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1. Introduction

The growing social and economic activity conducted online – from the sharing of location data

on Uber to searching for medications or diagnoses on Google – generates extensive amounts of

data. The information collected is then often used to improve services offered to consumers. For

example, Uber uses passengers’ and drivers’ location to shorten wait times and enhance safety,

Facebook uses personal data to curate posts presented to users based on their tastes and to target

users with advertisements, and online dating platforms use users’ information to propose desirable

matches. At the same time, there are also undesirable consequences to the ubiquitous availability

of data. From firms like Cambridge Analytica using Facebook data to sway election outcomes to

health insurance companies predicting health outcomes of potential insurers based on undisclosed

personal information, and to private hackers preying on innocent users – opportunities for user data

exploitation are rife. As a result, privacy has been singled out as one of the biggest challenges that

the digital economy faces.1

This paper addresses four fundamental issues on the digital economy: (1) the trade-offs people

face when using online services, (2) the determinants of harmful use of private information by third

parties, (3) the incentives of digital businesses to collect and protect user data, and (4) actions that

should be taken by regulatory authorities in order to protect consumer privacy and maximize social

welfare.

In our model, users’ activity on the platform of a digital business reveals information about

some of their traits/preferences. This information allows the business to offer users a higher quality

service (positive externality), but it also triggers users’ concerns for privacy (negative externality):

the risk that users perceive from their information being accessed and misused by the third parties –

hereafter adversaries. We explicitly model the strategic behavior of the adversaries and, therefore,

users’ privacy costs are endogenous.

An important feature of our framework is that we allow for different business revenue models.
1A few articles that illustrate these undesirable consequences are “How Trump Consultants Exploited the Facebook

Data of Millions”, New York Times, 17 March 2018 (see also Papanastasiou 2020 and Candogan and Drakopoulos
2020), “Can a Facebook Post Make Your Insurance Cost More?”, Wall Street Journal, 18 March 2019,“ ‘We’ve Been
Breached’: Inside the Equifax Hack”, Wall Street Journal, 18 September 2017, and “Marriott CEO Reveals New
Details About Mega Breach”, Forbes, 11 March 2019. For a common take on the top questions on the digital economy,
see also https://www.youtube.com/watch?v=W32yoivhaL4
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We postulate that the business’ profit is an increasing function of the users’ demand for service and

of the information collected by the business. We introduce the following taxonomy. At the one

extreme, we have purely data-driven digital businesses whose sole source of revenue stems from selling

information or information-based services to third-parties , e.g., weather apps that are free and do

not display advertisements, but rather collect user location data and sell it to data aggregators such

as Acxiom and Infogroup. At the other extreme, we have purely usage-driven businesses that collect

users’ payments in the form of subscription fees or commissions, e.g., ride-hailing platforms like

Uber and Lyft, and many online dating services. Between these two extremes, we have, among

others, ad-driven companies like Facebook and Google, whose main source of revenue is offering

targeted advertising. In selling targeted advertisement services, an ad-driven business capitalizes

directly on the users’ information it collects. At the same time, the business also wishes users to be

active for them to view and click on the ads. Therefore, the business also attaches a direct value to

user activity.

We first show that, as the business’s data collection policy becomes more expansive (i.e., the

fraction of user data that is collected increases), users’ activity first increases and then decreases.

The resulting amount of users’ information, that is actually collected by the business and is stored

on its servers, follows a similar pattern, but it starts decreasing at a higher data collection level.

Such non-monotonicity reflects a natural tension between the positive and negative externalities

that data collection by the business imposes on users. When the data collection policy is restricted,

privacy costs are low because only a few adversaries are active. Hence, an increase in data collection

improves the service to users at little privacy costs. As the business collects a larger fraction of

users’ data, adversaries activity increase, thereby imposing larger privacy costs on users, who, in

turn, reduce their activity.

Our second result characterizes the equilibrium data collection policy: what part (or how much)

of user’s information is actually collected by the business.2 Since the business’s profit increases

in user activity as well as in the amount of data collected, the optimal data collection policy lies
2Data collection policy examples include the decision by Whatsapp to encrypt users’ text messages (thus reducing

the amount of information it collects) – see also “WhatsApp Introduces End-to-End Encryption”, New York Times, 5
April 2016., and Facebook’s practices (at least until August 2019) of transcribing audio chats (thereby increasing
the amount of accessible information it stores) as well as of retaining information from deleted accounts – see also
“Facebook Paid Contractors to Transcribe Users’ Audio Chats”, Bloomberg, 13 August 2019 and “OK, You’ve Deleted
Facebook, but Is Your Data Still Out There?”, CBS News, 23 March 2018.
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in between the cut-off levels that maximize these two quantities. In particular, a business with

a revenue model that is more data-driven selects a more expansive data collection policy and,

consequently, experiences lower user activity, and generates lower consumer surplus.

We then compare the equilibrium data collection policy with the data collection policy that

maximizes overall welfare (hereafter socially optimal policy).3 Purely usage-driven businesses select

the socially optimal policy. All other businesses over-collect users’ information, thus leading to

larger privacy costs and lower users’ activity. Such inefficiency in data collection can be corrected

with a tax proportional to the amount of data collected, or, with a liability policy that imposes on

businesses fines that are proportional to users’ privacy costs.

In the second part of the paper, we expand the digital business’s strategy to include a choice

of a level of data protection: the business makes a costly investment that affects the ease with

which collected information is accessible by adversaries. Examples include investments in firewall

enhancements, API updates, and ethical hackers who help the business in detecting and repairing

vulnerabilities. We provide conditions under which data collection and data protection are comple-

mentary instruments for the business. Such complementarity implies that, although data-driven

businesses tend to over-collect user information, they may also invest more in data protection. In an

empirically relevant case of the model, in which the digital business’s profit is linear in user activity

and in the information collected, we show that businesses with a revenue model that is intermediate

between purely usage-driven and purely data-driven models generate better outcomes for consumers.

