. Satoshi need not be the creator of any of

these blocks. Now, if Satoshi’s transaction is large, she has an incentive to focus her mining

effort on attaching to block bt (rather than the longer chain defined by bt+2). If Satoshi

mines a new version of bt+1, call it b′t+1 and other blocks follow (by the same miner or by

others), then block bt+1 is no longer on the consensus chain. In that case, transactions listed

in block bt+1 “didn’t happen.”

Under Bitcoin’s current protocol, transactions in abandoned blocks simply re-enter the pool

of transactions and eventually are included in a future block. All this would be innocuous if

the original transaction simply ends up in a later block. However, in b′t+1 miner m includes

a transaction moving all Bitcoin from km to k′m. The transaction involving the grocery

store and km is no longer valid—the account has “Non-Sufficient Funds.” Satoshi has the

groceries (real goods) and the Bitcoin in k′m. The anonymous structure of Bitcoin can mask

the fact that Satoshi also owns km and k′m. The reward for this “double spend” attack is

higher the higher is the real value of Bitcoin (more real goods received).4 Budish (2018)

uses this observation to conclude that there is an upper bound on the value of Bitcoin and

concludes, in part that Bitcoin is useful only for small-value transactions.

Our model admits double spends if we consider negative transactions on the blockchain.

Consider, for example, Figure 3. The top chain, blocks bR, bl1 , bl2 , is the status quo and

features a negative transaction for miner i in block bl1 . Given a new block of transactions

bf1 , the longest chain strategy calls for miner i to choose location bl2—the longest (or only)

chain. However, miner i now has an incentive to choose block bR, a block before the negative

4The incentive to double spend in this example also depends on the other transactions and mining rewards
involving m on blocks bt+1 and bt+2.
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transaction appears in the blockchain. Should she mine successfully at this location, she

creates a fork. If she is able to mine enough consecutive blocks before the other miners add

to bl2 then upon completion of block bf3 , she has created a new longest chain. At this point,

longest chain calls for all miners to mine block bf3 in which case it becomes feasible for

miner i to enter a negative transaction once again Yi,bf4 < 0. This new negative transaction

is her double spend.

bR bl1 bl2bR bl1 bl2

bf1 bf2 bf3 bf4

Yi,bl1 < 0

Yi,bf1 = 0 Yi,bf2 = 0 Yi,bf3 = 0 Yi,bf4 < 0

Figure 3: An illustration of a double spend under longest chain strategies.

There are two practical concerns with double spending that limit the usefulness of incentives

provided by the longest chain strategy. First, the value of a double spend, Y can be large

in absolute value. There is no practical bound on the value of a Bitcoin transaction. And

it is possible Y could represent the benefit of many transactions across several blocks.

More importantly, and as is central to Budish (2018), the economic value of transactions

is endogenous. As the value of Bitcoin rises, the incentive to attempt a double spend

increases. Second, mining power is not equal and can be large, pm, so we cannot rely on

pi—and, therefore, the likelihood that miner i is able to mine consecutive blocks before

others—being small. The commonly described “51% attack” occurs when a miner with

pm > 0.5 can generate blocks faster (i.e., will generate a longer chain eventually) then all

the other miners.

When we allow for double spend opportunities—when transaction data may be negative—

the approval weighted chain strategy mail fail to be an equilibrium in a manner distinct

from when the transaction data is positive. Consider the same example from Figure 2.

Suppose we introduce a fourth miner, i = 4. If miner 4 has no transaction balances on

any chain as in the graph in Figure 2, then miner 4 is indifferent between following the

recommended location from the approval weighted chain strategy and any other location

implying that the approval weighted chain strategy is an equilibrium. Suppose instead that
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miner 4 has a negative transaction balance in block bl1 . This new version of the graph is

displayed in Figure 4.

bR bl1 bl2 bl3 bl4

bf1 bf2

bk1

Y2,bl1 > 0
Y4,bl1

< 0 Y2,bl1 > 0 Y3,bl2 > 0 Y3,bl3 > 0

Y1,bf1 > 0 Y1,bf2 > 0

Y1,bk1 > 0

Figure 4: An illustration of a double spend under approval weighted chain strategies.

Suppose that p1 > p4 > p2 > p3. Given our definition of approval weights, no approval

weights change with the introduction of a negative transaction for miner 4 in block bl1 . As

before, the approval weighted chain strategy calls for all miners to choose location bk1 .

However, if miner 4 should add any block to the graph, because she will earn the mining

reward y4,b, her weight would be then added in the subsequent period. It is possible that

miner 4’s decision is pivotal in the sense that she is able to change the rankings of the

approval weights of each possible chain. In this case, miner 4 has an incentive to choose

location bf2 . If she successfully adds her block, call it bf3 at this location then the blockchain

leading from bR to bf3 would then have the highest approval weight, equal to p1 +p4. Miner

4 benefits from such a strategy because she induces a switch in consensus from a chain with

a negative transaction Y4,bl1 to a chain with a positive transaction y4,bf3 .

Checkpoints. Our proposed resolution to miner’s incentives to omit data from the chain

is to introduce checkpoints, a form of history dependence, into the equilibrium strategies.

The basic idea is that for every graph, agents determine a reference block, or checkpoint
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and restrict approval weight to locations on the subgraph that follows the checkpoint. To

see why such checkpoints may be useful in disincentivizing double-spend behavior, consider

again the graph in Figure 4. Suppose for this graph, the checkpoint is block bl2 . Using

this checkpoint, the only terminal nodes with positive approval weight are bk1 and bl4 .

While miner 4 would still like to induce all other miners to switch to a fork following bf2 ,

because this fork is not on the subgraph following the checkpoint, she recognizes that her

behavior cannot induce other miners to switch to any chain following bf1 or bf2 . As a result,

she cannot benefit from deviating and choosing location bf2 as under standard approval

weighting. In this manner, checkpoints can eliminate incentives of miners to choose their

locations as a way of proposing new blockchain paths that omit certain transactional data

which they do not like.

