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Abstract

Unlike traditional payment systems, Bitcoin has no owner and is governed by

a computer protocol. This paper models Bitcoin as a platform that intermediates

between users and computer servers (“miners”) which operate the Bitcoin payment

system (BPS), and studies the novel market design of this owner-less platform. We

find that the BPS can eliminate inefficiencies due to market power, but incurs other

costs. Having fixed transaction processing capacity, the BPS experiences service de-

lays which motivate users to pay for service priority. Free entry implies that miners

cannot profitably affect the level of fees paid by users. The paper derives closed

form formulas of the fees and waiting times and studies their properties; compares

pricing under the BPS to that under a traditional payment system operated by a

profit maximizing firm; and suggests protocol design modification to enhance the

platform’s efficiency. The appendix describes and explains the main attributes of

Bitcoin and the underlying blockchain technology.
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1 Introduction

A trusted ledger of value transfers is at the heart of any electronic payment system.

Traditionally, the technology underlying the ledger required a trusted party to maintain

it. That party usually had market power to affect fees and fee structure, thereby adversely

affecting welfare.

Blockchain technology, which is the basis of the Bitcoin payment system (BPS) and

many other cryptocurrencies, offers a decentralized alternative. The BPS acts as a plat-

form that provides payment services to users, and obtains the required computer in-

frastructure from independent profit oriented parties called “miners”. The rules of the

platform are fixed by a computer protocol, and no entity can unilaterally change them.

The structure established by the blockchain protocol ensures the trustworthiness of the

BPS without relying on trust in any individual party, thereby allowing the BPS to pro-

cure the computation infrastructure from any miner who finds it profitable to provide it.

This raises the question whether the BPS can achieve higher welfare by eliminating the

distortions associated with a price-setting firm.

To answer this question, we develop a model of the BPS as a two-sided market that

captures the economic structure implied by the blockchain design. The model allows us

to analyze the new market structure and derive prices, costs and welfare. The analysis

raises several concerns, and allows us to provide design suggestions that partly address

these concerns.

The model elaborates on the observation that the blockchain design makes the BPS

a two-sided platform whose constituencies are: (i) miners who collectively provide the

system’s infrastructure in return for payment; (ii) users who make transactions and pay

fees. A brief description of the system is in order to explain the particular properties of this

two-sided market that are the focus of our model. For concreteness, we focus on the BPS,

whose basic design features are shared among most other cryptocurrencies. Appendix A

provides a more detailed description of the BPS which is targeted for economists.

Users post transactions over time; miners organize them into blocks, each block with

the same, limited capacity; the block of a single randomly selected miner is added to the

blockchain; this block selection amounts to processing of the transactions in that block;

miner selection is a Poisson process with a fixed rate which is independent of the aggregate

computing resources used by the miners. That, and the fixed capacity of the blocks imply

that the BPS has a fixed expected transaction processing capacity.

The system’s limited capacity coupled with the randomness of transaction arrival and

processing times imply that at times transactions will be processed with delays of random
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lengths. To make the presentation cleaner we assume that on average, the system has

sufficient capacity to process all transactions.

All miners perform the same tasks. Participation in the miner selection tournament is

the most resource-consuming among these. A miner’s chance of being selected is propor-

tional to his share of the total computational resources. For each block, the selected miner

collects a fixed, system-generated reward plus the fees associated with the transactions

in that block. Each user chooses the fee associated with his transaction. Each miner

is free to enter and exit the system at no cost. Each participating miner chooses which

transactions to include in his block.

We set up a model of fees, priority levels and mining intensity that captures the main

features of the BPS. Its analysis highlights differences between the BPS and a traditional

payment system operated by a profit maximizing firm. The analysis delivers explicit

formulas of the fees and delays, thereby enabling suggestions for design improvements.

Figure 1 suggests an agreement between the fee formula and the data.

Beyond the quantitative results, the analysis offers a series of qualitative insights, as

follows.

The BPS processes all transactions, albeit with delay; all users receive strict positive

surplus. In contrast, a profit maximizing firm excludes low willingness to pay (WTP)

transactions but processes the rest without delay. In the BPS, the fee level does not

increase if user WTP increases whereas the firm charges more if users’ WTP increases.

User payments under the BPS are payments for service speed. A profit-seeking miner

excludes the transactions which offer the lowest fees when the assembled block is full.

Therefore, users to whom delays are costly will offer relatively high fees to gain priority

and be served faster. In contrast, a traditional payment system charges for service which

it usually offers at a uniform speed.

The possibility of entry of small marginal miners implies that even a miner who controls

a substantial fraction of the mining resources cannot profitably affect the fees paid by

users, as explained in Section 4.1. Thus, the entities who provide the service – the miners

– act as price takers.

In equilibrium, users with higher delay costs receive higher processing priority and

therefore shorter delays. The fee a user pays is equal to the delay externality he imposes

on others who offer lower fees. Thus, fees are equal to those obtained by allocating

priority through a Vickrey, Clarke, Groves (VCG) mechanism, although the BPS employs

no auctioneer. User WTP does not affect fees, assuming WTP is sufficiently high.

An increase (respectively, decrease) in the arrival rate of new transactions results in
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increased (resp., decreased) congestion, which in turn cause fees to be higher (resp., lower).

No delays imply no fees. The analysis offers an explicit relation between block size (which

reflects congestion) and the USD-denominated fee. Figure 1 provides a theoretical and

an empirical summary of this relation. Notably, the dependence of fees on congestion is

highly non-linear: fees are negligible when blocks are below 50% of their maximal size,

positive when blocks are at 80% of their maximal size, and substantially higher when

blocks are close to their maximal size.
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Figure 1: Actual and model predicted transaction fees per block (in USD) and block size for the Bitcoin
payment system (daily averages, April 1, 2011–June 30, 2017). See Section 6.2 for details.

The analysis assumes that the mining resources are sufficient to guarantee the system’s

reliability and security. When so, increases in the mining resources do not affect the fees

because they do not affect the system’s capacity, throughput or delays.

Newly minted coins and transaction fees fund the miners who acquire mining resources

in USD-denominated markets. Exchange rate and fee level fluctuations affect miners’

aggregate income, which in turn affects aggregate mining power in the BPS. There is no

mechanism that drives the level of resources acquired and deployed to an efficient level,

however defined.

The analysis points to an efficiency contrast between the BPS and a profit maximizing

firm. Namely, the latter’s service is associated with dead-weight loss, whereas the BPS

can operate with excess capacity, serving all users and awarding each strictly positive
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surplus. If miners are homogeneous, all surplus accrues to the users.

However, the costs of operating the BPS are likely to be higher than those of a tra-

ditional firm: its decentralized architecture requires duplication of computations and ex-

penditure of efforts in the miner selection tournament; the aggregate mining level can be

too high; costly delays are necessary to induce users to pay transaction fees. Thus, welfare

under the BPS can be higher or lower than that under a traditional system, depending

on the value of eliminating dead-weight loss.

Hundreds of variants of Bitcoin have emerged, with many aiming to improve on the

original Nakamoto (2008) design. Our analysis provides the following messages to de-

signers. First, it suggests that congestion is not merely an engineering necessity, but

also a device to motivate users to pay transaction fees. Second, the analysis suggests a

simple modification that avoids the variation in revenue from transaction fees. In the

BPS capacity is fixed and congestion varies with demand; consequently the revenue and

infrastructure levels vary over time. An alternative (and arguably better) design is a pro-

tocol rule that automatically adjusts the system’s capacity to the users’ demand, thereby

steadying congestion, aggregate fees, and mining level.

This design has two advantages over alternatives such as a fixed transaction fee. First,

congestion pricing allows the system to raise revenue without excluding transactions, as

users can choose to pay no fees and incur delays. Second, fixed transaction fees (as well as

newly minted coins) need to be set within the protocol and therefore must be nominally

denominated in the system’s coin. The real price and revenue will vary over time, as it

depends on the coin’s exchange rate. Congestion pricing avoids this problem as it raises

revenue from users payments for avoiding delays.

The analysis also allows us to optimize parameter choices. We offer an analytic expres-

sion for the delay costs required to raise a certain revenue level. Analysis and examples

suggest that large blocks are less efficient in that they require longer delays to sustain a

given level of revenue.

Related Literature

Famously, a white paper by Nakamoto (2008) coined the term Bitcoin and described the

BPS. Its opening paragraph criticizes the costs of the existing financial system and its

usefulness to small transactions, “Completely non-reversible transactions are not really

possible, since financial institutions cannot avoid mediating disputes. The cost of me-

diation increases transaction costs, limiting the minimum practical transaction size and

cutting off the possibility for small casual transactions.” Section 6 (“Incentive”) predicts
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that transaction fees will eventually fund the system, “The incentive can also be funded

with transaction fees. . . Once a predetermined number of coins have entered circulation,

the incentive can transition entirely to transaction fees. . . ” The Section’s title notwith-

standing, Nakamoto (2008) is silent on the incentive to pay transaction fees, their relation

to other parameters and their implications; understanding these is the present paper’s

task.

Kroll et al. (2013) offer an analysis of the incentives faced by participants in the

system, and especially the incentives faced by miners. They conclude a brief discussion

of transaction fees by stating, “We therefore do not expect transaction fees to play a

significant long-term role in the economics of the Bitcoin system, under the current rules.

We believe that a rules change would be necessary before transactions fees can play

any major role in the Bitcoin economy.” The present paper shows otherwise, i.e., that

transaction fees have dual and crucial roles in the Bitcoin system: (i) They are supplanting

newly minted coins as the funding source of the mining community; (ii) They are the

arbiters of priority in the congestion of messages to be processed by the miners, i.e., they

determine priority in the message queue.

Following the initial version of this paper, the design of transaction fee mechanisms has

received attention from both academics and practitioners (for example, Buterin (2018)).

Easley et al. (2017) is a contemporaneous piece which proposes and empirically examines

an equilibrium model of exogenously specified transactions fees and block size assumed

restricted to a single transaction. Their model predicts that miners’ profits are zero

and that fees are positively correlated with transaction waiting times. The data appear

consistent with these predictions. Lavi et al. (2017), Yao (2018) and Basu et al. (2019)

suggest alternative mechanisms for transaction fees.

Prat & Walter (2018) study the dynamics of miner entry as it is influenced by changes

in exchange rates and technological changes and predictions thereof. Felten (2013) argues

that in equilibrium miners break even. Cong, He & Li (2018) argue that large mining

pools confer risk sharing advantages on their members, which are mitigated due to the

larger fees which larger pools charge their members. Arnosti & Weinberg (2018) develop

a model where miners are heterogeneous in their cost structure, and quantifies how such

asymmetries lead to the formation of oligopolies and concentration of mining power.

Eyal & Sirer (2014), Sapirshtein et al. (2016) analyze the equilibrium between miners

and show that proper design of the blockchain protocol produces a reliable system in equi-

librium if all miners are sufficiently small. Babaioff et al. (2012) analyze the incentives to

propagate information in the BPS. Narayanan et al. (2016) offer an elaborate description

6



and analysis of the system. Croman et al. (2016) provide cost estimates for the BPS and

analyze the potential for transaction processing capacity. Eyal et al. (2016) suggest an

alternative design aimed to construct a system with a higher capacity. Carlsten et al.

(2016) analyze how incentives for miners change when miners are rewarded with trans-

action fees instead of newly created coins. Chiu & Koeppl (2017) evaluate the welfare

implications of printing new coins.

The protocol proposed by Nakamoto (2008) posits that in case of a fork, miners will

follow the longest branch. Biais et al. (2018) study the robustness of this rule. Budish

(2018) studies the system’s vulnerability to attacks and its dependence on the price at

which the mining equipment can be rented. Abadi & Brunnermeier (2018) posit three

desired properties of distributed ledger technologies, (i) correctness, (ii) decentralization,

and (iii) cost efficiency and argue that no ledger can satisfy all three properties simulta-

neously.

Yermack (2015) reviews the history of Bitcoin and the statistical properties of its

price history to “argue that bitcoin does not behave much like a currency according to

the criteria widely used by economists. Instead bitcoin resembles a speculative investment

similar to the Internet stocks of the late 1990s.”

Gandal & Halaburda (2014) analyze competition between the different cryptocurren-

cies. Halaburda & Sarvary (2016) review the cryptocurrency market, its development

and future potential of blockchain technology. Gans & Halaburda (2015) analyze the

economics of digital currencies, focusing on platform sponsored credits. Catalini & Gans

(2016) discuss possible opportunities that can arise from blockchain technology.