Finally, we show that when businesses choose both data collection and data protection, a

regulatory policy that combines a requirement of a minimal level of data protection together with

either a liability policy or a tax on information collected, induces a socially optimal decentralized

equilibrium. We contrast such policy with the practice of the US Federal Trade Commission (FTC)

which has a mandate to enforce a minimal level of data protection level.4 In practice, the vast

majority of the regulator’s actions against firms come in response to documented data breaches, and

once a data breach has been verified, the FTC issues heavy fines and often settlement is reached

without a court ruling on whether the minimal protection levels were met. This introduces a, de
3The welfare objective is a weighted sum of consumer surplus and business profit.
4 See, for example, the case of FTC vs D-Link: “D-Link agrees to 10 years of security audits to settle FTC case”,

The Verge, 4 Jul 2019; https://www.ftc.gov/enforcement/cases-proceedings/132-3157/d-link.
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facto, liability element and, according to our normative analysis, it increases the effectiveness of

FTC’s practice. Noting that the implementation of this liability depends on a combination of

detection, litigation, and negotiation, our result suggests that liability fines may be replaced by a

tax on data collection.

This paper contributes to an active interdisciplinary area of research that studies the consequences

for market outcomes of the ability of digital institutions to amass large data sets. The main issues

discussed in the literature are the collection and management of consumer information, consumer

privacy, and possible policy intervention.

Recent work has focused on understanding how user information is either voluntarily disclosed

(Ali et al. 2019) or inferred from users’ actions such as purchasing behavior over time (Conitzer

et al. 2012, Fudenberg and Villas-Boas 2006), ratings (Bonatti and Cisternas 2017), formation of

social links (Acemoglu et al. 2017), platform usage (Ichihashi 2019) or gathered through monetary

transfers (Bergemann et al. 2020). We rely on this line of work and assume that there is a one-to-one

mapping between any user’s action (usage of the platform) and the information that is revealed

about this user to the platform.5

Other work has explored how the mechanisms for extracting user information and possession

of information itself affect the design of targeted/personalized pricing (e.g., Candogan et al. 2012,

Bloch and Quérou 2013, Fainmesser and Galeotti 2016, 2020, Montes et al. 2018, Ichihashi 2020a,

Valletti and Wu 2020), selective selling (Momot et al. 2019), service systems (Hu et al. 2020); what

is the impact on social image visibility (Ali and Bénabou 2020), advertising strategies (Galeotti and

Goyal 2009, Shen and Miguel Villas-Boas 2017), the extent of competition (Casadesus-Masanell and

Hervas-Drane 2015) and mergers of digital businesses (Prat and Valletti 2019), overall consumer

behavior (Goldfarb and Tucker 2011, Koh et al. 2015, Jann and Schottmüller 2020, Gradwohl 2017).6

Our contribution is to formulate a model in which privacy costs are endogenous and therefore

change with the data policy of the business. This allows to assess positive and normative implications

of data policy design and to compare conclusions across different domains—in particular, between
5The computer science literature has addressed the design of algorithmic mechanisms for anonymizing and protecting

individual-level data (for reviews of this research stream, see e.g. Dwork and Roth 2014, Cummings et al. 2015, Ghosh
and Roth 2015, Abowd and Schmutte 2019).

6Excellent surveys are provided by Acquisti et al. 2016, Mayzlin 2016, and Bergemann and Bonatti 2019. See
also https://www.heinz.cmu.edu/~acquisti/economics-privacy.htm#Papers for a structured list of papers in this area by
Alessandro Acquisti.
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data-driven and usage-driven revenue models. In the last section, we demonstrate how our framework

is useful to study broader policy issues such as the motivations and welfare effect of vertical integration

in digital markets, the unique privacy risks posed by government adversaries, and the potential

welfare benefits of introducing a carefully calibrated payment to users for their data.

The rest of the paper proceeds as follows. Section 2 presents the model and Section 3 characterizes

equilibrium user and adversarial activities for given data collection and protection policies. Section 4

compares equilibrium and socially optimal data collection policies and offers policy recommendations.

Section 5 extends the analysis to include data protection policies. Finally, Section 6 offers a discussion

and broader policy implications. All proofs are given in Appendix A.

2. Model

A digital business chooses a data collection policy. Users decide how much to use the services

provided by the business. Users’ activity, together with the business’ data collection policy, determine

how much information is collected about the users by the business. Third parties (henceforth,

adversaries) can, at a cost, attempt to access and use the data for purposes that are not in line with

users’ preferences. Thus, if successful, adversaries can harm users. We introduce formally these

elements next.

2.1. Users

There is a unit mass of users of a digital business. Each user i chooses a costly action ai that

represents i’s usage of the business’ service – user’s activity. Denote by ā =
∫
j aj dj the average

user activity. User i’s activity reveals valuable information about her, and we assume that ai also

captures the amount of information revealed about user i.

Not all information revealed by users’ activity is collected by the digital business. In particular,

the amount of information that a digital business collects about user i—and that can be retrieved

(either by the business itself or by adversaries)—is ξai. Here ξ ∈ [0, 1] is the business’ data collection

policy, which ranges from collecting none to all of the data generated by usage. We provide specific

examples of data collection technologies that micro-found this formulation in Section 2.5.
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Suppose, user i chooses activity ai and expects average activity to be ā. Then, her utility is

Ui(ai, ā) = aibi − 1
2a

2
i︸ ︷︷ ︸

private benefit and cost

+ βaiā︸ ︷︷ ︸
network effects

+ aiξ(ρ− ω).︸ ︷︷ ︸
positive and negative information externalities

(1)

The first term summarizes user i’s private benefits and costs for the service. Users are heterogeneous

with respect to bi; b̄ is the average across users and σ2
b is the variance. The second term introduces

classical positive network effects that are parameterized by β ≥ 0.7 The quadratic specification in

1 allows us to derive closed-form solutions of the second stage game, but the qualitative results

generalize beyond the quadratic formulation, see the formal discussion in Online Appendix C.1.

The last term captures the positive and negative externalities to user i from the information

that is collected by the business. On the one hand, every additional unit of information that the

business collects, improves the service offered to users by ρ ∈ [0, 1). On the other hand, as more

information is collected, there is also a higher demand for information from adversaries. Adversarial

activity, thus, imposes negative externality on users proportional to the amount of information the

business has on them. This negative externality is captured by ω, which is defined as the number

(i.e., mass) of adversarial activities using the data of a user. We refer to ω as to the demand for

user information from adversaries.