The above description of double spends in our setting omits a critical aspect of double

spends in existing blockchains, namely, the exchange of real valued goods or services—

offline trade—associated with spend transactions. We introduce this idea now by modifying

preferences in our model. To do so, we assume that traders receive a flow payoff associ-

ated with a spend transaction of 1 unit of account on the blockchain equal to the present

discounted value of forgoing 1 unit of account on the blockchain in perpetuity. The idea is

that a spend transaction (in a blockchain with consensus) is permanently on the record and

therefore impacts the miner’s utility in perpetuity. However, the benefit of a spend trans-

action is a (nearly) immediate gain in resources. If priced fairly, the gain from spending

should roughly equal the cost. Critically, we also assume that miners receive the flow utility

associated with spend transactions only when the spend transaction is immutable. In other

words, the receivers of the spend transaction would only remit real goods and services once

they are (sufficiently) confident that the transactions cannot be removed. If the checkpoint

strategy we construct is an equilibrium, then as soon as a block with a spend transaction

becomes a checkpoint, all users or miners will know that the spend transaction will not be

omitted from future blockchains.

Checkpoint Preferences and Strategies. We now define a strategies and preferences

with checkpoints. We proceed in two steps. First, we define checkpoints: for any public

history HGt , the checkpoint, BCP (HG
t ) selects a specific block on the current graph, Gt.

Strategies are unchanged with the exception that checkpoints are specified as part of the

equilibrium. One way to use checkpoints to rule out double spend behavior is to simply

impose that the last block added is the new checkpoint. In essence, this proposal rules out

all possible forks in the blockchain. If no forks are permitted, then it is impossible for any
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one agent to omit data from the blockchain. We find this resolution to the double spend

problem implausible for real-world implementations because it in reality, some forks are

non-malicious and occur due to latency—within the unit of time agents observe updates

to the blockchain, it is possible to observe multiple blocks being added in the same period.

We therefore proceed by assuming such strategies are infeasible and looking for checkpoint

strategies that admit the possibility of forks.

Assumption 1: For any checkpoint rule, for all public histories, HG
t , BCP (HG

t ) 6∈ T (Gt).

Assumption 1 states that checkpoint rules may not select a terminal block in the graph for

any history. Such a restriction ensures that forks of at least length one are always feasible.

Next, we re-define preferences to accommodate surplus flow utility associated with spend

transactions.

Let λ(b, Yi,b, H
G
t ) denote an indicator function which takes the value of 1 if Yi,b < 0, b ∈

C(BCP (HG
t ), Gt), b 6∈ C(BCP (HG

t−1), Gt−1. In words, the indicator λ(b, Yi,b, H
G
t ) is 1 when

a block features a negative transaction and period t is the first period that block b is

on the chain to the checkpoint block. Recall that the period when λ(b, Yi,b, H
G
t ) = 1 is

the first period when miners know for sure that spend transactions will not be omitted

from blockchain in any future period. Given λ, itself a function of the checkpoint strategy

BCP (HG
t ), preferences satisfy

ui(~a;HG
t ) =

∑
b∈B(Gt)

∑
{j 6=i:b∈C(aj ,Gt)} pj

[
(1− δ) (Yi,b + yi,b)− 1

δYi,bλ(b, Yi,b, H
G
t )
]∑

{j 6=i} pj
. (20)

Note that in this formulation, preferences are function of the current actions of miners and

the public history of the graph (as opposed to just the current state of the graph). To

illustrate the changes we have made to preferences, consider again the case where Satoshi

has one unit of account on the genesis block and in every period there is a single chain in

the graph. If no other block contains a transaction for Satoshi, then her lifetime utility will

continue to be 1.

Consider instead how Satoshi’s payoffs change if there is a transaction equal to -1 in the

second block. And, suppose for any such graph with a single chain, the checkpoint rule

satisfies BCP (HG
t ) = T (Gt−1). That is, the checkpoint is the block before the terminal

block. In period 2, Satoshi’s utility over the graph is 0 because her balance aggregated

over blocks is zero. Her utility over the graph in all future periods will continue to be zero.
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However, in period 3, the second block in the chain becomes the checkpoint block under the

rule above. As a result, her spend transaction in the second block vests and Satoshi earns

the flow equal to 1/δ. Aggregating and discounting these payoffs from the perspective of

period 0, her lifetime utility is 1. Of course, once Satoshi receives the flow utility in period

3, she would benefit from the construction of an alternative path through the blockchain

where her total balance on the the chain is 1 instead of 0.

An Equilibrium Checkpoint Strategy. To specify an equilibrium checkpoint strategy,

it is helpful to introduce two pieces of notation. First, let J : B(G) × G → G represent the

subgraph associated with some root block b′ ∈ B(Gt). Then, given block, b′,

J(b′, Gt) = {b ∈ B(Gt)|#C(b,Gt) ≥ #C(b′, Gt) and b′ ∈ C(b,Gt)}. (21)

Second, let M : B(Gt)×Gt → B(Gt) denote the parent of a block. That is,

M(b,Gt) = {b′ : b′ ∈ C(b,Gt) and #C(b′, Gt) = #C(b,Gt)− 1}. (22)

Next, we adjust the scoring function (16) to account for off-path spending as follows. For

any b ∈ S,

P(b, S,Gt) =
M∑
i=1

pi1

 ∑
b′∈C(b,Gt)

(
Yi,b′ + yi,b′

)
−
Yi,b′

δ
1
{
Yi,b′ < 0

}
(1−Πt

τ=0λ(b′, Yi,b′ , H
G
τ )) > Yi,R(S,Gt)

 .