Recent work of considers the valuation of bitcoin relative to fiat currencies and other

goods. That work usually assumes away the limited capacity of the BPS although it

induces delays and transaction fees. Ron & Shamir (2013), Athey et al. (2016) provide

analysis of the usage of Bitcoin and its value as a currency. Schilling & Uhlig (2018)

analyze the evolution of bitcoin prices relative to fiat currency and its implications for

monetary policy. Makarov & Schoar (2018) report arbitrage opportunities across cryp-

tocurrency exchanges primarily across regions.

Cong, Li & Wang (2018) study a dynamic pricing and adoption model in which wider

adoption renders the cryptocurrency more valuable. Pagnotta & Buraschi (2018) study

bitcoin pricing under the assumption that at all levels, higher aggregate mining effort

delivers higher value to users. Sockin & Xiong (2018) propose a pricing model for an ICO

for a platform on which households can exchange certain goods or services if they own

the platform’s native coin.
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Lui (1985), Glazer & Hassin (1986), and Hassin (1995) study a queuing system in

which users with different waiting costs volunteer to pay transaction fees (termed bribes

in Lui 1985) to gain priority in a queue to single service station which serves customers

one at a time. The main observation of Lui is that the server may increase its profits by

increasing the speed of service. Hassin (1995) shows that the service rate that maximizes

the server’s profits is always slower than the socially optimal service rate. Hassin & Haviv

(2003) provide a summary of the results, and Hassin (2016) provides an updated review.

The present analysis considers a queuing system in which transaction arrival and

service arrival is stochastic, but the service is processed in batches of fixed maximal size.

The prior work corresponds to a batch size of one. The interaction among the arrival and

service rates and the maximal batch size and their impact on the transaction fees and

server’s revenues are of major concern.

Organization of the paper

Section 2 provides a model of traditional payment systems, the BPS, and users who may

use either. For the sake of completeness, Section 3 provides the standard analysis of a

traditional payment systems operated by a firm. Section 4 provides our main analysis and

characterizes the equilibrium under the BPS. Section 5 leverages our analysis to provide

design suggestions. Section 6 brings empirical evidence to bear on some of the model’s

predictions. Section 7 provides some final remarks.

Appendix A provides a simplified explanation of the BPS and the underlying blockchain

technology. Appendix B extends our analysis of the BPS to parameters where the par-

ticipation constraint of some users binds. Appendix C gives additional properties of

transaction fees under the BPS. Additional figures are in Appendix D. Omitted proofs

are in Appendix E.

2 Economic Model of Traditional Payment systems

and the BPS

This section sets up a model of a payment system to facilitate a comparison between a

decentralized protocol like Bitcoin and a conventional payment system which is controlled

by a profit maximizing firm. Section 2.1 describes the users. Their preferences are the

same across the two payment systems. Section 2.2 very briefly states the familiar problem

of a firm providing payment services. Section 2.3 describes succinctly the features of the
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Bitcoin payment system (BPS) relevant to its economic analysis and its comparison with

a traditional system. Sections 4 and 5 offer equilibrium analyses of the firm and of the

BPS, respectively.

2.1 Users

Each user has a single potential transaction; hence references to users and their transac-

tions are interchangeable. Users are heterogeneous in two distinct dimensions. First, users

differ in their willingness to pay (WTP) for using the system. The value a user derives

from sending a transaction in the system above the value available via an alternative is

his WTP R = v − valt. Second, users have different delay costs per unit time c. The

net reward of user (R, c) from sending a transaction that is processed after delay W and

paying a transaction fee b is

u (W, b | R, c) = R− c ·W − b. (1)

The variables R and b are denominated in USD;1 the variable c is in USD per unit time.

By the definition of R, a potential user will prefer using the system over the alternative

(outside option) if u (W, b | R, c) ≥ 0.

To make the cleanest distinction between the systems, we consider a setting where

R ∈ {RL, RH} (RL ≤ RH) and is not correlated with c. 2 The parameters R and c can

vary independently of each other. Users with WTP RH have no compelling alternative of

making the transfer, and therefore their WTP RH is almost the entire value of processing

the transaction. Users with WTP RL can use an alternative method, and therefore their

WTP is equal to the cost of the alternative method.

Potential users arrive over time according to a Poisson process. The arrival rate of

users with value Rj is λj with j = L,H and λ = λL + λH . Both of these populations

of users have heterogeneous delay costs per unit time c that are distributed c ∼ F [0, c̄],

independently of the user’s WTP R. The cumulative distribution function F (·) has a

density f(·), and its tail probability is denoted F̄ (c) , 1− F (c).

For tractability, users know the steady state behavior of the system, but do not observe

1In practice, transaction fees in the BPS are denominated in bitcoin. However, since users decide
transaction fees as they submit transactions, we will consider them as USD denominated without loss
of generality. This is in contrast to the block reward S discussed in Section 2.3, which is fixed by the
protocol, and hence is impacted by the USD/bitcoin exchange rate.

2An alternative and analogous model entails u = V δW − b− valt. Variation in R is variation in valt.
Variation in c is variation in δ. All have the same V .
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other pending transactions at the time they submit their transaction. Users are risk

neutral and maximize their expected net reward.

We focus our analysis on the case summarized below which gives the cleanest distinc-

tion between the BPS and a firm.

Assumption 1. The following hold:

• λHRH > (λL + λH)RL

• RH ≥ RL > R̄ > 0 where R̄ is defined in Lemma 8.

• User delay costs c are distributed independently of WTP R.

Note that the assumption that R > 0 entails that users consider the system to be a

reliable means of sending transactions.

2.2 Payment System run by a Firm

A firm-run conventional payment system can process transactions without delay at a

marginal cost of cf per transaction. The firm sets its price in response to the distribution

of consumer demand. The firm can costlessly delay transactions, and can offer different

prices for processing transactions with different delays. In Section 3 we show that it does

not pursue these policies because they do not increase the firm’s profit.

2.3 Decentralized Cryptocurrency

The BPS offers users a similar functionality to that offered by familiar payment systems,

i.e., the ability to transfer balances from one user to another. In contrast to traditional

payment systems, the BPS uses a decentralized network of computers (so called min-

ers) to process transactions and maintain the ledger containing their history. The novel

blockchain design ensures the system as a whole is reliable and trustworthy, without the

need to trust any individual miners.

A computer protocol governs the system and dictates the rules for how miners and

users interact within the system. Thus the BPS system is a two-sided market with rules

that are fixed by a computer protocol. The description in Appendix A provides further

details regarding the protocol’s operations and functionality. In this Section we provide

the implications of the design for the structure of the two-sided market.
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Users send their transactions as they would under any payment system but also select

the transaction fee they will pay. Transactions need not be processed in their order of

arrival. Processing may take time.

Miners provide their computational infrastructure to the BPS at will, and can switch

between being active and inactive. Collectively, the miners maintain a ledger of all trans-

action history. Transactions are periodically added to the ledger in batches, in the form of

a block of transaction data. These additions are according to a Poisson process3 with rate

µ, irrespective of the number of miners. For each block, a randomly chosen active miner

selects which pending transactions are processed in the block, and that miner is said to

have mined the block. A block can contain up to K transactions.4 Pending transactions

not included in a block wait to be processed in a future block. The probability that a

miner is selected is proportional to his computational power. Miners observe all pending

transactions and their transaction fees.

Miners incur a cost per unit time while they are active. A miner who mines a new

block is rewarded with the transaction fees paid by the transactions included in that

block as well as a fixed block reward of newly minted coins. We denote by S the expected

number of coins the system awards per unit time.5 Of particular interest will be the case

where S = 0, which describes the operation of the BPS in the long term.6

We denote the total computational power of miners by N . The values µ,K are prede-

termined by the protocol and are unaffected by the number of miners N or the transaction

volume λ. The total expected processing capacity of the system is an average µK transac-

tions per unit time (independently of N). Realized processing capacity is random because

block arrival time is random. The load parameter is ρ = λ/µK , which is the ratio of

average demand to capacity. The parameter ρ is a measure of congestion in the system.

Assumption 2. The system has sufficient capacity to eventually process all transactions,

that is, ρ < 1.

Miners who possess a small fraction of the total computational power N have a small

chance of getting selected to mine a block. We refer to these as small miners. When

mining a block, the miner has discretion as to which transactions to include in the block;

excluded transactions remain pending and can be processed in the following block. The

3A Poisson process is the limit of many independent binomial trials. See footnote 20.
4While in practice transactions may vary in size, for the sake of tractability we assume all transactions

are of the same size.
5Note that all values are given per unit time.
6In BPS the block reward is halved every 4 years, until it is rounded down to 0.
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behavior of a small miner has a negligible effect on the timing of transaction processing.

Therefore we assume that small miners cannot affect users’ choices of fees.

Assumption 3. There are many potential small miners who can provide one unit of

computational power at cost cm. Small miners cannot affect user behavior.

To highlight the distinctive properties of the system, the analysis focuses on the pa-

rameter range where all potential transactions can be processed. The assumptions in

Section 2.1 imply that there are sufficiently many miners for the system to operate reli-

ably and securely. In Section 4 we analyze the BPS under these assumptions and verify

when they indeed hold.

Miners procure the resources they need in fiat currency-denominated markets. There-

fore we consider all payments and costs denominated in USD rather than in bitcoin. In

particular, the USD value of the block reward fluctuates with the exchange rate.

3 Analysis of the firm

The firm’s problem is standard, and is stated here for completeness. The firm chooses a

menu of prices for processing transaction at different speeds to maximize its profits. The

following proposition shows that the firm sets a transaction fee that precludes low WTP

customers from using the system, and processes all the transactions that pay this fee with

no delay. The firm can and does change the price it charges if RH changes.

Proposition 4. When λHRH > (λH + λL)RL, the firm charges the fee b = RH and

process all transactions that are willing to pay the fee with no delay. It serves only high

value customers. Consumer surplus is 0 and social surplus is λH (RH − cf ), all accruing

to the firm.

The intuition for the result is that the firm cannot use delays to screen between high

and low WTP customers, and therefore avoids delays that decrease a user’s willingness to

pay. When λHRH > (λH + λL)RL the firm makes higher profits by selling only to high

WTP users. The proof can be found in Appendix E.5.

A few observations facilitate the comparison with the BPS which is carried in Section

4.3. First, the distribution of the user delay costs F does not appear in the equilibrium

outcome when the firm is the service provider. Second, pricing out the low WTP customers

entails a dead-weight loss of λL (RL − cf ). Third, the amount the high WTP customers

are charged is exactly their WTP. It will go up, e.g., if these customers lose their best

outside option.
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4 Analysis of BPS

We analyze the equilibrium of the system under the assumptions stated earlier. Subsec-

tions 4.1 and 4.2 analyze the behavior of each side of the market separately, holding the

other fixed. Subsection 4.3 completes the analysis, giving the system’s equilibrium.

4.1 Miners

With N denoting the total amount of computing power provided by active miners, the

probability that a miner is selected to mine a block is equal to his share of N . We assume

the presence of small potential miners, each of whom can become active and provide a

small amount of computational power to the network at a cost cm per unit of computation

per unit time.

Each miner decides whether to be active, and selects which transactions to include

when mining a block. The following proposition shows that potential entry of small miners

disciplines all miners, even large ones.

Proposition 5. If any miners with cost cm are active then

• all miners process the highest fee paying transactions up to the maximal block size;

• the total amount of computational power in the network, measured in small miner

equivalents, is

N =
Rev + e · S

cm
(2)

where Rev is the total transaction fees in USD per unit time and e is the USD/bitcoin

exchange rate.

Proof. Consider a small miner. When active and selected to mine a block, small miners

maximize their profit by assembling a block that includes the K pending transactions

offering the highest fees. (If there are fewer than K pending transactions the block

includes all of them.) Since some small miners are active, and there is free entry with

many potential miners whose cost is cm, the expected reward for a small miner must equal

the cost cm.

A large miner who controls a significant fraction of the computational power in the

network can affect the transaction fees selected by users, for example by processing only
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transactions that offer sufficiently high fees, leading users to select higher transaction fees.7

Nonetheless, it is optimal for all miners to process the highest fee offering transactions

that fit into a bloc. To see this, consider any given behavior by a large miner, the

resulting transaction fees selected by users and the resulting entry decision of small miners.

By the previous argument, small miners enter until the payoff for a small miner is cm

per computational unit. Small miners attain the maximal possible reward given the

transaction fees selected by users. Therefore, any strategy by the large miner leads to

a reward per computational unit that is no greater than cm per unit time.8 Thus, it is

optimal for any miner to process the K pending transactions offering the highest fees for

a reward of cm per computational unit.

Finally, given that all miners arrange the same blocks, and each computing unit has

1/N chance of getting selected, the reward per computational unit is 1/N of the total

reward. By assumption ρ < 1 and all transactions are eventually processed. Therefore

the total reward to miners per unit time is the total transaction fees Rev plus the minted

coins which are worth e · S in USD. Small miners break even if (2) holds and the result

follows.