2.2. Adversaries

There is a large mass K of potential adversaries.8 Adversaries are heterogeneous in their ability

to access information collected by the digital business. This heterogeneity is captured by the

parameter γ, which we assume (for the sake of simplicity) to be drawn for each adversary from

a uniform distribution over [0,K].9 An adversary knows his own γ and chooses whether to be

active (action 1) or not (action 0). The gain to an inactive adversary is his outside option, which

we normalize to zero (π(0|γ) = 0). If an adversary with ability γ is active, then he pays a fixed

cost γC to access the collected information and targets one user, chosen uniformly at random. An
7The specification of network effects is widely used in network economics literature (see, e.g., Bloch and Quérou

2013, Candogan et al. 2012, Fainmesser and Galeotti 2016, to name a few).
8We present results for K →∞. Doing so ensures the existence of at least some nonactive adversaries. The only

role played by this restriction is in simplifying our presentation of the analysis, and there are no economic insights to
be gained from the case of small K.

9The draw of γ for different adversaries does not need to be independent and our analysis holds for any correlation
structure. See also in Online Appendix C.1 for a generalization to non-uniform distributions.
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adversary who targets user i receives payoff aiξ, so his expected benefit is āξ. Formally, the payoff

expected by an active adversary of ability γ is10

π(1|γ) = āξ − γC.

The parameter C describes how well data are protected against misuse by third parties. In the

first part of our analysis, this parameter is exogenous. In Section 5 we allow the digital business to

invest in data protection.

2.3. Digital Business

The digital business chooses a data collection policy ξ to maximize its objective: a function which is

increasing in users’ average activity and in the amount of user information that the business collects.

Formally, the digital business’s profit function has the following form:

Π(ξ) = Φ(ā, ξā). (2)

We denote by Φ′ā and Φ′ξā the partial derivatives of Φ with respect to the first and the second

arguments, respectively. That is, Φ′ā is the additional profit to the business for a marginal increase

in users’ average activity, ceteris-paribus, and Φ′ξā is the additional profit to the business for a

marginal increase in users’ information collected by the business. We assume that Φ′ā ≥ 0, Φ′ξā ≥ 0

and that the function Φ is concave in its two arguments.

The function Φ captures the revenue model of the business as well as the level of market

competition that the business faces in markets in which it extracts revenue (e.g., the advertising

market, markets for user data, etc.). With respect to the revenue model, we distinguish the following

two polar cases (see the Introduction for specific examples of different business models).

A purely data-driven business’s sole source of revenue stems from selling information or information-

based services to third parties. For such businesses, Φ′ā = 0 and Φ′ξā > 0. On the contrary, a purely

usage-driven business’s source of revenue are the payments made by users in the form of subscription
10Another interpretation of this model of the adversary is that there is a single adversary, who upon gaining access

to the digital business’s data, attacks all users. If we choose this latter interpretation, we can interpret γC as the cost
of accessing the data or interpret C as the cost of accessing the data and 1/γ as the likelihood that the adversary
manages to access the data after investing C.
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fees or commissions. For such companies, Φ′ā > 0 and Φ′ξā = 0. Between these two extremes, lie,

among others, advertisement-driven companies, like Facebook and Google, that capitalize directly

on the users’ information they collect, but that also needs users to be active to view and click

on the ads, and, thus, it also attaches a direct value to user activity. The exact way that an

advertisement-driven company weighs users’ activity vs. information collected may depend, among

other things, on the life cycle of the business: at the startup phase, the objective is, generally, to

maximize activity as this is the metric that allows raising capital through investors. As the platform

matures, the weight is often shifted towards monetizing collected information.

2.4. Timeline and Equilibrium Concept

We consider the following sequential game. In the first stage, the digital business chooses its data

collection policy ξ – the choice is observed by users and adversaries. Then, users choose their activity

levels and, simultaneously, adversaries decide whether or not to be active.11 Notably, because there

is a continuum of users and adversaries, no one agent’s action affects the best reply of others. Hence

the analysis does not change if users’ and adversaries’ moves are sequential rather than simultaneous.

The strategy of a digital business corresponds to a data collection policy ξ ∈ [0, 1]. The user’s

strategy is a function ai : R+ × [0, 1]→ R+ that specifies user i’s activity for every possible bi and ξ.

The strategy of an adversary is a function vj : [0,K]× [0, 1]→ {0, 1} that specifies, for every possible

γ ∈ [0,K] and ξ, whether adversary j is active and will attack the business’s database. We use a

and v to denote the strategy profiles of users and adversaries respectively.

We characterize perfect Bayesian equilibria of the game: an information collection choice ξ∗ and

a strategy profile (a∗,v∗) such that: (a) the digital business maximizes its profit given (a∗,v∗); and

(b) for every ξ, (a∗,v∗) is a Bayesian equilibrium in the ensuing subgame.12

Hereafter, we maintain the following assumption:
11The assumption that users know the data collection policy of the digital business is consistent with common

practice where users accept terms and conditions when opening an account in a digital business. However, in reality,
some users may not read those terms. This could be because they have no privacy concerns or because they lack
awareness and do not internalize those costs. The model can easily accommodate heterogeneity across users in their
sophistication or awareness levels and the qualitative results do not change. We also note that, in recent years, there is
an increase in user awareness regarding the true extent of data collection and the potential privacy costs. In particular,
many users can now request their information from digital businesses under the European GDPR law (see Art. 15
GDPR - Right of access by the data subject). The GDPR, therefore, allows users to have accurate knowledge of what
data is collected about them.

12In each subgame, users and adversaries have a common prior that γ is uniformly distributed between 0 and K.
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Assumption 1 Assume that β < 1 and that C ≤ b̄
(1−β)(2ρ+b̄) .

As is typical in the literature featuring models with positive network externalities, the assumption

that β < 1 guarantees that, for every ξ, there is a unique equilibrium in the game’s second stage.

The restriction on C guarantees that the equilibrium ξ∗ is interior.

2.5. Information Externalities and Revenue Models: Simple Examples

The following two examples demonstrate the workings behind our reduced-form formulation of

information externalities and how they play out in businesses with different revenue models. The

examples are not intended to capture the full complexity of a digital ecosystem but rather to provide

some intuitions for our taxonomy of revenue models and information externalities.

Example 1 Consider a digital business with a purely data-driven revenue model, say a weather

app. Downloading and using the app is free. Private benefit and cost of using the service as well as

any potential positive network effects are captured by the first and second terms of expression (1).