(23)

The additional term in the scoring function adds a miner’s weight if they have a negative

spend transaction that has not yet paid out its surplus flow. We now define the checkpoint

blocks according to

BCP (HG
t ) = M

[
lim
k→∞

T k
(
T
[
J(BCP (HG

t−1), Gt)
])
, Gt

]
(24)

In any period, to find the checkpoint block, we begin by looking for the terminal blocks

on the subgraph that has the checkpoint block from last period as the common root

(T
[
J(BCP (HG

t−1), Gt)
]
). We choose the new checkpoint to be the parent block of the

terminal block among these with the highest approval weight.

To illustrate the checkpoint selection, consider once again Figure 4. Suppose that up to bR

there had been no forks in the chain so the parent of bR is the initial checkpoint. Then,

Table 1 illustrates a possible sequence of added blocks and the resultant checkpoints (again,

assuming that p1 > p4 > p2 > p3.
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Period t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7

Block Added bl1 bf1 bl2 bk1 bl3 bf2 bl4
Checkpoint bR bR bR bl2 bl2 bl2 bl2

Table 1: A Sequence of Blocks and Checkpoints

Given the checkpoint rule, the checkpoint strategy satisfies

σCPi (H i
t) = lim

k→∞
T k(T (J(BCP (HG

t ), Gt)). (25)

Since the checkpoint strategy has the same features as the approval weight strategy (but

limited to the subgraph following the checkpoint), it necessarily provides the same incentives

for consensus as the more general approval weight strategy. The key feature of this new

equilibrium is that no miner has an incentive to deviate when they have spend transactions

that are “ahead of” the checkpoint. Blocks “ahead of” the checkpoint are blocks whose

parent (or whose parent’s parent, etc) is the checkpoint block.

Notice, in such cases, if the spend is on the chain with the highest approval weight, miners

expect to receive a net zero flow associated with their spend and their surplus utility if

the spend transaction ends up on or behind the checkpoint in the next period. Should

they deviate in a manner that would omit their spend transaction from the chain with the

highest approval weight, then they earn zero utility (in expectation) associated with their

spend transaction and their surplus utility. Consequently, their only concern is the mining

reward which they expect to earn on any node that has or will have the highest approval

weight. Of course, once the spend transaction vests, miners would like to deviate and mine

blocks behind the checkpoint which omit their spend transaction, but they recognize that

all such blocks will be ignored by all other miners.

There remains one potential problem with the checkpoint strategy. When a graph in a

given period features a fork on the checkpoint block, given arbitrary, positive transaction

data, miners may have incentives to deviate from the checkpoint strategy if they are able to

“bribe” large miners to follow them. A natural conjecture is that recognizing this limitation,

miners may choose to not submit or accept transaction data when checkpoints feature forks

as they understand that this can incentivize deviations by other miners. If the transactions

following a fork only feature mining rewards, then such incentives to deviate are not present

and will induce consensus among miners. This consensus will cause an update to the graph

and an update to the checkpoint. When the checkpoint updates, the new checkpoint will
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not feature a fork and will tolerate positive and negative transaction data without providing

incentives to deviate. We therefore argue that the checkpoint strategy is an equilibrium on a

subset of all possible graphs that have the property that in any period in which a checkpoint

has multiple child-blocks, the transaction data are all zero.

We restrict transactions in the following manner.

Assumption 2: For any public history HG
t , if the cardinality of the terminal blocks in the

subgraph with the root block equal to the checkpoint is (weakly) larger than 2, then each

miner receives transactions ~Ybi = 0. Otherwise, transactions are unrestricted.

Proposition 4 (Checkpoint Equilibrium): Under assumption 2, the checkpoint strategy is an

equilibrium.

4 Conclusion

Allowing everyone write-access to a database—particularly a database of financial transactions—

sounds unworkable. A novel aspect of blockchain technology is to facilitate this decentralized

database system by bundling transactions in blocks and then linking the blocks to create

a tree. The technological requirement that transactions in a new block can only reference

transactions in blocks along the chain from the new block back to the genesis block creates

a coherent database of an ordered list of transactions. In this paper, we have focused on

two incentive components of this system: consensus and permanence. Consensus is the

equilibrium property that all miners choose the same block (hence chain) as a predecessor

for their new block of transactions. Permanence is the equilibrium property that miners

do not choose “old” blocks as predecessors that would create an alternate chain to elim-

inate blocks previously on the consensus chain. Both these properties are necessary if a

blockchain technology is to be viable.

The perfect public equilibrium we propose is similar to the longest chain mechanism cur-

rently implemented in many blockchain instances, like Bitcoin. First, we adapted the co-

ordination consensus mechanism to allow for non-equal mining power. Second, we add a

“checkpoint” that, in equilibrium, limits the set of potential predecessor blocks to recent

added blocks. In a financial setting such as Bitcoin, the checkpoint dovetails with a settle-

ment lag. Anyone accepting Bitcoin will sensibly wait until the transaction is in a block

and behind the checkpoint before delivering the off-blockchain physical good. Effectively,

the norm (not a formal rule) with Bitcoin is that a seller receiving Bitcoin wait at least six
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blocks (about one hour) before delivering the non-blockchain goods. We have shown how

this norm ought to be linked explicitly to the consensus protocol.

Implementing a checkpoint equilibrium raises two interesting issues. The first is how to

publicly track the checkpoint. Part of the attractiveness of the longest chain rule in Bitcoin,

see equations (8) and (9), is that it depends only on the current graph Gt and nothing from

the history. This simplifies implementation since code need only download the current

blockchain and calculate the longest chain. Our checkpoint strategy, in equation (25) would

require monitoring the blockchain for several periods before knowing the consensus block

to choose as a predecessor. However, given a blockchain can record arbitrary data, it is

interesting to consider how the current blockchain graph could also contain the checkpoint.