Proposition 5 shows that even a miner who controls a substantial fraction of the mining

resources cannot profitably affect transactions fees.9 Entry by small miners disciplines all

miners, as any benefits from withholding capacity will be dissipated by the entry of small

miners. Thus, miners act as price takers regardless of their size.

Entry by small miners is essential for the result. Suppose a single large miner can

control all the mining infrastructure. The blockchain protocol provides some security

guarantees even when there is a single miner, but a single miner will be able to set a

minimal transaction fee. The single miner can ensure that any transaction that offers a

lower fee will not be processed. The single miner can preclude entry of small miners if

it maintains the reward per computational unit strictly below cm, and can make positive

profits if his own cost of is lower than cm.

7For example, suppose a miner who controls half of the computational power does not process trans-
actions whose fee is below a threshold. Users who choose a fee below the threshold will be eventually
processed by other miners, but will incur a longer delay. In response, some users may choose to raise the
transaction fee they pay.

8Any behavior that incurs a cost to induce users to increase their transaction fees will lead to reward
per computational unit that is strictly less than cm. For example, excluding transaction whose fee is
below a threshold.

9A malicious miner who controls a sufficiently large fraction of the mining resources may be able to
employ other manipulation, such as selfish mining (Eyal & Sirer 2014). The result will hold as long as
the malicious miner is not able to prevent small miners from entering.
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The capacity of the system is fixed by the protocol, and does not depend on the

number of miners. All miners make zero profit if all miners have the same cost cm per

computational unit. Miners can make positive profits if their cost is below cm.10

This brief section presents a stylized view of miners thereby abstracting from various

real-world issues. Actual miners incur fixed costs to purchase mining equipment; available

equipment is heterogeneous in price, quality and vintage; innovative equipment manufac-

turers are also miners; electricity costs are location- and possibly miner-dependent. Future

work will take up these nuances.

4.2 User behavior and equilibrium transaction fees

The analysis in Section 4.1 shows that the miners’ optimization implies that each block

processes the K pending transactions which offer the highest transaction fees. Therefore

users face a queuing game where higher transaction fees imply higher processing priority.

The number of miners does not affect µ, the rate at which blocks are generated, or K, the

block size, and therefore the number of miners does not affect users’ choice of transaction

fees.

We now characterize user behavior. Consider an equilibrium where all potential users

participate and post their transactions in the system, with G (·) denoting the cumulative

distribution function of the chosen transaction fees. A user i with delay cost ci who

decides to post a transaction chooses his transaction fee b to maximize his net reward

R− b− ci ·W (b | G) , (3)

with W (b | G) denoting the equilibrium expected delay given transaction fee b and the

CDF G. The following lemma characterizes the equilibrium expected delay.

Lemma 6. Assume that all potential users participate. In any equilibrium, the expected

delay for a user with delay cost ci is

µ−1WK (ρ̂ (ci)) (4)

where ρ̂ (ci) = λF̄ (ci) /Kµ = ρ · F̄ (ci) is the effective load from transaction with higher

delay cost, and the function WK (·) gives the expected number of blocks that pass until the

transaction is processed.

10For example, miners who position their servers near dams can have lower cost due to cheap electricity.
If such opportunities are scarce and can support only a limited number of servers they will not be competed
away.
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The function WK(·) is specified in Appendix E.1. In particular, WK (0) = 1 and

W ′
K (ρ̂) ≥ 0 for ρ̂ ∈ [0, 1).

The intuition for Lemma 6 is as follows. A transaction is processed in the first block

that does not fill with higher priority transactions. Standard arguments (see Hassin &

Haviv (2003)) imply that users with higher delay cost will pay higher transaction fees and

receive higher priority, and therefore the arrival rate of transactions with higher priority

is λ · F̄ (c). Analysis of the stochastic system shows that the number of blocks that

pass until a transaction depends only on the block size K and the effective load from

higher priority transactions ρ̂ (ci) = λF̄ (ci) /Kµ. Although ρ < 1 implies the system has

sufficient capacity to process all transactions on average, the randomness of the arrival

times implies the possibility of backlogs. The expression (4) captures the expected wait

from such cases. Finally, the term µ−1 in (4) enables the statement of the result in

terms of calendar time rather than the number of blocks. The particular function WK(·)
endogenously arises by the incentives set in the protocol. Appendix D provides a plot of

WK(·).
Users’ individual optimization implies:

Proposition 7. Assuming that all potential users participate, there is a unique equilib-

rium. In it a user with waiting cost ci ∈ [0, c̄] chooses to pay a transaction fee b (ci), given

by

b (ci) = ρ

ˆ ci

0

f (c) · c · µ−1W ′
K

(
ρF̄ (c)

)
dc. (5)

These transaction fees coincide with the payments that result from selling priority of

service in a VCG auction.

The net reward for a user with delay cost ci and WTP Ri is

u (Ri, ci) = Ri − µ−1

ˆ ci

0

WK

(
ρF̄ (c)

)
dc. (6)

The Bitcoin protocol indirectly entails a priority auction, although no auctioneer is

present. Users with higher waiting costs pay higher transaction fees and wait less. Users’

bids have the VCG property that each user bids an amount equal to the externality he

imposes on others by delaying their transactions. Equation 6 implies that users with

lower delay cost ci bear lower total costs (total of paid fees and delay costs). This is due
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to information rents. The highest costs are born by users with ci = c̄ and are equal to

R̄ = µ−1
´ c̄

0
WK

(
ρF̄ (c)

)
dc.

The equilibrium allocation of priority is efficient. However, the allocation of delay takes

the particular form because of the blockchain design. A different design or increased values

of µ,K can reduce waiting costs for all transactions. Note that transaction fees depend

on ρ, and therefore will change with changes in λ, µ,K.

Finally, we verify that all potential users prefer to participate under the assumption

that WTP is sufficiently high given the load ρ.

Lemma 8. Let R̄ = µ−1
´ c̄

0
WK

(
ρF̄ (c)

)
dc. If RH ≥ RL > R̄ there is a unique equilibrium

where all potential users participate. In equilibrium all users receive strictly positive net

reward.

Thus, equilibrium behavior of users does not depend on their WTP R, assuming that it

is sufficiently high. All users participate regardless of their WTP, and the transaction fees

paid are independent of WTP. Each user pays a fee equal to the externality he imposes on

other users, and since all transactions are eventually processed, the externality involves

only delays to other transactions.

Transaction fees under the firm and the BPS depend on different parameters. The

firm sets prices based on user WTP, and transactions that do not pay the required fee are

not processed. Under the BPS prices are determined in equilibrium based on user delay

costs. All transactions are processed regardless of the fees they offer. Some users offer

higher fees to reduce delays. Transactions which offer lower or zero fees are processed

with greater delays. The BPS transaction fees depend only on the parameters K,µ, ρ and

the distribution of delay costs F . The transaction fees are nominally denominated in the

system’s native currency, but their value in USD is independent of the exchange rate e.

We summarize these results in the following theorem.

Theorem 9. Let ρ = λ/µK ∈ (0, 1) and assume that

RH ≥ RL > R̄ = µ−1

ˆ c̄

0

WK

(
ρF̄ (c)

)
dc. (7)

There is a unique equilibrium where all potential users participate and receive strictly

positive surplus. Equilibrium transaction fees paid by users are independent of user WTP

RH , RL and of the exchange rate e.

Despite having excess capacity (i.e., ρ < 1), the system raises strictly positive revenue

from transaction fees.
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As seen in Section 3, the profit maximizing firm will raise prices until some users

receive no net benefit. The possibility that all users are net beneficiaries of the system

distinguishes its service from a similar service provided by profit maximizing firm.

Another distinguishing feature of the system is its commitment to congestion pricing,

a commitment that is difficult to modify even when circumstances change. Thus, the

users are protected from being held up should they get locked into the BPS: if users lose

their alternative payment methods then their WTP for the system goes up, but because

transaction fees are independent of the WTP R (given that RH , RL are sufficiently high),

users are protected from price increases. In contrast, users should be wary of getting

locked into a conventional payment system, as a firm would raise prices should its users

lose their alternative options (Grossman & Hart 1986).

We highlight this as the following corollary.

Corollary 10. Assume that the conditions of Theorem 9 are satisfied. Then an increase

in WTP R does not change equilibrium transaction fees.

Corollary may appear as good news to users. However, the pricing level depends on

the congestion in the system ρ = λ/µK and may be inefficient.

4.3 Determination of Infrastructure Level and Welfare

Building on the two preceding subsections, this subsection shows the total revenue from

transaction fees and the system’s level of infrastructure. Moreover, it calculates the welfare

level associated with the BPS and compares it to that delivered by a profit maximizing

firm.

Aggregating equation (5) over all users delivers

Theorem 11. Total revenue from transaction fees per unit time is

RevK(ρ) = Kρ2

ˆ c̄

0

cf(c)F̄ (c)W ′
K

(
ρF̄ (c)

)
dc. (8)

Equation (8) complements equation (2) to determine the network’s computational

power in equilibrium. Equation (8) shows that total revenue from transaction fees depends

only on K, ρ and the distribution of delay costs F . It implies that the revenue depends on

µ and λ only through ρ = λ/µK. Thus, holding the type distribution function F fixed, a

system with double the demand λ and double the block rate µ will raise the same amount

of revenue as the original system but will have twice as many users, each of whom will

pay half the transaction fee paid by the corresponding user in the original system.

18



Note that there is no guarantee that the equilibrium number of miners is adequate for

the system’s reliability and security. The protocol can dictate the amount of newly minted

coins S that are awarded to miners, but the exchange rate e may fluctuate during the life

of the system. The revenue from transaction fees does not depend on the exchange rate,

but varies with the congestion ρ which is a function of the predetermined parameters µ,K

as well as the potential demand λ that may change over time. Moreover, a shortage of

mining resources does not lead to higher fees or more favorable exchange rate; if anything

it is likely to result in the opposite. On the other hand, abundance of mining resources

does not lead to lower fees or less favorable exchange rate. The equilibrium analysis is

applicable if user WTP for the system RH , RL are sufficiently high given the equilibrium

number of miners N .

Next, we calculate welfare by accounting for the total benefits and costs of the system.

Since all users are served, the system generates λHRH + λLRL for users per unit time.

The users pay transaction fees and incur delay costs. All miners receive a reward equal

to cm per mining unit. Marginal miners whose cost is cm will therefore break even and

spend all the revenue they receive on operating costs.

Theorem 12. If all miners have a cost cm per computational unit and no new coins are

minted11 then welfare is given by

λHRH + λLRL −DelayCostK (ρ)− cm ·N (9)

where the total delay costs incurred by users is

DelayCostK (ρ) = Kρ

ˆ c̄

0

cf (c)WK

(
ρF̄ (c)

)
dc. (10)

Miners break even and spend all the revenue they receive on operating costs.

The total benefits from processing transactions is λHRH + λLRL, as all transactions

are processed. The cost cm · N is the cost of server infrastructure, where competition

between the miners ensures that infrastructure is provided at cost cm, and miners make

no profit. The delay costs DelayCostK (ρ) are necessary in order to raise revenue from

users, as users have an incentive to pay higher transaction fees only if transactions with

low fees suffer delays.

11That is, S = 0, as will be the case for the BPS in the long run. Currently the BPS funds most of
its mining cost by minting new coins. The welfare calculations remain unchanged if the BPS can mint a
finite amount of new coin and the opportunity cost of awarding the coin to miners is equal to its value.
We defer determination of the welfare costs of minting new coin to future work.
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If, in deviation from the theorem’s assumption, some miners have a cost lower than

cm, they make a profit. In such case, welfare will be higher by these miners’ profit.

This allows us to compare the BPS and a conventional payment system that is run by

a firm. Under our assumptions, the costs of operating the BPS is cm · N , while the cost

of operating a firm-run payment system is cf · λH . It appears that it is more expensive

to run the BPS because the decentralized protocol requires additional computational

overhead. Moreover, if the BPS is successful and popular the implied congestion can lead

to an equilibrium value of N that is too high. The BPS also has the additional cost

DelayCostK (ρ) due to delay cost, while the firm processes transactions immediately. On

the other hand, the BPS serves all potential demand, while under the firm there is a

dead-weight loss because RL users are not served, losing λL · RL of potential generated

value. Altogether, we get that if

λLRL > cm ·N − cfλH + DelayCostK (ρ) (11)

welfare is higher under the BPS than under a firm. Note that the two sides of in-

equality (11) depend on different sets of parameters, and therefore the comparison can go

either way. Essentially, the BPS allows society to pay for a more costly infrastructure on

which competitive pricing is guaranteed, and that can be beneficial if dead-weight loss is

substantial.