The weather app sells information to a data aggregator, who, among other things, uses the data

to target users with products (or sells access to the data to marketers who seek to do so). Now,

suppose that each user i has a taste characteristic θi ∈ {0, 1, ..., n}, which is initially unknown to

the aggregator. If the aggregator gets to know θi, it can target user i with a product that creates a

value V to her.

Ex ante, the aggregator knows that for any m ∈ {0, 1, ..., n}, θi = m with probability 1/n. User i’s

activity provides signals to the aggregator about her tastes parameter θi, but only if data generated

by this activity is collected. In particular, if the digital business sets data collection policy ξ and the

user’s activity level is ai, then ξai is the probability that the aggregator learns the true realization of

θi, whereas with the remaining probability the aggregator learns nothing.13 Therefore, the expected

probability that the aggregator creates a value V to the consumer is:14

1
n

[1 + (n− 1) aiξ] .

13For the purposes of this example, assume that bi is sufficiently low so that ai < 1
14An alternative, mathematically equivalent, model considers each user i as having a large set of attributes, each of

which can receive a 0/1 value. Then, activity level ai generates data that can reveal the value of ai of a subset of
the attributes and a business’ data collection strategy ξ implies that the business collects data on a fraction ξ of the
attributes and therefore ends up with accurate information on aiξ of the attributes of user i and for any of the other
attributes it only knows that they are 0 with probability 1/2. Knowing more of the attributes allows the business to
match the user with a more suitable product which increases the expected value created.
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Depending on the competitiveness of the market for products and for data, this value is shared

between the data aggregator, the digital business, and the user. Let Sb be the share that is extracted

by the digital business and Su be the share that is extracted by the user. Then the profit to the

digital business from user i is SbV [1 + (n− 1) aiξ] /n. The positive externality to the user is

SuV [1 + (n− 1) aiξ] /n (that is, ρ = Su (n− 1)V/n).

The negative externalities of the adversaries can be modelled similarly by considering adversaries

who want to choose actions that match the least favorable user’s taste characteristic.

Example 2 Consider a digital business with a purely usage-driven revenue model, say a dating

application such as OkCupid or Clover, which offers in-app purchases that enhance functionality.

Much of the formulation from Example 1 carries over with the following differences: In this example,

the business doesn’t sell data to an aggregator. Instead, if the business knows the taste characteristic

θi, it can offer matches suitable to user i. A suitable match creates a value V to the user and an

unsuitable match creates zero value.

The user receives this value (as well as the private benefits and network effects benefits) minus

the price which is paid to the platform for in-app purchases, which are assumed to be proportional

to usage, or aip where p is the price per unit of usage. Then the profit to the business from user

i is aip. In the user’s utility, aip can be included in biai as a shift parameter, and the positive

information externality to the consumer is V [1 + (n− 1) aiξ] /n. Hence, ρ = V (n− 1) /n.

In Online Appendix B, we provide an additional example of a business with a hybrid revenue

model that has both data- and usage-driven components (e.g., Facebook or Amazon).

3. The Users-Adversaries Game

We start by analyzing the equilibrium in the second stage of the game for any data collection

policy ξ. Given ξ, each user trades off the benefit of using the services of the business with the

associated costs. Part of these costs is the negative externalities that are imposed by the demand

for information from adversaries. Adversaries’ demand is, in turn, endogenously determined by their

cost and benefit considerations.

Proposition 1 Fix a data collection policy ξ. The ensuing subgame has a unique equilibrium
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in which average users’ activity is

ā∗(ξ) = C(b̄+ ρξ)
C(1− β) + ξ2 , (3)

adversaries’ demand for information is

ω∗(ξ) = ξā∗(ξ)
C

, (4)

and consumer surplus is equal to

CS(ξ) = 1
2
[
σ2
b + ā∗(ξ)2

]
. (5)

Because the business’ objective is a function of average activity and of information collected, it is

critical to understand the comparative statics of these quantities with respect to the choice of data

collection policy ξ.

Corollary 1 Average users’ activity (ā∗(ξ)) and the amount of information stored (ξā∗(ξ)) both

first increase and then decrease in the fraction of information collected, i.e. the business’s data

policy ξ. That is, there exist 0 < ξ < ξ̄ < 1 such that:15

(i) ā∗(ξ) increases with ξ for ξ ∈ [0, ξ] and decreases otherwise;

(ii) ξā∗(ξ) increases with ξ for ξ ∈ [0, ξ̄] and decreases otherwise.
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Fraction of Information Collected, ξ 

ξā∗(ξ)
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Figure 1: Average activity of users ā∗(ξ) and information collected ξā∗(ξ) as a function of data
collection policy ξ.

The effect of a change in data collection policy (ξ) on average activity and average information

15In particular, ξ = − b̄
ρ

+
√(

b̄
ρ

)2 + C(1− β) and ξ̄ = ρC(1−β)
b̄

+
√
C(1− β) +

(
ρC(1−β)

b̄

)2.
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collected is illustrated in Figure 1. When no information is collected (i.e., ξ = 0), the equilibrium

adversaries’ demand for information ω∗(0) is zero (since there is no information to take) and user

activity is determined solely by the interaction between a user’s stand-alone benefit and cost, and

positive network effects.

By collecting ever greater proportions of user data (increasing ξ), the digital business creates new

benefits for users since it can then offer tailored services based on users’ information (as reflected in

the term aiρξ in Eq. (1) and outlined in the Examples 1 and 2 in Section 2.5). This effect increases

users’ demand for the business’s service. At the same time, increasing ξ also boosts the adversaries’

demand for information. This creates a negative externality on users’ participation and offsets the

increase in users’ demand for the business. Which effect dominates depends on the level of ξ.

Adversaries are unlikely to misuse information when ξ is small. In this case, the negative

externalities that adversaries impose on users are small and an increase in ξ will increase the extent

of user activity. With increasing ξ further, adversaries have more to gain from every attack; this

leads to a further increase not only in adversaries’ demand for user information but also in the loss

that users suffer from adversaries. At some point, these negative effects outweigh the benefits to

users from their information being used for tailored services. When this happens, users’ average

activity starts declining in ξ.