The second implementation consideration of our checkpoint equilibrium is network latency.

Since the entire network of miners does not see new blocks at the same time it is possible,

in fact likely, that forks will occur. In Bitcoin, for example, it takes about 11 seconds for

all nodes to hear of a new block. Average new-block arrival time on Bitcoin is designed

to be 600 seconds. Solving a block is Poisson and so a second block will arrive before

all nodes are informed that a new block has already been solved about 1.8% of the time

(11 seconds/600 seconds ≈ 1.8%, see Decker and Wattenhofer (2013)). With a longest-

chain rule, these forks are relatively innocuous as one of the forks will (randomly with

subsequent blocks) emerge as longest. In our checkpoint equilibrium, the same will happen

as long as the checkpoint information is not latent. Effectively, this means the checkpoint

must be far enough back along the chain from new blocks. For example, the six block norm

currently used on Bitcoin is well outside uncertainty created by network latency. If however,

the checkpoint block is too close to the current block it is possible miners would disagree

about the checkpoint block causing the fork from latency to become permanent. Such

disagreement would undermine the usefulness of the blockchain. Optimizing the checkpoint

block—choosing the settlement lag—would require comparing the cost of a settlement lag

with the likelihood of a permanent fork.
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A Proofs of Propositions

A.1 Proof of Proposition 1: Longest Chain Rule is a Nash Equilibrium

Consider the longest chain strategy,

σLCi (H i
t) = arg max

b∈Gt
#C(b,Gt)

with the augmented rule that if L = arg maxb∈Gt #C(b,Gt) is not a singleton, σLCi (H i
t) =

1/#L.

Consider any history H i
t induced by the equilibrium profile σLCi . The graph in period t is a

single chain and all graphs following this history are a single chain. As a result, discounted

utility from period t on (along the equilibrium path) satisfies

Et
∞∑
τ=0

δτui(σLC , Gt+τ ) (26)

= Et
∞∑
τ=0

δτ (1− δ)

 ∑
b∈B(Gt+τ )

(Yi,b + yi,b)

 (27)

= Et
∞∑
τ=0

δτ (1− δ)

 ∑
b∈B(Gt)

(Yi,b + yi,b) +
τ∑
υ=1

∑
b∈B(Gt+υ)/B(Gt+υ−1)

(Yi,b + yi,b)

 (28)

=
∑

b∈B(Gt)

(Yi,b + yi,b) + Et
∞∑
τ=1

δτ
∑

b∈B(Gt+τ )/B(Gt+τ−1)

(Yi,b + yi,b) (29)

=
∑

b∈B(Gt)

(Yi,b + yi,b) + Et
∞∑
τ=1

δτ

pi(Yi,bi,t+τ−1
+ ȳ) +

∑
j 6=i

pjYi,bj,t+τ−1

 (30)

Consider any other strategy, σi. Suppose σi is a one shot-deviation from longest chain

rule in history HG
t . If #C(σi, Gt) < #C(σLCi , Gt) − 1, then σi cannot induce a change

in the equilibrium strategies of other miners. If miner i successfully adds her block, she

earns no utility associated with it (it has zero consensus of other miners). On net, she loses

δt+1pi(Yi,bi,t + ȳ).

If instead #C(σi, Gt) = #C(σLCi , Gt)−1, then with probability pi, when she adds her block,

there are now two terminal blocks and so all miners mine each block with probability 1/2.
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On path, her continuation utility is

∑
b∈B(Gt)

(Yi,b + yi,b) + Et
∞∑
τ=1

δτ

pi(Yi,bi,t+τ−1
+ ȳ) +

∑
j 6=i

pjYi,bj,t+τ−1

 (31)

Off-path, her utility from this deviation is∑
b∈B(Gt−1)

(Yi,b + yi,b) + (1− δ)(Yi,b∗ + yi,b∗) (32)

+ piδ

[
(1− δ)

2
(Yi,b∗ + yi,b∗) +

(1− δ)
2

(Yi,bi,t + ȳ)

]
(33)

+ piδ

1

2

∞∑
τ=1

δτEt

(1− δ)(Yi,b∗ + yi,b∗) + pi(Yi,bi,t+τ + ȳ) +
∑
j 6=i

pjYbj,t+τ

 (34)

+ piδ

1

2

∞∑
τ=1

δτEt

(1− δ)(Yi,bi,t + ȳ) + pi(Yi,bi,t+τ + ȳ) +
∑
j 6=i

pjYbj,t+τ

 (35)

+ δ
∑
j 6=i

pj

(Yi,b∗ + yi,b∗) + Yj,bj,t +

∞∑
τ=1

δτEt

Yi,b∗ + yi,b∗ + pi(Yi,bi,t+τ + ȳ) +
∑
j 6=i

pjYbj,t+τ


(36)

Line (32) represents the lifetime utility the miner receives from blocks in the graph before

the terminal block (these appear on any graph following the one-shot deviation) plus her

stage-payoff from block b∗ (where all the other miners mine in period t. Line (33) represents

her stage payoff in period t + 1 if she is successful—there are two chains of equal length

and miner’s split their mining power evenly. Line (34) is her continuation payoffs when she

successfully mines in period t and the mixing in period t+ 1 ends up on the original chain.

Line (35) is her continuation payoffs when she successfully mines in period t and the mixing

in period t+ 1 ends up on the new chain. Line (36) is her continuation payoffs when she is

not successful in period t.