Beyond this calculations-based comparison, there are differences worth mentioning.

For instance, a firm-run system operates under the legal system and can offer procedures

to retrieve lost accounts and reverse erroneous or fraud-inspired payments. The BPS

cannot offer such services, but is transparent and does not require trust in any individual

component.

5 Protocol Design for Efficient Congestion Pricing

The following corollary of Section 4 motivates this section’s main question, namely how

to set the system’s parameters K and µ in response to λ in order to achieve desired

combinations of fee revenue and delays.

Corollary 13. In equilibrium, if ρ = 0, both delay cost and revenue are zero. For any

fixed K, both revenue (and with it infrastructure provision by miners) and delay cost are

strictly increasing in ρ.

Figure 2 shows how revenue from transaction fees and delay cost vary with ρ under the
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parameters K = 2, 000 and c ∼ U [0, 1]. The figure assumes that all agents participate,and

therefore revenue tends to infinity as ρ→ 1. When agents choose whether to participate,

revenue will be bounded, as agents may not participate as the system gets congested (see

Appendix B). The figure looks similar for other distributions of delay costs (see Appendix

D for a plot of other distributions).
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Figure 2: Revenue and delay cost for varying congestion level ρ. Delay costs are distributed according to
c ∼ U [0, 1] and the block size is K = 2, 000.

The current Bitcoin protocol uses a fixed µ and a fixed K, and therefore ρ varies with

demand. This is undesirable, as the amount of revenue generated can be too high or

too low relative to the desired levels of reliability and security. Instead, an alternative

design for the BPS can set (K,µ) by a rule that uses only information available in the

blockchain. When ρ < 1, the fraction of recent block capacity on the blockchain that

was used can serve as a good proxy for λ. Thus, a modification of current BPS protocol

can allow adjustments of (K,µ) in response to demand (within a range that is technically

feasible).

Such a rule can be implemented by modifying the adjustment of the hash difficulty.

Currently, the difficulty adjusts in accordance with the total computing power of the

network to maintain average block mining frequency of 10 minutes. Our suggested alter-

native design can similarly adjust the difficulty to maintain that on average a fraction ρ

of blocks is used.

The choice of (K,µ) should achieve the target revenue from transaction fees, and
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should minimize the delay costs imposed on users. Note that by appropriate choice

of (K,µ) in response to demand λ we can achieve desired ρ and desired revenue from

transaction fees in USD, regardless of exchange rate fluctuations. Raising revenue from

transaction fees requires positive ρ, and therefore delay costs. To better understand the

dependency on (K,µ) and the implied trade-offs between revenue and delay costs, we

provide the following simplified approximate expressions.

Lemma 14. For any ρ̂ ∈ [0, 1) we have that12

lim
K→∞

WK(ρ̂) = W∞(ρ̂) = 1 +
1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
where the function W∞ : [0, 1) → [1,∞) is explicitly given in Appendix E.4. Moreover,

W∞ (0) = 1,W ′
∞ (0) = 0 and W ′

∞ (ρ̂) > 0 for ρ̂ ∈ (0, 1).

A given transaction with ρ̂ ∈ [0, 1) will be processed within WK (ρ̂) blocks on average.

We have that 1 ≤ WK (ρ̂) <∞ because the inclusion of a transaction in a block depends

on how many pending transactions have accumulated at the time the block is generated,

and how the priority of the given transaction ranks among the accumulated transactions.

The former is random due to the random time between blocks, and the composition of

pending transactions is random due to the random arrival of transactions. When blocks

are fairly large there is still randomness due to their random arrival time, but the arrival

of higher priority transactions does not create much additional randomness.13 As a result,

WK (ρ̂) is almost independent of K for large K. Calculations show that the approximation

appears good already for K = 20; with Bitcoin’s K = 2000 we can comfortably use this

approximation. For additional intuition and the proof of Lemma 14, see Appendix E.4.

12Given arbitrary functions f(·) and g(·), and a positive function h(·), as ρ → 0, we will say that
f(ρ) = g(ρ) + O(h(ρ)) if lim supρ→0 |f(ρ) − g(ρ)|/h(ρ) < ∞, i.e., if the difference between f and g,
is asymptotically bounded above by some constant multiple of h. Similarly, we will say that f(ρ) =
g(ρ)+o(h(ρ)) if lim supρ→0 |f(ρ)−g(ρ)|/h(ρ) = 0, i.e., if the difference between f and g is asymptotically
dominated by every constant multiple of h.

13To gain intuition, consider a user i with delay costs ci that posts a transaction at time t0 when there
are no pending transactions. The following block arrives after some random time t·µ−1, where t ∼ Exp(1).
The probability that i’s transaction is included in the following block is the probability that, between t0
and t0+t·µ−1, less than K higher priority transactions arrive. The number of higher priority transactions
given t has distribution At ∼ Poisson

(
λF̄ (ci) · tµ−1

)
= Poisson (t ·Kρ̂). The realized number is random

because t is random and also because the number of arrivals given t, At, is random. However, the
variance of At is of order K, and therefore, as K → ∞, the number of arrivals given t measured in
block equivalents, At/K, can be well approximated by its expectation tρ̂. Thus, the probability that the
transaction will be included in the next block converges according to P(At < K) → P

(
t < ρ̂−1

)
, which

only depends on ρ̂.
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Using Lemma 14 we can give the following simplified expressions for revenue and delay

costs.

Theorem 15. For a fixed load ρ ∈ [0, 1), as the block size K →∞, we have that14

RevK(ρ) = K · Rev∞(ρ) + o(K),

DelayCostK(ρ) = K ·DelayCost∞(ρ) + o(K),

where

Rev∞(ρ) , ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc,

DelayCost∞(ρ) , ρ

ˆ c̄

0

cf(c)W∞
(
ρF̄ (c)

)
dc.

Theorem 15 offers simple approximations of the dependencies of revenue and delay

costs on K. The expressions Rev∞(ρ),DelayCost∞(ρ) are functions of only ρ and F . To

a good approximation, the dependency of RevK(ρ),DelayCostK(ρ) on K is only through a

scaling factor of both of these expressions. See Appendix D for plots showing the goodness

of approximation.

Note that Theorem 15 critically relies on the randomness of block inter-arrival times.

If ρ < 1 and blocks were to arrive at deterministic fixed time intervals (say, exactly every

10 minutes), then for large K every pending transaction would be processed in the next

block, and hence users would not have incentive to pay any transaction fees. The random

arrival of blocks allows the system with large blocks to generate revenue even when ρ < 1.

Figure 3 plots how the pairs (Rev∞ (ρ) ,DelayCost∞ (ρ)) vary with ρ, assuming the dis-

tribution of delay costs is c ∼ U [0, 1]. From Theorem 15, the pairs (RevK (ρ) ,DelayCostK (ρ)),

for any fixed K and varying ρ, are scaled versions of the depicted curve. Thus, the curve

informs us of the delay costs that are necessary for raising a given amount of revenue for

any K.

The figure shows that a significant amount of delay cost is necessary to raise even a

small amount of revenue. We formally show this in Theorem 16.

14Given arbitrary sequences {fK} and {gK}, and a positive sequence {hK}, as K → ∞, we will say
that fK = gK + o(hK) if lim supK→∞ |fK − gK |/hK = 0, i.e., if the difference between f and g is
asymptotically dominated by every constant multiple of h. Similarly, we will say that fK = gK + Ω(hK)
if lim infK→∞ |fK − gK |/hK > 0, i.e., if the difference between f and g is asymptotically bounded below
by some constant multiple of h.
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Figure 3: The parametric curve (Rev∞ (ρ) ,DelayCost∞ (ρ)) for ρ ∈ [0, 1), describing (up to a scaling
by blocksize) the achievable combinations of revenue and delay cost for systems with large blocksize. The
distribution of delay costs is taken to be c ∼ U [0, 1].

Theorem 16. For any F , as ρ→ 0, we have that

Rev∞(ρ) = O
(
e−1/ρ

)
,

DelayCost∞(ρ) = ρ · E [c] + o (ρ) .

In other words, for small values of the load ρ, the delay cost grows linearly, but the revenue

grows more slowly than any polynomial.

The intuition is as follows. For ρ ≈ 0 all transactions are likely to be processed in the

next block regardless of their priority, because a block is unlikely to reach its maximal

size. In contrast, total delay costs scale linearly as every transaction needs to wait for at

least one block, and higher ρ implies more waiting. Therefore, as the load increases from

ρ ≈ 0 both revenue and delay costs increase, but delay costs grow more than exponentially

faster than revenue.

Together with Theorem 15, this implies that using a larger K to raise a desired level

of revenue R∗ would yield unfavorable results. We formally state this as the following

theorem.

Theorem 17. Consider a desired level of revenue R∗ > 0 and a block size K. Define
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DelayCost∗K(R∗) to be the delay cost required to achieve revenue R∗ under the approxima-

tion for large K, i.e.,

DelayCost∗K(R∗) , K DelayCost∞
(
Rev−1

∞ (R∗/K)
)
,

with Rev−1
∞ (R∗) , inf

{
ρ > 0 : Rev∞(ρ) ≥ R∗

}
being the minimal load required to

achieve revenue R∗.

Then,

DelayCost∗K(R∗) = Ω

(
K

logK

)
.

Figure 4 illustrates the possible attainable values for revenue and delay given different

values of K and ρ, assuming delay costs are distributed uniformly in [0, 1]. Each curve

shows the attainable values for revenue and delay for a fixed value of K and a range of

possible ρ. The plot shows that a lower value of K allows raising any level of revenue at

a lower delay cost to users.
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Figure 4: Possible pairs of revenue and delay cost as ρ varies, for different values of K, where delay costs
are distributed according to c ∼ U [0, 1].

Each curve’s two main features are (i) monotonicity – longer delays are required to

generate more revenue, and (ii) the curve is asymptotically vertical at the origin, i.e., to

move from zero to some revenue, the delay cost has to be substantial. These insights

transcend the specific U [0, 1] distribution of c underlying the figure. However, note that
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these calculations ignore technological constraints and assume that no users opt out of

the system. All curves are approximately a scaled version of the curve in Figure 3 (note

the logarithmic scale for the vertical axis), as implied by Theorem 15.

To summarize, this analysis suggests the following simple adaptation to the current

protocol. First, a smaller block size K is preferable. Second, an adjustment of the block

rate to µ = λ/ (Kρ∗) in response to demand λ. This keeps congestion constant at ρ∗,

yielding a stable, desired level of revenue.15

6 Data

6.1 Mining profitability

We compare our results to empirical estimates given by Croman et al. (2016) who estimate

that the total expenditure of miners during October 2015 was approximately 5,840 USD

per block. Croman et al. (2016) attribute the vast majority of the cost to the costs of elec-

tricity and hardware used in the attempts to get selected to mine the next block. During

that period the mining reward per block was 25 bitcoins plus negligible transaction fees,

or approximately 6,000 - 7,500 USD (the bitcoin-USD exchange rate fluctuated during the

month). This back of the envelope calculation suggests that miners who buy electricity at

market prices approximately break even, which is consistent with our analysis. Websites

that offer information to potential miners about mining profitability of various cryptocur-

rencies16 give advice that is consistent with this observation. Furthermore, while some

groups controlled a significant fraction of the computational power in the network, there

is no evidence that even large miners tried to influence fee levels.

6.2 The relation between congestion and transaction fees

Average block size in MB can be used as measure of the actual congestion in the BPS.

In practice, until August 21st 2017 the BPS limited blocks to 1MB of data per block,

which corresponds to approximately K = 2, 000 transactions per block. In our model the

congestion parameter ρ is equal to the average number of transactions per block divided

by K. Analogously, we interpret the average size of a block relative to the 1MB limit

as a proxy for congestion ρ. Each point in Figure 1 corresponds to one day in the BPS,

15Clearly, there are communication and other limitations that limit the range of feasible µ and K. This
paper ignores these engineering challenges.

16https://www.coinwarz.com/cryptocurrency/, retrieved 6/20/2017.
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displaying daily average transaction fees per block and daily average block size.17 The

plot also includes a solid line generated by our model as follows. We set K = 2, 000, and

normalize time so that a time unit is 10 minutes and set µ = 1. The distribution of users’

delay cost is unknown, and arbitrarily set to F = U [0, c̄] with c̄ = 0.1 USD/10 minutes.

The resulting total revenue per unit time Rev2000 (·) is the expected total transaction fees

per block, which is displayed by the solid black line in Figure 1.

Note that the solid line produced by our model matches the broad patterns in the data.

Figure 1 shows that transaction fees are negligible when congestion is low. Transaction fees

become substantial when congestion reaches 80%. As congestion approaches 1 transaction

fees increase rapidly, even though the system has excess capacity.