Even though users’ average activity declines for every ξ > ξ, total information collected by

the business keeps increasing when ξ ∈ [ξ, ξ̄]. In this region, negative externalities imposed by

adversaries on users are sufficiently significant to lead to a decrease in usage, but not severe enough

to make this decrease large. Consequently, in this region, even though average activity decreases

in ξ, information collected still increases in ξ. It is only when ξ > ξ̄ that any additional increase

in ξ leads to a decrease in user activity that is steep enough to reduce total information collected,

notwithstanding an increase in the fraction of information stored.

4. Data Collection

Our first result in this section characterizes the business’s equilibrium data collection policy and,

as a result, how the business’s revenue model affects user activity, the amount of user information
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collected, adversaries’ demand for information, and consumer surplus. To this end, we begin by

defining a notion of a more data-driven revenue model.

Definition 1 We say that a business with objective function Φ(ā, ξā) has a revenue model that is

more data-driven than a business with objective function Φ̃(ā, ξā) if, for all ā and ξ:

Φ′ξā(ā, ξā)
Φ′ā(ā, ξā) >

Φ̃′ξā(ā, ξā)
Φ̃′ā(ā, ξā)

(6)

Next, recall that ā∗(ξ) is the average user activity in response to data collection policy ξ, and

that ξ and ξ̄ are the data collection policies that maximize average usage and information collection,

respectively. Let

r(ξ) = −d(ξā∗(ξ))
dξ

/d(ā∗(ξ))
dξ . (7)

The function r(ξ) measures how the total amount of information collected, ξā∗(ξ), changes in

response to ξ relative to the change in average activity, ā∗(ξ). At ξ = ξ this function is equal to

+∞, it decreases in ξ and it equals zero at ξ = ξ̄. We can then prove the following result:

Proposition 2 Let ξ? be the digital business’s equilibrium data collection policy. Then, ξ? ∈ [ξ, ξ̄]

and

r(ξ?) = Φ′ā(ā∗(ξ?), ξ?ā∗(ξ?))
Φ′ξā(ā∗(ξ?), ξ?ā∗(ξ?))

. (8)

Furthermore,

• For a purely usage-driven business (i.e., Φ′ξā = 0), ξ? maximizes equilibrium average activity,

ā∗(ξ), i.e., ξ? = ξ.

• For a purely data-driven business (i.e., Φ′ā = 0), ξ? maximizes information collected, ξā∗(ξ),

i.e., ξ? = ξ̄.

• A business with a revenue model that is more data-driven chooses a higher ξ?, collects overall

more user data, ξ?ā∗(ξ?), and faces lower average user activity, ā∗(ξ?). A more data-driven

revenue model also leads to lower consumer surplus, CS(ξ?) and to higher adversaries’ demand

for user information, ω∗(ξ?).

To gain some intuition for Proposition 2, we first note the following: (1) the business’s objective

increases in average activity and in total information collected, (2) both of those quantities increase

in ξ for ξ < ξ and decrease in ξ for ξ > ξ̄. Therefore, ξ? ∈ [ξ, ξ̄]. That is, the business’ information
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collection policy must be at least as high as the level at which average activity is maximized and

no higher than the level at which information collection is maximized. Second, we note that when

ξ ∈ [ξ, ξ̄], the marginal profit with respect to ξ reads as follows:

dΠ(ξ)
dξ = Φ′ā(ā∗(ξ), ξā∗(ξ)) ·

dā∗(ξ)
dξ︸ ︷︷ ︸

Marginal cost

+ Φ′ξā(ā∗(ξ), ξā∗(ξ)) ·
d(ξā∗(ξ))

dξ︸ ︷︷ ︸
Marginal benefit

The first term represents the implicit marginal cost for the business to increase ξ: an increase in ξ

reduces business’s profit because users will demand less of the business’s services (users’ average

activity ā∗(ξ) decreases in ξ for ξ > ξ). The magnitude of the cost depends on the price the business

obtains from average usage, i.e., Φ′ā(ā∗(ξ), ξā∗(ξ)). The second term is the marginal benefit of

the business to increase ξ: an increase in ξ increases the business’s profits because the business

is able to collect and use more of users’ information and this information is priced positively at

Φ′ξā(ā∗(ξ), ξā∗(ξ)).

The business’s choice of data collection balances marginal cost and marginal benefit. By

substituting r(ξ) into the business’s first-order condition we obtain (8), where the right-hand side is

the ratio of the per-unit price that the business obtains from average usage and from information

collected. The comparative statics in Proposition 2 follow from (8) and from the connection between

usage and consumer surplus, as well as from the connection between information collected and

adversaries’ demand for such.

4.1. Socially Optimal Data Collection

Consider a benevolent planner who seeks to choose a data collection policy to maximize social

welfare: a weighted average of consumer surplus and business’s profit, i.e.,

W (ξ) = αCS(ξ) + (1− α)Π(ξ),

where α ∈ [0, 1]. Our next result characterizes the socially optimal data collection policy and shows

how equilibrium inefficiencies depend on the business’s revenue model.
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Proposition 3 Let ξW be the socially optimal data collection policy. Then ξW ∈ [ξ, ξ̄] and

r(ξW ) = αā∗(ξW ) + (1− α)Φ′ā(ā∗(ξW ), ξW ā∗(ξW ))
(1− α)Φ′ξā(ā∗(ξW ), ξW ā∗(ξW )) . (9)

Furthermore,

• If the business is purely usage-driven, i.e., Φ′ξā = 0, then the equilibrium data collection policy

of the business is socially optimal, i.e, ξW = ξ?;

• Otherwise, relative to the socially optimal outcome, the equilibrium business’s data collection

policy and total users’ information collected are too large (ξ? > ξW and ξ?ā∗(ξ?) > ξW ā∗(ξW )),

whereas average activity is too low (ā∗(ξ?) < ā∗(ξW )).

Relative to the planner’s function, the business generally does not fully internalize that an

increase in data collection policy, ξ, hurts consumers by decreasing their average activity. The

welfare-maximizing data collection policy ξW is, therefore, lower than the equilibrium business

policy, ξ?. The only exception is a purely usage-driven business that, in equilibrium, chooses the

welfare-maximizing data collection policy, ξW .

To gain some intuition, note that using the equilibrium characterization of consumer surplus

(Proposition 1), we obtain that the socially optimal information collection policy ξW is defined as

follows:

ξW = arg max
ξ∈[0,1]

α · 1
2[σ2

b + (ā∗(ξ))2] + (1− α) · Φ(ā∗(ξ), ξā∗(ξ)).