Simplifying her deviation payoffs, we have

∑
b∈B(Gt−1)

(Yi,b + yi,b) + (1− δ)(Yi,b∗ + yi,b∗) + δ
∞∑
τ=1

δτEt

pi(Yi,bi,t+τ + ȳ) +
∑
j 6=i

pjYbj,t+τ


+ piδ

[
1

2
(Yi,b∗ + yi,b∗) +

1

2
(Yi,bi,t + ȳ)

]
+ δ(1− pi)(Yi,b∗ + yi,b∗) + δ

∑
j 6=i

pjYj,bj,t (37)
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Differencing (37) from (31), we have

∑
b∈B(Gt)

(Yi,b + yi,b) + Et
∞∑
τ=1

δτ

pi(Yi,bi,t+τ−1
+ ȳ) +

∑
j 6=i

pjYi,bj,t+τ−1


−

∑
b∈B(Gt−1)

(Yi,b + yi,b)− (1− δ)(Yi,b∗ + yi,b∗)− δ
∞∑
τ=1

δτEt

pi(Yi,bi,t+τ + ȳ) +
∑
j 6=i

pjYbj,t+τ


− piδ

[
1

2
(Yi,b∗ + yi,b∗) +

1

2
(Yi,bi,t + ȳ)

]
− δ(1− pi)(Yi,b∗ + yi,b∗)− δ

∑
j 6=i

pjYj,bj,t

=(Yi,b∗ + yi,b∗) + δ
[
pi(Yi,bi,t + ȳ)

]
− (1− δ)(Yi,b∗ + yi,b∗)

− piδ
[

1

2
(Yi,b∗ + yi,b∗) +

1

2
(Yi,bi,t + ȳ)

]
− δ(1− pi)(Yi,b∗ + yi,b∗)

=
piδ

2
(Yi,b∗ + yi,b∗) +

piδ

2
(Yi,bi,t + ȳ)

And this difference is positive as long as Y, y ≥ 0.

By the one-shot deviation principle (which applies since δ < 1), since there is no profitable

one-shot deviation from the proposed equilibrium path, the longest chain must be a nash

equilibrium.

A.2 Proof of Proposition 2: Longest Chain Rule is a Perfect Public Equi-
librium.

To prove this result, we first prove an intermediate lemma which shows that if longest chain

is subgame perfect, then the tie-breaking rule in case a graph exhibits a fork with at least

two equal length longest chains must call for miners to mine their most preferred block.

Lemma 5: If longest chain is a perfect public equilibrium, then for any graph Gt such that

BLC(HG
t ) = argmaxb∈Gt #C(b,Gt) is not a singleton, the longest chain rule satisfies

σLCi (H i
t) = arg max

b∈BLC(Gt)

∑
b′∈C(b,Gt)

(Yi,b′ + yi,b′). (38)

To prove the lemma, denote b∗i,t = arg maxb∈BLCt
∑

b′∈C(b,Gt)
(Yi,b′ + yi,b′). Now consider an

arbitrary deviation to b ∈ BLC
t from b∗i,t by i. The difference in following the suggested

tie-breaker and deviation payoff is

δ
(
Et[U

i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)]
)

= δpi

 ∑
b′∈C(b∗i,t,Gt)

(Yi,b′ + yi,b′)−
∑

b′∈C(b,Gt)

(Yi,b′ + yi,b′)


(39)
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Note that by definition of b∗i,t, the above difference is positive, and therefore, there is no

strictly profitable one-shot-deviation.

Conversely, should a public perfect equilibrium specify a different tie-breaking rule, then

a one shot deviation applying the rule specified in (38) immediately yields a profitable

deviation.

Using the tie breaking rule in Lemma 5, it is straightforward to develop conditions such

that longest chain is a perfect public equilibrium.

To ease notation, let b∗ = BLC(HG
t ). Along the equilibrium path, the miner earns utility

equal to

∑
b′∈C(b∗,Gt)

(Yi,b′ + yi,b′) + Et
∞∑
τ=1

δτ

pi(Yi,bi,t+τ−1
+ ȳ) +

∑
j 6=i

pjYi,bj,t+τ−1

 (40)

As with determining when the longest chain is a Nash equilibrium, the interesting one-shot

deviations to consider are those in which a miner chooses a block b such that #C(b,Gt) =

#C(b∗, Gt) − 1. In this case, the miner induces a tie in the subsequent period which may

lead other miners to follow the deviating miner’s chain as proposed by the tie-breaking rule.

Let I(bi,t, b;Gt) denote the set of miners who would choose to mine at bi,t linked to b when
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tied rather than b∗. Then, for such deviations, a miner’s expected utility satisfies

Et
∞∑
τ=t

δτ−tui(σ′, Gτ )

= (1− δ)
∑

b′∈C(b∗,Gt)

(Yi,b′ + yi,b′) + δ
∑
j 6=i

pj

 ∑
b′∈C(b∗,Gt)

(Yi,b′ + yi,b′) + (1− δ)Yi,bj,t


+ δ(1− δ)pi

W (bi,t, b;Gt)

1− pi

 ∑
b′∈C(b,Gt)

(Yi,b′ + yi,b′) + Yi,bi,t + ȳ

+

(
1− W (bi,t, b;Gt)

1− pi

) ∑
b′∈C(b∗,Gt)

(Yi,b′ + yi,b′)


+ δ2p2i

 ∑
b′∈C(b,Gt)

(Yi,b′ + yi,b′) + Yi,bi,t + EtYi,bi,t+1
+ 2ȳ


+ δ2pi

∑
j∈I(bi,t,b;Gt)

j 6=i

pj

 ∑
b′∈C(b,Gt)

(Yi,b′ + yi,b′) + Yi,bi,t + ȳ + EtYi,bj,t+1



+ δ2pi
∑

j /∈I(bi,t,b;Gt)

pj

 ∑
b′∈C(b∗,Gt)

(Yi,b′ + yi,b′) + EtYi,bj,t+1

+ δ2
∑
j 6=i

pj
(
Yi,bj,t + Et[Yi,bt+1 + yi,bt+1 ]

)