7 Conclusion

Starting with the simple questions of who pays for the Bitcoin payment system, why and

how much, this paper offers economic analysis of this radically novel payment system. It

compares the new, blockchain-based system with traditional payment systems, delivers

empirical implications which appear consistent with the data, and applies the analysis to

suggest design improvements.

A comprehensive comparison between the BPS and a traditional payment system

operated by a profit maximizing firm requires consideration of multiple attributes, many

of them are outside the scope of the analysis in this paper. As opposed to traditional

systems, the BPS does not require trust in any entity. On the other hand, the BPS cannot

provide some services: for instance, transactions cannot be reversed in case of error or

fraud, and users who lose the credentials to their accounts cannot retrieve their balances.

The BPS differs from traditional payment systems also in that it supports only trans-

actions denominated in the system’s native coin, bitcoin. That native coin has value

because payment recipients are willing to exchange a credit in it for other goods, services

or traditional currencies. A bitcoin recipient accords it value because he believes it will

be acceptable to future potential recipients. Embedded in this belief is the expectation of

the continued viability of the BPS.

Another feature that sets Bitcoin apart is that a protocol rather than a managing

17Transaction fee and block size data is from http://blockchain.info, the number of blocks
per day is from https://data.bitcoinity.org. Each point is a daily average over the interval
4/1/2011–6/30/2017. The starting date 4/1/2011 was selected as this is roughly when the fees per
block started exceeding 1 USD. The end date does not extend to present day because the BPS changed
the method for calculating a block’s size in August 2017.
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organization runs Bitcoin. Unlike a managing organization, a protocol lacks an easily

workable mechanism to change prices, offerings and rules, implying the stability of these

attributes.

The blockchain protocol presents a novel economic design that would merit an economist’s

attention and scrutiny even if it had not been functional. Currently the BPS handles

daily transactions worth several billion dollars in aggregate which can serve as a com-

pelling proof of concept and should further encourage economists to study this marvelous

structure and its future descendants.
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A A Brief Description of the Bitcoin Payment Sys-

tem

This appendix provides a simplified explanation of the permissionless blockchain protocol

that underlies the Bitcoin payment system and is the basis of many other cryptocurrencies.

The description focuses on the economic elements.18 In order to describe what the Bitcoin

system does, it is useful to first explain what is needed for a payment system such as

PayPal or FedWire, or the maintenance of electronic balances in a modern bank.

An electronic payment system functions as a record (or a ledger) of accounts. Each

account is associated with a user and his balance. It allows users to check their balances,

and allows a user to debit his balance and credit the debited amount to another account.

18In particular, this description omits discussion of potential attacks on the system. For further details
and an explanation of the cryptographic elements of the system please refer to Narayanan et al. (2016).
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Only an account owner can debit the account. Balances do not change without a legal

transfer, i.e., a transfer that conforms to the system’s stated rules.

One simple implementation is just a spread-sheet (or another bookkeeping device)

that only a trusted authority can modify. Allowing multiple computers to maintain and

update the ledger requires a more elaborate structure. This distributed ledger structure

requires synchronization across the servers, but is, in principle, more robust than a single

server system. Maintaining consensus in a distributed computer system has been known

to be straightforward, as long as the computers are trusted (see Tanenbaum & Van Steen

(2007)).

The Bitcoin system is designed for an environment which lacks a trusted authority.

Therefore, its ledger must be maintained and updated by a collection of computer servers,

called miners, none of which is trusted. They are assumed to be selfish, i.e., to respond

to incentives in a profit maximizing way. Moreover, they offer or withdraw their services

according to profit opportunities they perceive.

Although legal transactions are processed by untrusted miners, the system as a whole

is secure, i.e., it processes all legal transactions, and no other transaction. The collection of

miners jointly holds a single ledger, meaning that there must be consensus among miners

about current balances. Moreover, consensus must be maintained as balances change.

Bitcoin’s ledger is a public database called blockchain, which can be verified by third

parties through cryptography. The system arranges for the miners to be compensated for

their services in such a way that when each of them maximizes his profit and believes

that other miners similarly maximize their profits, the system has the properties sketched

above.

Initially all balances are at zero. Over time the protocol mints new coins which it adds

to the balances of successful miners. The system holds the record of all balance changes.

The manifestation of a transaction is a message which a sending account transmits to

all the miners. It states the sending account, receiving account, amount transferred,

transaction fee, and a cryptographic signature by the sending account. A transaction is

processed by adding the appropriate message to the end of the ledger. The cryptographic

signature allows any third party to verify that the transaction was indeed authorized by

the holder of the sending account. Since the ledger is public, any third party can verify

that the sender indeed held a balance sufficient for the transfer.

The public ledger is saved in the distributed blockchain format, in which the transac-

tion data is partitioned into a sequence of blocks. These blocks are periodic updates to the

ledger. Notably, the ledger does not update instantly following the appearance of a new
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transaction. Rather, it updates on average every ten minutes with a block summarizing a

subset of the recent pending transactions which hadn’t been included in a previous block.

Remaining unprocessed transactions wait to be processed in future blocks. As of July

2017, the maximal block size is 1MB.19

New transactions are processed when they are included in a block that is added to

the ledger, which happens as follows. Each miner holds a copy of the current ledger

i.e., all previous blocks. All transaction requests are broadcast to all miners. The set

of pending transactions that reach each miner may vary slightly across miners due to

network imperfections, rendering non-trivial the choice of a universally agreed upon record

of transactions. To ensure that Bitcoin maintains a unique record of transactions, a single

miner is selected to add a block of transactions to the ledger. Since there is no trusted

authority to make the selection, a tournament is used to randomly select a winning miner.

To participate in the tournament miners exert effort20 (known as proof of work) that is

useful only for generating a verifiable random selection of a miner without the need of a

trusted randomization device.

Periodically (currently approximately every 10 minutes), the tournament randomly

selects one miner as the winner, assigning his block as the next in the chain, thereby

making that block a mined block. The mined block is transmitted to all the other miners,

who verify the legality of that block and vet all transactions included in the block. Miners

add a newly mined legal block to their copy of the ledger and proceed to add new blocks

on top of it. Miners ignore mined blocks that are not legal.

19As of July 2017, the protocol limits each block to 1MB of data to ensure each block can be trans-
mitted promptly throughout the network. This limits each block to no more than approximately 2,000
transactions, as the average transaction uses 0.5KB of data (Zohar 2015).

20The tournament selects a random winner without the need of a trusted authority through use of
a hash function. The hash function is a deterministic one-way function that produces a hash value,
interpreted as a pseudo-random real number between 0 and 1. A block is said to be a winning block if it
is a legal block and its hash value is below a target value. A legal block contains, in addition to transaction
data, an unrestricted “nonce” field for which the miner can input any numerical value. The cryptographic
properties of the hash function imply that finding such a block requires a brute-force search, iterating
over numerical values for the nonce and computing the hash value for each of them. Roughly speaking,
each attempt for a value of the nonce generates an independent random draw of a hash value, distributed
uniformly between 0 and 1.

To participate in the tournament, miners assemble their blocks and use their computational power
to iterate over values of the nonce. Each attempt for a nonce value has an independent probability of
generating a winning block, with probability equal to the target value. Because the target value is very
small, a miner’s chance to win the tournament within a time period is proportional to the number of
nonce values attempted within the period. A miner with a winning block is said to “mine the block”,
and the winning block can be verified by any third party by recomputing the hash.

The target value adjusts over time so that a block is mined every 10 minutes (on average). For example,
if the overall computational power of miners doubles, then the target value is halved and twice as many
attempts (on average) are required to find a winning block.
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The tournament-winning miner is paid a reward when he mines a new block, but can

withdraw his reward only after newer blocks augment the chain on top of his block. Other

miners will build on top of his block only if they consider it legal. Hence the incentive to

assemble and create legal blocks. Consensus forms on a ledger that includes the new block.

The process continues in the same manner for the following ten minutes (on average) and

so on.21

The miner that created a block is paid from two sources. One consists of newly

minted coins the exact number of which is protocol-determined and is decreasing with

time. (Crediting successful miners with newly minted coins moves the system early on

from having zero balances to having positive ones.) The second consists of the fees offered

by the transactions in the mined block. This second source is the focus of the paper.

This system will have the following desired properties. All miners are synchronized

to hold the same ledger of processed transactions. No single miner controls the system,

because every 10 minutes the ability to process transactions is given to a randomly chosen

miner. Balances change only with a legal transaction because any transaction that is

added is vetted by other miners to be valid, and transactions cannot be deleted from the

ledger.

B Endogenous Entry

The analysis in Section 4.2 assumed that the reward RL, RH is sufficiently high for all

users receive positive net reward. Lemma 8 shows that all users receive positive net reward

if ˆ c̄

0

µ−1WK

(
ρF̄ (c)

)
dc ≤ RL.

This section extends the analysis to values of R for which the inequality is not satisfied.

For simplicity, assume that RH = RL = R and let c∗ ∈ [0, c̄] be the unique solution to

ˆ c∗

0

µ−1WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc = R.

It is straightforward to verify that in equilibrium users with delay cost ci /∈ [0, c∗] opt out

of the system, and that a user with delay cost ci ∈ [0, c∗] chooses a transaction fee

21There is a small probability that two or even more blocks are vying to be accepted as the newest
block. This situation is called a fork. Bitcoin’s convention calls for newer blocks to be built on top of
the longest chain. This convention resolves forks. Eyal & Sirer (2014) analyze strategic issues between
miners.
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b (ci) = ρ

ˆ ci

0

f (c) · c · µ−1W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc.
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Figure 5: Total revenue per block as a function of ρ when c ∼ U [0, 1]. The curve Rev2000(ρ) shows total
revenue from transaction fees when WTP is sufficiently high so that the participation constraint does not
bind for any user, and is only defined for 0 ≤ ρ < 1. The curve Rev2000(ρ|R = 10) shows total revenue
from transaction fees when all users have WTP equal to 10 USD, and is defined for any ρ ≥ 0.

The system’s revenue and total delay cost are given by

RevK(ρ|R) = Kρ2

ˆ c∗

0

cf(c)
(
F̄ (c)− F̄ (c∗)

)
W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc,

DelayCostK(ρ|R) = Kρ

ˆ c∗

0

cf(c)WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc.

The infrastructure available to the system is given by the number of miners

N =
RevK(ρ|R)

cm
.

Note that these expressions coincide with their counterparts in Section 4.2 when c∗ = c̄.
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Figure 5 provides an illustration of these results.

C Attributes of transaction fees
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Figure 6: The dependence of equilibrium transaction fees on congestion ρ for fixed user’s delay cost c.
Block size is taken to be K = 2, 000, block arrival rate µ = 1 and delay costs are distributed according to
c ∼ U [0, 1].

Figure 6 and 7 illustrate how transaction fees depend on the user’s delay cost c and the

overall congestion ρ. Both figures display equilibrium fees when c is distributed uniformly

over [0, 1], the block size is K = 2, 000 and µ = 1. Figure 6 shows how the transaction

fees chosen by users in equilibrium vary with the overall system congestion ρ. Transaction

fees are very small when the system is not congested, but can be arbitrarily high as ρ

approaches 1.

Figure 7 shows that the transaction fees increase with the user’s delay cost, but do

not vary much among users with high delay cost. One way to understand the result is

by noting that offering high fees, users with high delay costs receive high priority and

therefore are likely to be processed in the next block. All users within the same block are

treated equally.

To form a complementary interpretation, observe that the expected wait for a user

with cost ci is WK(ρ̂) with ρ̂ , ρF̄ (ci) < F̄ (ci). When ρ̂ is small the expected wait WK(ρ̂)
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Figure 7: The dependence of equilibrium transaction fees on the user’s delay cost c for fixed congestion
ρ. Block size is taken to be K = 2, 000, block arrival rate µ = 1 and delay costs are distributed according
to c ∼ U [0, 1].

is not very sensitive to variations in ρ̂, and therefore users with a high ci are only slightly

harmed when someone gains priority over them. However, WK(ρ̂) can be very sensitive

to changes in ρ̂ when ρ̂ is close to 1, and thus the externality on users with low delay

cost can be substantial. All users with sufficiently high delay cost, for example ci > 0.7,

impose the same externality to other users with delay costs cj ∈ [0, 0.7], plus a relatively

small externality to other users with delay costs cj ∈ (0.7, ci).