Much like consumer surplus and the business’s profit, welfare is an increasing function of average

activity and total information collected. Therefore, ξW ∈ [ξ, ξ̄]. Furthermore, when ξ ∈ [ξ, ξ̄] we can

decompose marginal welfare with respect to ξ into marginal cost and marginal benefit as follows:

dW (ξ)
dξ =

[
αā∗(ξ) + (1− α)Φ′ā(ā∗(ξ), ξā∗(ξ))

]
· dā∗(ξ)

dξ︸ ︷︷ ︸
Marginal cost

+ (1− α)Φ′ξā(ā∗(ξ), ξā∗(ξ)) ·
d(ξā∗(ξ))

dξ︸ ︷︷ ︸
Marginal benefit

.

Solving for the first-order condition and recalling the definition of r(ξ) in (7), we get that welfare

is maximized for ξW that solves (9). We further note that, with the exception of purely usage-driven

businesses, at the business’s optimal data collection policy ξ?, marginal welfare is negative, i.e.,
dW (ξ)

dξ |ξ? = αā∗(ξ?)dā∗(ξ)
dξ |ξ? < 0.
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4.2. Regulation

The US Federal Trade Commission (FTC) has a mandate to enforce a minimal level of data

protection. In our model, such requirement maps into guaranteeing a level of data protection C not

lower than a certain threshold. However, since Proposition 3 has been derived for an arbitrary level

of C, it follows that enforcing a minimal level of data protection alone is insufficient to align the

data collection incentives of the business with those of the social planner.

In practice, the vast majority of the FTC’s actions against firms come in response to documented

data breaches. Once such breaches have been exposed and verified, the FTC imposes heavy fines on

the businesses involved. In this section, we characterize two policies that induce socially optimal

data collection by businesses and argue that one of those policies is akin to the latter practice by

FTC.

We first define the damage Di(ξ) that a user i expects incur to due to adversarial activity:

Definition 2 User i expects to face a damage Di(ξ) = aiξω
∗(ξ) caused by adversarial activity. Also

denote by D(ξ) =
∫
iDi(ξ)di the average damage incurred by a user.

We next show that imposing fines that are proportional to the damage inflicted on users (as

prescribed in the Definition 3), will, in fact, provide businesses with the correct incentives to set a

socially optimal data collection policy ξW .

Definition 3 In the event a user suffers damage Di from adversarial activity, a liability policy

imposes a fine on the business which equals `×Di.

Building on Proposition 3, which derives the socially optimal data collection policy ξW , we obtain

the following result.

Proposition 4 Consider a business which is not purely usage-driven and let α < 1. Under liability

policy

`? = α

1− α
C

2r(ξW )ξW (10)

the business chooses a data collection policy which is socially optimal, i.e., ξ? = ξW . Furthermore,

if the welfare objective corresponds to consumer surplus, i.e., α = 1, then

`? =
Φ′ξā(ā∗(ξ), ξā∗(ξ))

ρ
.
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To see the mechanism behind such policy in more details, note that under arbitrary liability

policy ` and arbitrary data collection policy ξ, the average fine that the business expects to pay is

F (ξ, `) = `×D(ξ) = `× ω∗(ξ)× ξā∗(ξ) = `

C
[ξā∗(ξ)]2,

where the second equality follows by noticing that, from Proposition 1, ω∗(ξ) = ξā∗(ξ)/C. Hence,

the objective function of the business becomes

Π(ξ, `) = Φ(ā∗(ξ), ξā∗(ξ))− F (ξ, `).

The fine F (ξ, `) is an increasing function of total information collected, and therefore it reduces the

benefit that the business obtains by capitalizing on the information. Such a reduction increases

with the level of `. Since it is exactly the direct capitalization on user information that drives the

over-collection of information by the business in the first place, the introduction of such policy, if

rightly calibrated, eliminates the misalignment with the social objective.

Our analysis thus suggests that the FTC’s practice of imposing fines on businesses, based on the

documented data breaches, could be optimal. We do note, however, that imposing liability fines

requires a litigation process to establish and quantify damages. An alternative policy that takes a

more legislative and bureaucratic path is imposing a tax on collected user information. Let t be

the tax rate imposed by the regulator on each unit of collected information. That is, the expected

amount of tax that the business pays is t× ξā∗(ξ). We can then say the following:

Corollary 2 Consider a business which is not purely usage-driven and let α < 1. Under a tax rate

t? = α

1− α
ā∗(ξW )
r(ξW ) , (11)

the business chooses a data collection policy which is socially optimal, i.e., ξ? = ξW . Furthermore,

if the welfare objective corresponds to consumer surplus, i.e., α = 1, then t? = Φ′ξā(ā∗(ξ), ξā∗(ξ)).

We hypothesize that imposing such tax on the amount of collected data could be a viable option for

a regulator since the amount of collected data could be easily quantified.

Finally, it is important to note that even under the socially optimal level of data collection, the
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adversarial activity causes some direct disutility, or damage, to users (see Definition 2). While this

direct damage may be small, the following result suggests that for any data protection level, and

even with the socially optimal data collection policy, the total welfare loss from the presence of

adversaries can be arbitrarily large.

Proposition 5 Let CSno adversaries(ξ) be consumer surplus in the absence of adversaries.16 For any

data collection policy ξ, the total decrease in consumer surplus due to the presence of adversaries,

CSno adversaries(ξ)− CS(ξ), equalsM(ξ) ·D(ξ), where D(ξ) is the average damage caused to a user

as described in Definition 2 andM(ξ) is the adversarial loss multiplier. Moreover,

M(ξ) ≥ 1
1− β .

Proposition 5 shows that for businesses with significant network effects (i.e., high β and, in

particular, β → 1), the welfare loss from adversarial activity could be arbitrarily large, even if the

direct damage D(ξ) is relatively small. This is the case because part of the change in welfare is

explained by the change in users’ behavior (decrease in activity) due to their concern that their

data may become available to the adversaries. Network effects amplify this effect, as any individual

user decreasing activity has a strong impact on the incentives of other users to be active.