+
∞∑

τ=t+2

δτ−t(1− δ)

Et
τ∑

s=t+3

∑
b′∈B(Gs)/B(Gs−1)

(Yi,b′ + yi,b′)

 . (41)

The difference in following the longest chain versus the deviation satisfies

Et
∞∑

τ=t+1

δτ−tui(σLC , Gτ )− Et
∞∑

τ=t+1

δτ−tui(σ′, Gτ )

=

(
1− (1− δ)W (bi,t, b;Gt)

1− pi
− δ(pi +W (bi,t, b;Gt))

)
(Yi,bi,t + ȳ)

−
(

(1− δ)W (bi,t, b;Gt)

1− pi
+ δ(pi +W (bi,t, b;Gt))

) ∑
b′∈C(b,Gt)

(Yi,b′ + yi,b′)−
∑

b′∈C(b∗,Gt)

(Yi,b′ + yi,b′)


(42)

Under the conditions of the Proposition, this difference is (weakly) positive ensuring that

the longest chain strategy is a public perfect equilibrium.
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A.3 Proof of Proposition 3: Approval Weight Equilibrium

For miner i equilibrium payoff is

ui(~a,Gt) + Et[U
i
t (H

i
t , σ)]

Payoff of deviation is

ui(~a,Gt) + Et[U
i
t (H

i
t , σ
′)]

Where σ′ represents the expected set of strategies following the deviation. The differ-

ence in equilibrium versus deviation payoff, therefore, can be reduced to Et[U
i
t (H

i
t , σ)] −

Et[U
i
t (H

i
t , σ
′)].

Denote k′(b,Gt) = max{k : b ∈ T k(T (Gt))}.

There are two cases to consider:

1. To mine

b′ : b′ ∈ T (Gt), and1

 ∑
b∈C(b′,Gt)

(Yi,b + yi,b) > Yi,R(T k
′
(T (Gt)), Gt)

 = 1

In this case, if i succeeds in appending the next block, bi,t, to b′

P(b′, T k
′
(T (Gt)), Gt) = P(bi,t, T

k′(T (Gt+1)), Gt+1)

Expected utility from period t+ 1 on, along the equilibrium path
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Et
∞∑

τ=t+1

δτ−tui(σAW , Gτ )

= Et
∞∑

τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗τ ,Gτ )

(Yi,b + yi,b)


= Et

∞∑
τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) +
τ∑

s=t+1

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)


= Et

∞∑
τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + pi(Yi,bi,t + ȳ) +
∑
j 6=i

pjYi,bj,t

+

τ∑
s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)



Off-path:

Et
∞∑

τ=t+1

δτ−tui(σ′, Gτ )

= Et
∞∑

τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗τ ,Gτ )

(Yi,b + yi,b)


= Et

∞∑
τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) +
∑
j 6=i

pjYi,bj,t +

τ∑
s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)



This means that in k′th round, the approval weights have not changed, and therefore

Et[U
i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)] = δpi(Yi,bi,t + ȳ)

2. To mine

b′ : b′ ∈ T (Gt), and1

 ∑
b∈C(b′,Gt)

(Yi,b + yi,b) > Yi,R(T k
′
(T (Gt)), Gt)

 = 0

32



In this case, if i succeeds in appending the next block, bi,t, to b′

P(b′, T k
′
(T (Gt)), Gt) + pi = P(bi,t, T

k′(T (Gt+1)), Gt+1)

Now there are two cases to consider

(a)

P(bi,t, T
k′(T (Gt+1)), Gt+1) > P(b∗t , T

k′(T (Gt)), Gt)

Where b∗ = limk→∞ T
k(T (Gt)). In this case, bi,t = limk→∞ T

k(T (Gt+1), Gt+1).

Therefore expected utility from period t+ 1 on, along the equilibrium path is

Et
∞∑

τ=t+1

δτ−tui(σAW , Gτ )

= Et
∞∑

τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗τ ,Gτ )

(Yi,b + yi,b)


= Et

∞∑
τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) +
τ∑

s=t+1

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)


= Et

∞∑
τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + pi(Yi,bi,t + ȳ) +
∑
j 6=i

pjYi,bj,t

+
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)



Off-path:
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Et
∞∑

τ=t+1

δτ−tui(σ′, Gτ )

= Et
∞∑

τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗τ ,Gτ )

(Yi,b + yi,b)


= Et

∞∑
τ=t+1

δτ−t(1− δ)

pi
 ∑
b∈C(b′,Gt)

(Yi,b + yi,b) + Yi,bi,t + ȳ


+
∑
j 6=i

pj

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + Yi,bj,t


+

τ∑
s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)



And

Et[U
i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)] = δpi

 ∑
b∈C(b∗)

(Yi,b + yi,b)−
∑

b∈C(b′)

(Yi,b + yi,b)


Due to the assumption 1

{∑
b∈C(b′,Gt)

(Yi,b + yi,b) > Yi,R(T k
′
(T (Gt)), Gt)

}
= 0,

the above difference is positive.

(b)

P(bi,t, T
k′(T (Gt+1)), Gt+1) < P(b∗t , T

k′(T (Gt)), Gt)

In this case, since approval weights in the k′th round do not change, we have the

off-path expected payoff:

Et
∞∑

τ=t+1

δτ−tui(σ′, Gτ )

= Et
∞∑

τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗τ ,Gτ )

(Yi,b + yi,b)


= Et

∞∑
τ=t+1

δτ−t(1− δ)

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) +
∑
j 6=i

pjYi,bj,t +
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)


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And

Et[U
i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)] = δpi

(
Yi,bi,t + ȳ

)
A.4 Proof of Proposition 4: Checkpoint Equilibrium

As before, the difference between equilibrium and deviation payoff for all miners is

Et[U
i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)]

Where σ′ represents the expected set of strategies following the deviation.