D Additional Figures

This appendix provides additional plots showing the goodness of approximation in The-

orem 15, illustrating the delay function WK(ρ), and showing that different waiting cost

distribution yield similar results.
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Figure 8: Normalized revenue RevK(ρ)/K when c ∼ U [0, 1] and K ∈ {20, 200, 2000, 20000}, compared
to the limiting values obtained from the approximation using W∞ (·). The plot may appear to have only
one line because all lines overlap.
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Figure 9: Normalized revenue RevK(ρ)/K when c ∼ U [0, 1] and K ∈ {20, 200, 2000, 20000}, compared
to the limiting values obtained from the approximation using W∞ (·). The plot may appear to have only
one line because all lines overlap.
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Figure 10: The expected delay in blocks WK (ρ) of the lowest priority transaction given ρ = λ/µK and
K ∈ {20, 200, 2000, 20000}.
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Figure 11: Revenue for K = 2000 and waiting costs c distributed (i) uniformly on [0, 1], (ii) as an
exponential with mean 1 (iii) as a Log-normal with mean and variance equal to 1. All were calculated
using the asymptotic approximation. The plot also shows Rev2000 (ρ) for the uniform distribution in a
dotted line that overlaps the asymptotic approximation.
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Figure 12: Delay costs for K = 2000 and waiting costs c distributed (i) uniformly on [0, 1], (ii) as an
exponential with mean 1 (iii) as a Log-normal with mean and variance equal to 1. All were calculated
using the asymptotic approximation. The plot also shows Rev2000 (ρ) for the uniform distribution in a
dotted line that overlaps the asymptotic approximation.

E Proofs

E.1 Queueing Analysis

In this section, we will establish the main queueing result, which is the waiting time

expression of Lemma 6. We begin with a standard result from the analysis of bulk service

systems (e.g., Section 4.6, Kleinrock 1975):

Lemma A1. Consider a queue system consisting of a single queue, with arrivals according

to a Poisson process of rate λ ≥ 0 and bulk service in batches of size up to K ≥ 1

with service times exponentially distributed with parameter µ > 0. Suppose that the load

ρ , λ/(µK) ≥ 0 satisfies ρ < 1. Then, the queueing system is stable, and the steady-state

queue length Q has the geometric distribution

P(Q = `) = (1− z0)z`0, ` = 0, 1, . . . .

Here, the parameter of the geometric distribution z0 , z0(ρ,K) is given as unique solution
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of the polynomial equation

zK+1 − (Kρ+ 1)z +Kρ = 0,

in the interval [0, 1).

Lemma A1 and Little’s Law are used to prove the following, which implies Lemma 6:

Lemma A2. Consider a transaction, and let λ̂ be the arrival rate of higher priority trans-

actions (i.e., transaction that offer greater fees). The expected time until the transaction is

processed is a function of the block size K, the block arrival rate µ, and the load parameter

ρ̂ , λ̂/µK ∈ [0, 1), and is equal to

µ−1WK (ρ̂) =
1

µ

1

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

) .
Here, z0 , z0(ρ̂, K) ∈ [0, 1) is the polynomial root defined in Lemma A1.

The quantity WK(ρ̂) ≥ 1 is the expected waiting time measured in blocks. It satisfies

W ′
K(ρ̂) > 0, ∀ ρ̂ ∈ (0, 1).

Finally, we have that

WK(0) = 1; lim
ρ̂→1

WK(ρ̂) =∞; W ′
K(0) = 0, if K > 1; lim

ρ̂→1
W ′
K(ρ̂) =∞.

Proof. While this result can be established directly using a generating function argument,

we will instead use a more intuitive approach based on Little’s Law.

To start, consider a queueing system with arrival according to a Poisson process of

rate λ̂, exponential service time with parameter µ, and batch size K. Define W̄K(ρ) to

be the average waiting time of a user in this system measured in multiples of the mean

service time µ−1. Here, we highlight the dependence on the load ρ̂ = λ̂/µK. Lemma A1

implies that the mean queue length is given by

E[QK ] =
z0(ρ̂, K)

1− z0(ρ̂, K)
.

Applying Little’s Law,
z0(ρ̂, K)

1− z0(ρ̂, K)
= λ̂

W̄K(ρ̂)

µ
. (12)

Now, Little’s Law (12) holds no matter what the service discipline. In particular, we
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can specialize to the case where users are given preemptive priority service, where each

user is given a priority type drawn uniformly over the interval [0, ρ̂], and where service for

users of lower numerical priority type preempts service for higher numerical priority type.

Define WK(ρ) to be the expected waiting time (in multiples of the mean service time) for

users with priority type ρ ∈ [0, ρ̂]. Then,

W̄K(ρ̂) =
1

ρ̂

ˆ ρ̂

0

WK(ρ) dρ.

Substituting into (12), we have that

z0(ρ̂, K)

1− z0(ρ̂, K)
= K

ˆ ρ̂

0

WK(ρ) dρ.

Differentiating with respect to ρ̂ and simplifying, we have that

WK(ρ̂) =
∂ρ̂z0(ρ̂, K)

K (1− z0(ρ̂, K))2 . (13)

In order to simplify this expression, we will use the implicit function theorem. Denote

by QK(z, ρ̂) the degree K polynomial in z defined by

zK+1 − (Kρ̂+ 1)z +Kρ̂ =
(
z0(ρ̂, K)− z

)
QK(z, ρ̂), ∀ (z, ρ̂) ∈ R× [0, 1). (14)

This polynomial exists and is unique since z0 , z0(ρ̂, K) is a root of the degree K + 1

polynomial on the left side. We apply the implicit function theorem and differentiate (14)

with respect to (z, ρ̂) ∈ R× [0, 1) to obtain

(K + 1)zK − (Kρ̂+ 1) = −QK(z, ρ̂) +
(
z0(ρ̂, K)− z

)
∂zQK(z, ρ̂), (15)

−Kz +K = ∂ρ̂z0(ρ̂, K)QK(z, ρ̂) +
(
z0(ρ̂, K)− z

)
∂ρ̂QK(z, ρ̂). (16)

Substituting z = z0(ρ̂, K) into (15), we have that

QK(z0, ρ̂) = 1 +Kρ̂− (K + 1)zK0 . (17)

The same substitution into (16) yields that

∂ρ̂z0(ρ̂, K) = K
1− z0

QK(z0, ρ̂)
= K

1− z0

1 +Kρ̂− (K + 1)zK0
. (18)
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Substituting (17)–(18) into (13) yields the desired result that

WK (ρ̂) ,
1

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

) . (19)

We will now show that W ′
K(ρ̂) > 0. Differentiating (19),

W ′
K(ρ̂) =

(
QK(z0, ρ̂) +K(K + 1)(1− z0)zK−1

0

)
∂ρ̂z0(ρ̂, K)−K(1− z0)(

(1− z0)QK(z0, ρ̂)
)2

Substituting z = z0(ρ̂, K) into (15), we have that

∂ρ̂z0(ρ̂, K) =
K(1− z0)

QK(z0, ρ̂)
= K(1− z0)2WK(ρ̂).

Then,

W ′
K(ρ̂) = K

(
QK(z0, ρ̂) +K(K + 1)(1− z0)zK−1

0

)
−QK(z0, ρ̂)

(1− z0)QK(z0, ρ̂)3

=
K2(K + 1)zK−1

0

QK(z0, ρ̂)3

= K2(K + 1)zK−1
0 (1− z0)3WK(ρ̂)3.

(20)

Since the waiting time must be at least one block, WK (ρ̂) ≥ 1. Since z0 < 1 and, if

ρ̂ ∈ (0, 1), z0 6= 0 also, we have that W ′
K(ρ̂) > 0. Furthermore, since z0(0, K) = 0, it is

clear that

WK(0) = 1, W ′
K(0) =

2 if K = 1,

0 if K > 1.

Finally, we consider the asymptotic limits of WK(·) and W ′
K(·) as ρ̂ → 1. Factoring

the defining polynomial for z0 ∈ [0, 1), we have that

0 = zK+1
0 − (Kρ̂+ 1)z0 +Kρ̂ = (1− z0)

(
Kρ̂−

K∑
`=1

z`0

)
.

Therefore, z0 satisfies

ρ̂ =
1

K

K∑
`=1

z`0 ≤
1

K

K∑
`=1

z0 = z0 < 1,

where the inequalities follow since z0 ∈ [0, 1). Taking a limit as ρ̂ → 1, clearly z0 → 1
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and QK(z0, ρ̂)→ 0. Therefore, from (19), WK (ρ̂)→∞, and also from (20),

lim
ρ̂→1

W ′
K(ρ̂) = lim

ρ̂→1

K2(K + 1)zK−1
0

QK(z0, ρ̂)3
=∞.

E.2 Equilibrium

Proof of Proposition 7: We consider agents equilibrium decisions conditional on being

forced to participate. Let G denote the the cumulative distribution function of transaction

fees in some equilibrium, and let b(ci) be a transaction fee chosen by agents with delay

cost ci. Consider a user i with delay cost ci. The user chooses his transaction fee b to

maximize his net reward

Ri − b− ci ·W (b | G) ,

with W (b | G) denoting the expected delay given transaction fee b and the CDF G. By

Lemma 6 the expected delay is decreasing with b, and standard arguments (see Lui (1985),

Hassin & Haviv (2003)) imply that b (ci) is increasing in ci and b (0) = 0. Monotonicity

of b (·) implies that G (b (c)) = F (c). Therefore we have that

ρ̂ (ci) =
λ · (1−G (b (ci)))

µK
= ρ · F̄ (ci) ,

and

W (b | G) = µ−1WK

(
ρ · Ḡ (b)

)
= µ−1WK

(
ρ · F̄ (ci)

)
.

Each agent is bidding optimally if and only if

b(ci) ∈ arg min
b
{c ·W (b | G) + b}.

The first order condition implies

W ′ (bi | G) = − 1

ci
.

Plugging in G′ (bi) = f (ci) /b
′ (ci), we have that
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µ−1W ′
K

(
ρ · Ḡ (b)

)
· (−ρf (ci) /b

′ (ci)) = − 1

ci
,

or

b′ (ci) = ciρf (ci)µ
−1W ′

K

(
ρF̄ (ci)

)
.

Integration together with the fact that b (0) = 0 yields

b (ci) = ρ

ˆ ci

0

f (c) · c · µ−1W ′ (ρF̄ (c)
)
dc.

Transaction fees coincide with the payments that result from selling priority in a VCG

auction because of revenue equivalence. To directly see that b(ci) is the externality im-

posed by ci, write the expected wait in terms of arrival rate of higher priority transactions

as µ−1W̃K

(
λ̂
)
, µ−1WK

(
λ̂/µK

)
. The transaction sent by ci affects the waiting time

of transactions with lower priority that are sent by users with 0 ≤ c < ci; higher priority

transactions are not affected. Integration over all affected types implies that the exter-

nality imposed by a marginal increase in the volume of transaction from users with ci

is ˆ ci

0

λf (c) · c · µ−1W̃ ′
K

(
λF̄ (c)

)
dc = b (ci) .

Finally,

b (ci) = ρ

ˆ ci

0

cf (c)µ−1W ′
K

(
ρF̄ (c)

)
dc

= −
ˆ ci

0

c
(
µ−1WK

(
ρF̄ (c)

))′
dc

=

ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc−

[
cµ−1WK

(
ρF̄ (c)

)]∣∣ci
0

=

ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc− ciµ−1WK

(
ρF̄ (ci)

)
=

ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc− ciµ−1WK

(
ρF̄ (ci)

)
.

Therefore,

u (Ri, ci) = Ri − ci ·W (b(ci) | G)− b(ci)

= Ri −
ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc.
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Proof of Lemma 8: First, assume that all users participate. From Proposition 7 the equi-

librium net surplus of an agent (Ri, ci) conditional on all agents participating is

u (Ri, ci) = Ri − µ−1

ˆ ci

0

WK

(
ρF̄ (c)

)
dc.

Because u (Ri, ci) is decreasing in Ri, ci we have that for all (Ri, ci)

u (Ri, ci) ≥ u (RL, c̄)

= RL − µ−1

ˆ c̄

0

WK

(
ρF̄ (c)

)
dc

= RL − R̄ > 0.

Additionally, we have that WK is an increasing function, which implies that the utility

u (RL, c̄) increases if less agents participate. Therefore, it is a strict best response for

all agents to participate regardless of the participation decisions of other users. In other

words, all agents participate in equilibrium and receive net surplus u (Ri, ci) ≥ u (RL, c̄) >

0.

Proof of Theorem 9: From Lemma 8 we have that all agents participate and receive

strictly positive surplus. From the expressions derived in Proposition 7 we have that

transaction fees are b (ci) are and independent of the user’s WTP and the exchange rate

(a change in the exchange rate may change the nominal value written into the transaction,

as users observe the exchange rate. Users trade off fees in USD against delay cost in USD

equivalents).

Finally, if ρ > 0 we have that b (ci) > 0 and the system raises strictly positive revenue.