More generally, there are two reasons for the total welfare loss to be larger than the direct damage

from adversarial activity. First, in expectation of an adversarial activity, users reduce their usage

of a service that a digital business provides. Second, a digital business itself commits to a more

restricted data collection policy (lower ξ) in order to minimize the reduction in user activity. Of

these two effects, only the first one is captured by the lower bound in Proposition 5, suggesting that

the total welfare loss from adversarial activity is even larger.

From a policy perspective, the lesson from Proposition 5 is that even with optimal regulation of

data collection in place, there are still high returns to averting data misuse in the digital economy.

The next session considers the case where adversaries’ demand for users information can be reduced

by making a costly investment that increases data protection.
16In particular, ā∗(ξ)no adversaries = b̄+ρξ

1−β and CSno adversaries(ξ) = 1
2

[
σ2
b + (ā∗(ξ)no adversaries)2].
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5. Data Protection

In this section, we allow the digital business to choose also a data protection policy: a costly

investment that increases adversaries’ costs to access the collected data. For example, a business

could invest in firewall upgrades, modify its API to add additional restrictions on data access or

hire ethical hackers to uncover database vulnerabilities. Formally, we assume that the business can

choose a protection level C at a cost K(C), where K(C) is an increasing and convex function. That

is, the business’s profit function becomes Π(ξ, C) = Φ(ā, āξ)−K(C). To simplify the exposition,

we make a technical assumptions that K ′(0) = 0 and K ′(C̄) =∞, where C̄ = b̄
(1−β)(2ρ+b̄) . These

two assumptions assure that the business’s optimal choice of data protection C satisfies Assumption

1 and, therefore, equilibrium usage level is unique and ξ is interior.

To stress the dependency of equilibrium average activity on both data protection and data

collection levels, we extend the notation for average activity to ā∗(ξ, C). It is immediate from

the characterisation in Proposition 1 that the equilibrium average activity, ā∗(ξ, C), and the total

equilibrium information collected, ξā∗(ξ, C), are both strictly increasing in C. The business’s

optimal data protection and data collection policies solve the following problem:

(ξ?, C?) = arg max
ξ∈[0,1]
C≥0

Φ(ā∗(ξ, C), ξā∗(ξ, C))−K(C). (12)

Let r(ξ, C) be the counterpart of r(ξ) (see expression 7) for the case when C is endogenous. Deriving

the first-order conditions we obtain that (ξ?, C?) solves

r(ξ?, C?) = Φ′ā(ā∗(ξ?, C?), ξ?ā∗(ξ?, C?))
Φ′ξā(ā∗(ξ?, C?), ξ?ā∗(ξ?, C?))

, (13)

∂ā∗(ξ?, C?)
∂C

[
Φ′ā(ā∗(ξ?, C?), ξ∗ā∗(ξ?, C?)) + ξΦ′ξā(ā∗(ξ?, C?), ξā∗(ξ?, C?))

]
= K ′(C?). (14)

Part (iii) of Proposition 2 states that for the same level of data protection, businesses with more

data-driven revenue models (see Definition 1) collect more information as compared to businesses

with the less data-driven revenue models. In turn, this induces lower users’ average activity in the

platform and consequently leads to lower consumer surplus. However, the equilibrium condition

(14) shows that the marginal benefit of data protection (the left-hand side of expression 14) also
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depends on the revenue model of the business. Indeed, an increase in the marginal value to the

business of a unit of users’ activity, i.e., an increase in Φ′ā or in ξΦ′ξā, increases the marginal returns

to investment in data protection, ceteris paribus. Furthermore, any direct change in data collection

and data protection due to a change in the revenue model will create additional feedback depending

on whether the level of collected information and the protection level are substitute or complement

instruments for the digital business. We can say the following:

Proposition 6 Suppose that for any ā and ξ, Φ′′ξā,ā(ā, ξā) ≥ −ξΦ′′ξā,ξā(ā, ξā), then at the business’s

equilibrium policy, data collection ξ and data protection C are complements. That is, ∂
2Π(ξ,C)
∂ξ∂C

∣∣
ξ?,C?

>

0.

The condition of Proposition 6 guarantees that, for the business’s profit, the complementary

between users’ activity and users’ information is sufficiently strong relative to the second-order

effects of users’ information. This condition is satisfied if Φ is, for example, a linear function,

a Cobb-Douglas function, or a CES function. It is also satisfied for a business that is purely

usage-driven, regardless of the specific functional form of Φ.

An implication of Proposition 6 is that a change to the revenue model of the digital business or a

regulatory change, which creates additional incentives for the businesses to invest in data protection,

will also lead to an increase in data collection by the business. The former effect (increase in data

protection) will increase consumer surplus, whereas the latter effect (increase in data collection)

will lead to a decrease in consumer surplus. The result presents a challenge to policymakers: what

is the optimal intervention in a situation in which correcting one aspect of the problem amplifies

inefficiencies on another margin? Before addressing this regulatory challenge, we provide a simple

example that lends itself to an analytical and numerical analysis of the dependency of the business’s

data collection and data protection policies and the way in which both are affected by the business’s

revenue model. In the subsequent section, we return to the general model and derive a general

welfare-maximizing regulation recommendation that is surprisingly simple given the complexity of

the business’ incentives.

Example: Linear Model. Suppose that Φ(ā, ξā) = Pu · ā+ Pd · ξā. That is, Φ′ā = Pu is the

"price" the business extracts for each unit of users’ average activity (usage) and Φ′ξā = Pd is the

respective price the business extracts for each unit of data collected. The ratio Pd/Pu defines the
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extent to which the business is data-driven (based on our Definition 1). Notably, this example

satisfies the property of Proposition 6 that, for any ā and ξ, Φ′′ξā,ā(ā, ξā) ≥ −ξΦ′′ξā,ξā(ā, ξā). Therefore,

at the business’s equilibrium action, data collection ξ and data protection C are complements, and

the marginal benefit of data collection increases in data protection.