Next thing to note is that following the equilibrium strategies at time t, i.e. mining b∗t ,

results in BCP (HG
t+1) = b∗. While any deviation, i.e. mining b′, can be weakly (or possibly

strictly) profitable if and only if it results in BCP (HG
t+1) = b′.

Denote k′(b, BCP
t , Gt) = max{k : b ∈ T k(T (J(BCP (HG

t ), Gt)))}.

There are two cases of deviation to consider:

• To mine

b′ : b′ ∈ T (J(BCP (HG
t ), Gt)),

such that∑
b∈C(b′,Gt)

(Yi,b + yi,b)−
Yi,b
δ
1 {Yi,b < 0} (1−Πt

τ=0λ(b, Yi,b, H
G
τ )) > Yi,R(T k

′
(T (J(BCP (HG

t ), Gt))), Gt)

In this case, if i succeeds in appending the next block, bi,t, to b′, the score for bi,t will

be positive if and only if BCP
t+1 = b′, as stated previously. However since

P(b′, T k
′
(T (J(BCP (HG

t ), Gt))), J(BCP (HG
t ), Gt))

= P(bi,t, T
k′(T (J(BCP (HG

t ), Gt+1))), J(BCP (HG
t ), Gt+1))

we can conclude that

P(b∗t , T
k′(T (J(BCP (HG

t ), Gt+1))), J(BCP (HG
t ), Gt+1))

> P(bi,t, T
k′(T (J(BCP (HG

t ), Gt+1))), J(BCP (HG
t+1), Gt+1))
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This means that approval weight of C(bi,t, Gt+1) will be equal to zero, due toBCP (HG
t+1) /∈

C(bi,t, Gt+1). Therefore expected utility from period t + 1 on, along the equilibrium

path

Et
∞∑

τ=t+1

δτ−tui(σCP , Gτ )

= Et
∞∑

τ=t+1

δτ−t

 ∑
b∈C(b∗τ ,Gτ )

(1− δ)(Yi,b + yi,b)−
1

δ
Yi,bλ(b, Yi,b, H

G
τ )


= Et

∞∑
τ=t+1

δτ−t

(1− δ)
∑

b∈C(b∗,Gt)

(Yi,b + yi,b)

+(1− δ)
τ∑

s=t+1

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−2λ(bτ−2, Yi,bτ−2 , H

G
τ )


= δ

∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + δEt(Yi,bt + yi,bt)− Yi,b∗λ(b∗, Yi,b∗ , H
G
t+1)

+ Et
∞∑

τ=t+2

(1− δ)
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−1, Yi,bτ−1 , H

G
τ )


= δ

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + pi(Yi,bi,t + ȳ) +
∑
j 6=i

pjYi,bj,t

− Yi,b∗λ(b∗, Yi,b∗ , H
G
t+1)

+ Et
∞∑

τ=t+2

δτ−t

(1− δ)
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−1, Yi,bτ−1 , H

G
τ )



Off-path:
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Et
∞∑

τ=t+1

δτ−tui(σ′, Gτ )

= Et
∞∑

τ=t+1

δτ−t

 ∑
b∈C(b∗τ ,Gτ )

(1− δ)(Yi,b + yi,b)−
1

δ
Yi,bλ(b, Yi,b, H

G
τ )


=

∞∑
τ=t+1

δτ−t

(1− δ)
∑

b∈C(b∗,Gt)

(Yi,b + yi,b)

+Et

(1− δ)
τ∑

s=t+1

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−2, Yi,bτ−2 , H

G
τ )


= δ

∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + δ
∑
j 6=i

pjYi,bj,t − Yi,b∗λ(b∗, Yi,b∗ , H
G
t+1)

+ Et
∞∑

τ=t+2

δτ−t

(1− δ)
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−1, Yi,bτ−1 , H

G
τ )



And

Et[U
i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)] = piδ(Yi,bi,t + ȳ)

• To mine

b′ : b′ ∈ T (J(BCP (HG
t ), Gt)),

such that∑
b∈C(b′,Gt)

(Yi,b + yi,b)−
Yi,b
δ
1 {Yi,b < 0} (1−Πt

τ=0λ(b, Yi,b, H
G
τ )) ≤ Yi,R(T k

′
(T (J(BCP (HG

t ), Gt))), Gt)

In this case, if i succeeds in appending the next block, bi,t, to b′, again, the score for

bi,t will be positive if and only if BCP
t+1 = b′.

Therefore, there are two cases to consider

1.

BCP
t+1 = b′
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This corresponds to

P(b′, T k
′
(T (J(BCP (HG

t ), Gt))), J(BCP (HG
t ), Gt)) + pi

= P(bi,t, T
k′(T (J(BCP (HG

t ), Gt+1))), J(BCP (HG
t ), Gt+1))

> P(b∗t , T
k′(T (J(BCP (HG

t ), Gt+1))), J(BCP (HG
t ), Gt+1))

In this case, bi,t = limk→∞ T
k(T (J(BCP (HG

t+1), Gt+1))). Therefore expected

utility from period t+ 1 on, along the equilibrium path

Et
∞∑

τ=t+1

δτ−tui(σCP , Gτ )

= Et
∞∑

τ=t+1

δτ−t

 ∑
b∈C(b∗τ ,Gτ )

(1− δ)(Yi,b + yi,b)−
1

δ
Yi,bλ(b, Yi,b, H

G
τ )


= Et

∞∑
τ=t+1

δτ−t

(1− δ)
∑

b∈C(b∗,Gt)

(Yi,b + yi,b)

+(1− δ)
τ∑

s=t+1

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−2λ(bτ−2, Yi,bτ−2 , H

G
τ )