Proof of Corollary 10: Note that if the conditions of Theorem 9 are satisfied, they will

also be satisfied if we increase WTP R of some or all the users. Therefore, both before and

after the increase, the equilibrium transaction fees are given by b (ci) which is independent

of WTP R.

E.3 Delay and Revenue

In this section, we establish results relating to the total revenue generated by users and

the total delay cost experienced by users in equilibrium. Theorems 11 and 12, which
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provides an expressions for the total revenue and delay cost, are implied by the following

result:

Theorem A3. The total revenue per unit time raised from users is

RevK(ρ) = Kρ2

ˆ c̄

0

cf(c)F̄ (c)W ′
K

(
ρF̄ (c)

)
dc (21)

= Kρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc. (22)

The total delay cost per unit time incurred by users is

DelayCostK(ρ) = Kρ

ˆ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc. (23)

The total overall cost per unit time borne by users is

TotalCostK(ρ) , RevK(ρ) + DelayCostK(ρ) = Kρ

ˆ c̄

0

F̄ (c)WK

(
ρF̄ (c)

)
dc. (24)

Proof. Transactions arrive per unit time at rate λ, and the expected revenue per trans-

action is ˆ c̄

0

f(c)b(c) dc.

Therefore, the total expected revenue per unit time is

RevK(ρ) = λ

ˆ c̄

0

f(c)b(c) dc

= Kρ2

ˆ c̄

0

ˆ c

0

f(c)sf(s)W ′
K

(
ρF̄ (s)

)
ds dc

= Kρ2

ˆ c̄

0

ˆ c̄

s

f(c)sf(s)W ′
K

(
ρF̄ (s)

)
dc ds

= Kρ2

ˆ c̄

0

sf(s)F̄ (s)W ′
K

(
ρF̄ (s)

)
ds.

This establishes (21). For (22), we integrate by parts with

u = KρsF̄ (s), du = Kρ
(
F̄ (s)− sf(s)

)
ds,

dv = ρf(s)W ′
K

(
ρF̄ (s)

)
ds, v = −WK

(
ρF̄ (s)

)
,
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to obtain

RevK(ρ) = uv
∣∣∣c̄
0
−
ˆ c̄

0

v du

= Kρ

ˆ c̄

0

(
F̄ (s)− sf(s)

)
WK

(
ρF̄ (s)

)
ds,

as desired.

For the delay cost, note that the expected delay cost per transaction is

ˆ c̄

0

f(c) · cµ−1WK

(
ρF̄ (c)

)
dc.

Since transactions arrive at rate λ, the total expected revenue per unit time is then

DelayCostK(ρ) = λ

ˆ c̄

0

cf(c)µ−1WK

(
ρF̄ (c)

)
dc

= Kρ

ˆ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc,

as desired. The expression for total cost per unit time (24) follows by combining (22) and

(23).

Corollary 13, which establishes that total revenue and delay costs are increasing as

functions of the load parameter ρ, is implied by the following result:

Corollary A4. In equilibrium, if ρ = 0, both revenue and delay cost are zero. For all

ρ ∈ (0, 1),

Rev′K(ρ) = Kρ

ˆ c̄

0

F̄ (c)2W ′
K

(
ρF̄ (c)

)
dc > 0,

DelayCost′K(ρ) =
TotalCostK(ρ)

ρ
> 0.

In other words, both revenue (and with it infrastructure provision by miners) and delay

cost are strictly increasing in ρ.
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Proof. Differentiating (22) and applying (21),

Rev′K(ρ) = K

ˆ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc

+Kρ

ˆ c̄

0

(
F̄ (c)2 − cf(c)F̄ (c)

)
W ′
K

(
ρF̄ (c)

)
dc

=
RevK(ρ)

ρ
+Kρ

ˆ c̄

0

F̄ (c)2W ′
K

(
ρF̄ (c)

)
dc− RevK(ρ)

ρ

= Kρ

ˆ c̄

0

F̄ (c)2W ′
K

(
ρF̄ (c)

)
dc.

Similarly, differentiating (23) and applying (21) and (24),

DelayCost′K(ρ) = K

ˆ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc+Kρ

ˆ c̄

0

cf(c)F̄ (c)W ′
K

(
ρF̄ (c)

)
dc

=
DelayCostK(ρ)

ρ
+

RevK(ρ)

ρ
=

TotalCostK(ρ)

ρ
.

E.4 Large Block Asymptotics

In this section, we establish asymptotic results in a “large block size” asymptotic regime.

This is a regime where we consider a sequence of systems where the load parameter

ρ , λ/(µK) ∈ [0, 1) is held constant, while the block size K →∞.

The first result we establish in this regime is Lemma 14. The core of this Lemma is the

observation that, in the large block regime, the expected waiting time measured in blocks,

WK(ρ), is independent of K. The main intuition for this result is as follows. Fix the value

of ρ. Consider a sequence of system, indexed by the block size K, each with load ρ, as

K →∞. When K is large, the arrival rate of new transactions must be very large relative

to the service rate as which blocks are generated. Without loss of generality, suppose that

the arrival rate of the Kth system is λK = ρK and the service rate of every system is

µ = 1, so the the load of each system is λK/(µK) = ρ as desired. Now, over an interval

of time of length t, the number of arrivals is given by a Poisson(λKt) = Poisson(ρKt)

distribution. Measured in units of the block size, this scaled number of arrivals process

has the distribution
1

K
Poisson(ρKt)→ ρt,

as K → ∞, where the convergence is because the random variable on the left side has
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variance tending to zero, and hence is well-approximated by its mean. In other words, in

this asymptotic regime, the number of new transactions is approximately deterministic

and of order K, while services are at random times and also of order K. Therefore, it

is natural to expect that the number of queued transactions, scaled by the block size K,

converges in distribution as K →∞.

The following lemma makes this intuition precise:

Lemma A5. Consider a sequence of bulk service queueing systems (as in Lemma A1)

indexed by block size K ≥ 1 with a fixed load parameter ρ ∈ (0, 1), as K → ∞. Define

the random variable QK to be the steady state distribution of the system when the block

size is K.

Then, QK is geometrically distributed with parameter z0(ρ,K) (cf. Lemma A1), where

z0(ρ,K) asymptotically satisfies

z0(ρ,K) = 1− α(ρ)/K + o(1/K), (25)

as K →∞. Here, where α(ρ) > 0 is the unique strictly positive root of the transcendental

algebraic equation

e−α + ρα− 1 = 0.

Moreover, define Q̃K , QK/K to be the random variable corresponding to the steady

state queue length when the block size is K, measured in units of the block size K. Then,

as K → ∞, Q̃K converges in distribution to an exponential distribution with parameter

α(ρ).

Proof. Fix ρ ∈ (0, 1).

First, we will show that α(ρ) is well-defined. Define the transcendental function

T (α) , e−α + ρα− 1.

Clearly T (0) = 0, T ′(0) < 0, and limα→∞ T (α) =∞. By the intermediate value theorem,

there is at least one strictly positive root. Further, since T ′′(α) > 0 for all α ≥ 0, the root

must be unique. Thus,

T (α) < 0, ∀ 0 < α < α(ρ); T (α) > 0, ∀ α > α(ρ). (26)

50



Next, we wish to prove (25). From Lemma A1, recall the polynomial defining z0,

PK(z) , zK+1 − (Kρ+ 1)z +Kρ.

Note that

PK(0) = Kρ > 0, PK(1) = 0, P ′K(1) = K(1− ρ) > 0,

so PK(z) must be positive for z sufficiently close to zero, and must be negative for z

sufficiently close to (but less than) 1. Since z0 is the unique root of PK(·) in the interval

[0, 1), we have that

PK(z) > 0, ∀ 0 ≤ z < z0(ρ,K); PK(z) < 0, ∀ z0(ρ,K) < z < 1. (27)

Now, fix an arbitrary ε > 0. Define

νK , 1− α(ρ) + ε

K
, νK , 1− α(ρ)− ε

K
.

Then,

lim
K→∞

PK(νK) = lim
K→∞

νK+1
K − (Kρ+ 1)νK +Kρ

= lim
K→∞

νK

(
1− α(ρ) + ε

K

)K
+ (Kρ+ 1)

α(ρ) + ε

K
− 1

= e−
(
α(ρ)+ε

)
+ ρ
(
α(ρ) + ε

)
− 1

= T
(
α(ρ) + ε

)
> 0,

where (26) is used for the final inequality. Thus, for all K sufficiently large, PK(νK) > 0.

By (27), this implies that, for all K sufficiently large, z0(ρ,K) > νK . Combining this

with an analogous argument applied to νK , we have that, for all K sufficiently large,

1− α(ρ) + ε

K
< z0(ρ,K) < 1− α(ρ)− ε

K
,

or equivalently, ∣∣∣∣z0(ρ,K)−
(

1− α(ρ)

K

)∣∣∣∣ < ε

K
.

Since ε is arbitrary, we have established (25).

To prove the convergence of Q̃K to the appropriate exponential distribution, notice
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that, for t ≥ 0,

P(Q̃K ≥ t) = P(QK ≥ tK) = P(QK ≥ dtKe) = z0(ρ,K)dtKe = z0(ρ,K)K(dtKe/K). (28)

Then,

lim
K→∞

logP(Q̃K ≥ t) = lim
K→∞

(dtKe/K) ·K log z0(ρ,K)

= t · lim
K→∞

K log z0(ρ,K)

= −tα(ρ),

(29)

where we have applied (25) and the fact that log(1− x) = −x+O(x2) as x→ 0.

The following lemma builds on the prior result to establish the first part of Lemma 14,

which is that the expected waiting time (measured in blocks) converges and is independent

of K:

Lemma A6. Consider a fixed load parameter ρ̂ ∈ (0, 1). As block size K increases, the

expected waiting time measured in blocks converges according to

lim
K→∞

WK(ρ̂) = W∞(ρ̂).

Here, W∞(ρ̂) is the asymptotic expected delay (measured in blocks), defined for ρ̂ ∈ (0, 1)

by

W∞(ρ̂) ,
1

1−
(
1 + α(ρ̂)

)
e−α(ρ̂)

, (30)

where α(ρ̂) > 0 is defined in Lemma A5. For ρ̂ = 0, define W∞(ρ̂) , 1 to coincide with

the limiting value.

Moreover, the asymptotic expected delay satisfies

W ′
∞(0) = 0; W ′

∞(ρ̂) > 0, ∀ ρ̂ ∈ (0, 1).

Proof. The result is trivial for ρ̂ = 0.

Fix ρ̂ > 0. Equation (25) implies that there exists a sequence {εK} with limit εK → 0,

such that

z0(ρ̂, K) = 1− α(ρ̂) + εK
K

.
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Then,

lim
K→∞

WK (ρ̂)−1 = lim
K→∞

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

)
= α(ρ̂)ρ̂− lim

K→∞

K + 1

K

(
α(ρ̂) + εK

)
zK0 .

But, as in (28)–(29), zK0 → e−α(ρ̂). Also, from the transcendental algebraic equation

defining α(ρ̂), we have that

ρ̂ =
1− e−α(ρ̂)

α(ρ̂)
.

Therefore,

lim
K→∞

WK (ρ̂)−1 = α(ρ̂)ρ̂− α(ρ̂)e−α(ρ̂) = 1− (1 + α(ρ̂)) e−α(ρ̂),

as desired.

It remains to establish that W ′
∞(ρ̂) > 0. Applying the implicit function theorem to

differentiate the equation T
(
α(ρ̂)) = 0 with respect to ρ̂, we have that

−e−α(ρ̂)α′(ρ̂) + α(ρ̂) + ρ̂α′(ρ̂) = 0.

Simplifying, we obtain that

α′(ρ̂) =
α(ρ̂)

e−α(ρ̂) − ρ̂
= −α(ρ̂)2W∞(ρ̂).

Then, differentiating (30), we have that

W ′
∞(ρ̂) = − e−α(ρ̂)α(ρ̂)α′(ρ̂)

(1− (1 + α(ρ̂)) e−α(ρ̂))
2 = e−α(ρ̂)α(ρ̂)3W∞(ρ̂)3 > 0,

where the inequality holds for ρ̂ ∈ (0, 1). Observing that α(ρ̂) → ∞ as ρ̂ → 0, it follows

that W ′
∞(0) = 0.

Finally, we establish the second part of Lemma 14, which described the behavior of

the large block asymptotic waiting time in the low load regime, as follows:

Lemma A7. As ρ→ 0, we have that

W∞(ρ) = 1 +
1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
,
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Proof. First, we will derive an asymptotic expression for α(ρ) when ρ → 0. Suppose

ρ > 0, if α > 0 is the solution of

e−α + ρα− 1 = 0,

then β , α− 1/ρ > −1/ρ must solve

−1

ρ
e−1/ρ = βeβ.

The two real solutions to this transcendental equation can be expressed as

β =Wi

(
−1

ρ
e−1/ρ

)
, ∀ i = −1, 0,

where W0(·) and W−1(·) are the two branches of the Lambert W -function (for the defini-

tion and properties of this function, see, e.g., Olver et al. 2010). Since β > −1/ρ, we can

restrict to the i = 0 case (the so-called ‘principal branch’), to obtain

α(ρ) =
1

ρ
+W0

(
−1

ρ
e−1/ρ

)
.

As x→ 0, from the Taylor expansion it is easy to see that W0(x) = x+O(x2). Then, as

ρ→ 0,

α(ρ) =
1

ρ
+O

(
1

ρ
e−1/ρ

)
.

Now, we can analyze the asymptotic waiting time. As ρ→ 0, α(ρ)→∞, so that

(
1 + α(ρ)

)
e−α(ρ) → 0.

Since 1/(1− x) = 1 + x+O(x2) as x→ 0, we have that

W∞(ρ) = 1 +
(
1 + α(ρ)

)
e−α(ρ) + o

((
1 + α(ρ)

)
e−α(ρ)

)
= 1 + α(ρ)e−α(ρ) + o

(
α(ρ)e−α(ρ)

)
= 1 +

1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
.

The following Theorem implies Theorems 15–16:
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Theorem A8. For a fixed load ρ ∈ [0, 1), as the block size K →∞, we have that

RevK(ρ) = K · Rev∞(ρ) + o(K),

DelayCostK(ρ) = K ·DelayCost∞(ρ) + o(K),

TotalCostK(ρ) = K · TotalCost∞(ρ) + o(K),

where

Rev∞(ρ) , ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc,

DelayCost∞(ρ) , ρ

ˆ c̄

0

cf(c)W∞
(
ρF̄ (c)

)
dc.

TotalCost∞(ρ) , Rev∞(ρ) + DelayCost∞(ρ) = ρ

ˆ c̄

0

F̄ (c)W∞
(
ρF̄ (c)

)
dc.

Furthermore, for all ρ ∈ (0, 1),

Rev′∞(ρ) = ρ

ˆ c̄

0

F̄ (c)2W ′
∞
(
ρF̄ (c)

)
dc > 0,

DelayCost′∞(ρ) =
TotalCost∞(ρ)

ρ
> 0.

In other words, both the asymptotic revenue (and with it infrastructure provision by min-

ers) and the asymptotic delay cost are strictly increasing in ρ.

Finally, as ρ→ 0,

Rev∞(ρ) = O
(
e−1/ρ

)
,

DelayCost∞(ρ) = ρ · E [c] + o (ρ) .

In other words, for small values of the load ρ, the asymptotic delay cost grows linearly in

ρ, but the revenue grows slower than any polynomial in ρ.

Proof. Note that, from (22),

RevK(ρ)

K
= ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc. (31)

Since WK(·) is strictly increasing,

∣∣(F̄ (c)− cf(c)
)
WK

(
ρF̄ (c)

)∣∣ ≤ (F̄ (c) + cf(c)
)
WK (ρ) .
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Now, pick any ρ̄ ∈ (ρ, 1). Then WK(ρ) → W∞(ρ) < W∞(ρ̄) by Lemma A6, so for K

sufficiently large,

∣∣(F̄ (c)− cf(c)
)
WK

(
ρF̄ (c)

)∣∣ ≤ (F̄ (c) + cf(c)
)
W∞ (ρ̄) ,

which is integrable over c ∈ [0, c̄]. Then, we can apply the dominated convergence theorem

to (31) to obtain

lim
K→∞

RevK(ρ)

K
= ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc , Rev∞(ρ),

as desired.

The asymptotic K →∞ limits for delay cost and total cost can be established using

similar dominated convergence theorem arguments. Further, the derivative expressions

can be derived directly by differentiation.

Finally, we wish to describe the asymptotic revenue Rev∞(ρ) and the asymptotic delay

cost DelayCost∞(ρ) as ρ→ 0. For the asymptotic revenue,

Rev∞(ρ) = ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc

= ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

) (
W∞

(
ρF̄ (c)

)
− 1
)
dc

where we have used the fact that

ˆ c̄

0

F̄ (c) dc =

ˆ c̄

0

cf(c) dc = E[c].

Then, applying Lemma A7

Rev∞(ρ) ≤ ρ

ˆ c̄

0

∣∣F̄ (c)− cf(c)
∣∣ · ∣∣W∞ (ρF̄ (c)

)
− 1
∣∣ dc

≤ ρ

ˆ c̄

0

(
F̄ (c) + cf(c)

)
· |W∞ (ρ))− 1| dc

≤ 2ρE(c) |W∞ (ρ))− 1|

≤ 2E(c)e−1/ρ + o
(
e−1/ρ

)
.

For the asymptotic delay cost, applying the dominated convergence theorem,

lim
ρ→0

DelayCost∞(ρ)

ρ
=

ˆ c̄

0

cf(c)W∞(0) dc = E[c].

56



The following theorem implies Theorem 17:

Theorem A9. Consider a target level of revenue R∗ > 0 and a block size K. Define

DelayCost∗K(R∗) to be the delay cost required to achieve revenue R∗, under the asymptotic

large K regime. That is, define

DelayCost∗K(R∗) , K DelayCost∞
(
Rev−1

∞ (R∗/K)
)
,

where

Rev−1
∞ (r) , inf

{
ρ > 0 : Rev∞(ρ) ≥ r

}
,

for r > 0.

Then, as K →∞,

DelayCost∗K(R∗) = Ω

(
K

logK

)
.

Proof. Define ρK , Rev−1
∞ (R∗/K), so that Rev∞(ρK) = R∗/K for all K. Then,

DelayCost∗K(R∗) = K DelayCost∞ (ρK)

= KρK

ˆ c̄

0

cf(c)W∞
(
ρKF̄ (c)

)
dc

≥ KρKE[c],

using the fact that W∞(·) ≥ 1. Hence, it suffices to prove that

ρK = Ω

(
1

logK

)
(32)

as K →∞.

Now, if ρK is bounded away from zero asK →∞, (32) clearly holds. Assume otherwise

that ρK → 0 as K → ∞. Theorem A8 implies that there exists a constant C such that,

for K sufficiently large,
R∗

K
= Rev∞(ρK) ≤ Ce−1/ρK .

Equivalently,

ρK ≥
1

logCK/R∗
,

for K sufficiently large, which establishes (32).
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E.5 Profit Maximizing Firm

Proof of Proposition 4. Notice that the firm can make a profit of λH (RH − cf ) by pro-

cessing only transaction of RH agents without delay at a fee RH . Since this extracts all

the possible surplus from RH agents, this is optimal for the firm out of all pricing schemes

that do not process transactions from RL agents.

We follow to formulate the problem and show the firm cannot do better by processing

some transactions from RL agents. The firm’s problem can be written as a choice of an in-

centive compatible direct mechanism where the firm offers a menu (x (·, ·) ,W (·, ·) , b (·, ·)).
Agents report their type (Ri, ci) ∈ {RH , RL} × R+. If x (Ri, ci) = 0 the agent’s trans-

action is not processed and the agent does not pay or wait. If x (Ri, ci) = 1 the agent’s

transaction is processed after delay W (Ri, ci) and the agent is charged a transaction fee

b (Ri, ci). The utility of a (Ri, ci) agent who reports type (R, c) is

u (R, c|Ri, ci) = x (R, c) (Ri − ci ·W (R, c)− b (R, c)) (33)

and we write u (Ri, ci) = u (Ri, ci|Ri, ci).

The firm’s problem is stated by the following optimization problem.

max
x,W,b

λL

ˆ c̄

0
x (RL, c) (b (RL, c)− cf ) dF (c) + λH

ˆ c̄

0
x (RH , c) (b (RH , c)− cf ) dF (c)

s.t.:

u (Ri, ci) ≥ u (R, c|Ri, ci) ∀Ri, ci, R, c (IC)

u (Ri, ci) ≥ 0 ∀Ri, ci (PC)

x (R, c) ∈ {0, 1} , W (R, c) ≥ 0, b (R, c) ≥ 0

First, there is an optimal menu where b (R, c) ≥ cf for all R, c. Otherwise, we can weakly

increase the objective and satisfy all constraints by setting x (R, c) = 0, b (R, c) = cf for all R, c

such that b (R, c) < cf .

Second, if Ri ≥ R0 and ci ≤ c0 then u (R0, c0|Ri, ci) ≥ u (R0, c0|R0, c0). Given the previous

observation, the firm would weakly increase its objective by serving more customers. Therefore,

there is an optimal menu where if x (R0, c0) = 1 then x (Ri, ci) = 1 for all Ri ≥ R0 and ci ≤ c0.

In other words, if any RL are served, we can restrict attention to menus that serve agents in

{RH} × [0, c̄H ] ∪ {RL} × [0, c̄L] with c̄L ≤ c̄H and ignore the IC constraint for unserved agents.
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As we assume that some RL agents are served, the optimization problem simplifies to

max
c̄H ,c̄L,W,b

λL

ˆ c̄L

0
(b (RL, c)− cf ) dF (c) + λH

ˆ c̄H

0
(b (RH , c)− cf ) dF (c)

s.t.:

u (Ri, ci) ≥ u (R, c|Ri, ci) ∀c ∈ [0, c̄i] , Ri, R, ci (IC)

u (Ri, ci) ≥ 0 ∀c ∈ [0, c̄i] , Ri (PC)

W (R, c) ≥ 0, b (R, c) ≥ 0, c̄H ≥ c̄L > 0 ∀Ri, ci,

where we use c̄i to be c̄H if Ri = RH and c̄L if Ri = RL.

Considering L types and H types separately and invoking the envelope theorem we get for

R = RH , c ≤ c̄H or R = RL, c ≤ c̄L that

u (R, c|R, c) = u (R, 0|R, 0)−
ˆ c

0
W (R, τ) dτ

b (R, c) = R− c ·W (R, c)− u (R, 0|R, 0) +

ˆ c

0
W (R, τ) dτ.

Because u (R, c|RH , c) = u (R, c|RL, c) + RL − RH the IC implies that b (RH , 0) = b (RL, 0)

and that for any c ≤ c̄L we have that W (RH , c) = W (RL, c). Therefore, we can define W (c) =

W (RH , c) = W (RL, c) for c ≤ c̄L and W (c) = W (RH , c) for c̄L < c ≤ c̄H and define

b0 = b (RH , 0)

= RH − u (RH , 0|RH , 0)

= RL − u (RL, 0|RL, 0) .

Observe that u (Ri, ci) is decreasing in c and Ri. Therefore, the participation constraint must

bind for (RL, c̄L), otherwise we can improve the objective by either increasing c̄L or increasing

b0. This implies

0 = u (RL, c̄L) = RL − b0 −
ˆ c̄L

0
W (τ) dτ,

and therefore we have

b0 = RL −
ˆ c̄L

0
W (τ) dτ,

b (c) = b0 +

ˆ c

0
W (τ) dτ − c ·W (c)

= RL −
ˆ c̄L

c
W (τ) dτ − c ·W (c) .

The objective simplifies to
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λL

ˆ c̄L

0
(b (c)− cf ) dF (c) + λH

ˆ c̄H

0
(b (c)− cf ) dF (c)

= (λL + λH)

ˆ c̄L

0
(b (c)− cf ) dF (c) + λH

ˆ c̄H

c̄L

(b (c)− cf ) dF (c) .

By plugging in and simplifying, we get that the problem simplifies to

max
W (·),c̄L,c̄H

(λL + λH)

ˆ c̄L

0

(
RL −W (c)

(
c+

F (c)

f (c)

)
− cf

)
dF (c) + λH

ˆ c̄H

c̄L

(b (c)− cf ) dF (c)

s.t.:

u (RH , ci) ≥ 0 ∀c ≤ c̄H (PCH)

W (c) decreasing

c̄L ≤ c̄H , W (c) ≥ 0

Notice that c+ F (c)
f(c) ≥ 0, and therefore the profit from agents with c ∈ [0, c̄L] is at most

F (c̄L) (λL + λH) (RL − cf ) < F (c̄L)λH (RH − cf ) .

Because of PCH , the profit from agents with c ∈ [c̄L, c̄H ] is at most

λH (F (c̄H)− F (c̄L)) (RH − cf ) ≤ (1− F (c̄L))λH (RH − cf ) .

Together, we find that overall profits of any menu that services some RL agents will yield a

profit that is strictly lower than λH (RH − cf ), which is the profit achievable by only processing

RH transactions.
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