= δ

∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + δEt(Yi,bt + yi,bt)− Yi,b∗λ(b∗, Yi,b∗ , H
G
t+1)

+ Et
∞∑

τ=t+2

(1− δ)
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−1, Yi,bτ−1 , H

G
τ )


= δ

 ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + pi(Yi,bi,t + ȳ) +
∑
j 6=i

pjYi,bj,t

− Yi,b∗λ(b∗, Yi,b∗ , H
G
t+1)

+ Et
∞∑

τ=t+2

δτ−t

(1− δ)
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−1, Yi,bτ−1 , H

G
τ )



Off-path:
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Et
∞∑

τ=t+1

δτ−tui(σ′, Gτ )

= Et
∞∑

τ=t+1

δτ−t

 ∑
b∈C(b∗τ ,Gτ )

(1− δ)(Yi,b + yi,b)−
1

δ
Yi,bλ(b, Yi,b, H

G
τ )


=

∞∑
τ=t+1

δτ−t

(1− δ)

pi ∑
b∈C(b′,Gt)

(Yi,b + yi,b) +
∑
j 6=i

pj
∑

b∈C(b∗,Gt)

(Yi,b + yi,b)


+Et

(1− δ)
τ∑

s=t+1

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−2, Yi,bτ−2 , H

G
τ )


= pi

δ ∑
b∈C(b′,Gt)

(Yi,b + yi,b) + δ(Yi,bi,t + ȳ)− Yi,b′λ(b′, Yi,b′ , H
G
t+1)


+
∑
j 6=i

pj

δ ∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + δYi,bj,t − Yi,b∗λ(b∗, Yi,b∗ , H
G
t+1)


+Et

∞∑
τ=t+2

δτ−t

(1− δ)
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−1, Yi,bτ−1 , H

G
τ )



And

Et[U
i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)] = piδ× ∑

b∈C(b∗)

(Yi,b + yi,b)− 1
{
Yi,b∗t < 0

} Yi,b∗t
δ
−

∑
b∈C(b′)

(Yi,b + yi,b) + 1
{
Yi,b′ < 0

} Yi,b′
δ


We have assumed∑

b∈C(b′,Gt)

(Yi,b + yi,b)−
Yi,b
δ
1 {Yi,b < 0} (1−Πt

τ=0λ(b, Yi,b, H
G
τ )) ≤

Yi,R(T k
′
(T (J(BCP (HG

t ), Gt))), Gt)

Also note that
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∑
b∈C(b∗)

(Yi,b + yi,b)

= Yi,R(T k
′
(T (J(BCP (HG

t ), Gt))), Gt) + Yi,b∗ + yi,b∗

Therefore, if Yi,b∗ ≥ 0, we have

∑
b∈C(b′)

(Yi,b + yi,b)− 1
{
Yi,b′ < 0

} Yi,b′
δ

≤
∑

b∈C(b′,Gt)

(Yi,b + yi,b)−
Yi,b
δ
1 {Yi,b < 0} (1−Πt

τ=0λ(b, Yi,b, H
G
τ )) ≤

Yi,R(T k
′
(T (J(BCP (HG

t ), Gt))), Gt)

≤
∑

b∈C(b∗)

(Yi,b + yi,b)

Which means the difference in payoffs is positive.

Next if Yi,b∗ < 0, we have

∑
b∈C(b′)

(Yi,b + yi,b)− 1
{
Yi,b′ < 0

} Yi,b′
δ

≤
∑

b∈C(b′,Gt)

(Yi,b + yi,b)−
Yi,b
δ
1 {Yi,b < 0} (1−Πt

τ=0λ(b, Yi,b, H
G
τ )) ≤

Yi,R(T k
′
(T (J(BCP (HG

t ), Gt))), Gt)

=
∑

b∈C(b∗)

(Yi,b + yi,b)− (Yi,b∗ + yi,b∗)

≤
∑

b∈C(b∗)

(Yi,b + yi,b)− 1
{
Yi,b∗t < 0

} Yi,b∗t
δ

and finally we are again left with a positive difference.

2.

BCP
t+1 6= b′

This corresponds to

P(b′, T k
′
(T (J(BCP (HG

t ), Gt))), J(BCP (HG
t ), Gt)) + pi1

= P(bi,t, T
k′(T (J(BCP (HG

t ), Gt+1))), J(BCP (HG
t ), Gt+1))

< P(b∗t , T
k′(T (J(BCP (HG

t ), Gt+1))), J(BCP (HG
t ), Gt+1))
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In this case, since BCP
t+1 /∈ C(bi,t, Gt+1), we have off-path payoff:

Et
∞∑

τ=t+1

δτ−tui(σ′, Gτ )

= Et
∞∑

τ=t+1

δτ−t

 ∑
b∈C(b∗τ ,Gτ )

(1− δ)(Yi,b + yi,b)−
1

δ
Yi,bλ(b, Yi,b, H

G
τ )


=

∞∑
τ=t+1

δτ−t

(1− δ)
∑

b∈C(b∗,Gt)

(Yi,b + yi,b)

+Et

(1− δ)
τ∑

s=t+1

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−2, Yi,bτ−2 , H

G
τ )


= δ

∑
b∈C(b∗,Gt)

(Yi,b + yi,b) + δ
∑
j 6=i

pjYi,bj,t − Yi,b∗λ(b∗, Yi,b∗ , H
G
t+1)

+ Et
∞∑

τ=t+2

δτ−t

(1− δ)
τ∑

s=t+2

∑
b∈B(Gs)/B(Gs−1)

(Yi,b + yi,b)−
1

δ
Yi,bτ−1λ(bτ−1, Yi,bτ−1 , H

G
τ )



And

Et[U
i
t (H

i
t , σ)]− Et[U it (H i

t , σ
′)] = piδ

(
Yi,bi,t + ȳ

)
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