Now consider two businesses, one of which is more data-driven (higher Pd/Pu). From equation (13),

the incentives to collect information of such more data-driven business are strictly higher. Then,

complementarity between data protection and data collection also implies an indirect effect that

also leads to higher incentives of this business to protect information. This can be observed from

equation (14), which can be rewritten as Pu + ξPd = K ′(C)/ā′C to highlight that an increase in ξ

requires higher protection C (notice, that the right-hand side increases in C). At the same time, a

business can be more data-driven with higher or lower Pu + ξPd. If we know that the more-data

driven business also has a higher Pu+ξPd, we could conclude that this business has higher incentives

to protect the information. However, if the reverse holds, the lower Pu + ξPd implies lower incentives

to protect information, countering the effects of the complementarity between C and ξ.
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Figure 2: A numerical example for linear model, with Φ(ā, ξā) = (1− P ) · ā+ P · ξā and K(C) =
ψC ln C̄

C̄−C . (a) equilibrium data collection and data protection policies, ξ?, C?; (b) equilibrium
consumer surplus and information collected, CS, ξ?ā∗(ξ?) as functions of the extent to which a
business is data-driven, P . Numerical parameters: b̄ = 0.8, ρ = 0.4, β = 0.4, ψ = 0.05 for which
C̄ = 0.83.

Figure 2 illustrates the case in which Pu = 1 − P and Pd = P with P ∈ [0, 1]. An increase in

P thus represents a shift to a more data-driven revenue model. At the same time, an increase in

P decreases Pu + ξPd = 1− (1− ξ)P , thus leading to lower incentives to protect information. In

this particular example, the aggregate effect is that data collection and data protection levels are

higher for the more data-driven business. However, even in this simple example, user activity and
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consumer surplus first increase and then decrease with the shift to a more data-driven revenue

model. This is in contrast with the case of exogenous data-protection policy (see Proposition 2)

in which a shift to a more data-driven revenue model unambiguously leads to a decrease in user

activity and consumer surplus. When data protection is also endogenous, businesses with hybrid

revenue models generate the highest levels of consumer surplus.

5.1. Equilibrium Inefficiencies and Optimal Regulation

In this section, we show that businesses can find it profitable to over- or under-collect information

and over- or under-protect their data relative to the socially optimal levels. Nevertheless, regardless

of the deviation from the social optimum, a simple policy consisting of a minimal protection

requirement combined with liability fines or tax on data collection achieves the social optimum.

Using the equilibrium characterization of consumer surplus, social welfare can be captured by

W (ξ, C) = 1
2α[σ2

b + (ā∗(ξ, C))2] + (1− α)[Φ(ā∗(ξ, C), ξā∗(ξ, C))−K(C)],

with a first-order condition for data collection policy ξ that is structurally equivalent to condition (9).

The first-order condition for data protection, C, can be written as follows:

α

1− αā(ξ, C) + Φ′ā(ā∗(ξ, C), ξā∗(ξ, C)) + ξΦ′ξā(ā∗(ξ, C), ξā∗(ξ, C)) = K ′(C)
∂ā(ξ,C)
∂C

. (15)

The left-hand side of (15) is increasing in α and the case of α = 0 corresponds to the first-order

condition of the profit-maximizing business. We thus obtain that for an exogenously given data

collection level ξ, the optimal protection level of the business is always lower than the socially

optimal protection level. This observation carries over for purely usage-driven businesses even when

the business can choose both the levels of data collection and protection. Moreover, because for

usage-driven businesses, C and ξ always exhibit complementarities at the optimum, usage-driven

businesses will always under-collect and under-protect information relative to the social optimum.

A business with a revenue model that includes a significant data-driven component may, however,

choose data collection and protection levels that are too high or too low relative to the social
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optimum.17 Figure 3 illustrates the three possible scenarios using the linear model example

developed earlier.
D

at
a 

C
ol

le
ct

io
n
, 
ξ

0 0

a) b)

D
at

a 
P

ro
te

ct
io

n
, 
C0.6

0.8 Business Model, P

ξ

ξW

Over- CollectionUnder-

0.8

Over- ProtectionUnder-

Business Model, P

0.7

0.3

CW

C

Figure 3: A numerical example for the linear model with the same set of parameters as Figure 2. (a)
equilibrium and welfare-maximizing data collection policies (ξ? and ξW respectively); (b) equilibrium
and welfare-maximizing data protection policies (C? and CW respectively) as a function of the
extent to which a business is data-driven, P .

The next proposition shows that regardless of the direction of the deviations from the social

optimum, a simple two-pronged policy restores efficiency.

Proposition 7 The following two-pronged policy induces an equilibrium in which the business

chooses the socially optimal data collection and data protection policies:

a) a required minimum level of data protection Cmin = CW (where CW is the socially-optimal

data protection level) combined with

b) Either a liability fine proportional to expected damages from adversarial activity (see Defini-

tion 3) with the rate `? defined as in Proposition 4, or a tax rate t? on information collected

as defined in Corollary 2.

Furthermore, if a business is purely usage-driven (i.e., if Φ′ξā = 0), then only imposing a minimum

level of data protection requirement is sufficient.

Proposition 7 prescribes a minimal data protection requirement, Cmin, in-line with a similar

policy used by FTC, combined with a liability fine proportional to inflicted damage (as described in

Definition 3) or a tax rate on information collected.

Intuitively, imposing a liability fine or a tax on information collected guarantees that socially-

optimal data collection level ξW solves the business’ first-order condition with respect to data
17In fact, the only combination of deviation from the social optimum that is not possible in equilibrium is over-

protection and under-collection.
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collection under socially-optimal data protection level CW . At the same time, by reducing the level

of data collection, a liability fine also eliminates any incentive the business may have to overprotect

the data. A minimal protection level is then sufficient to guarantee that the business protects the

collected data appropriately from a welfare perspective.

Recall, as per the discussion in Section 4.2 (and Footnote 4), that the current policy of the

Federal Trade Commission requires a minimal level of data protection. This is sufficient to achieve

the socially optimal behavior of a purely usage-driven business. On the other hand, to achieve the

socially optimal behavior of a business with a considerable data-driven component, Proposition 7

suggests that the FTC’s policy should be complemented by liability fines proportional to the damage

to the users from adversarial activity or a tax rate on information collected. Whether the FTC’s

practice of responding to data breaches by seeking large fines is calibrated correctly, as to mimic

our liability recommendation and induce a socially optimal data collection level, are open empirical

questions.

6. Discussion and Broader Policy Implications

We conclude by elaborating on other broad policy issues that can be studied by expanding the

framework that we have developed.

6.1. Government Adversaries

As we discuss in the introduction and thereafter, we collect under the title “adversary” any agent or

entity whose usage of data harms users and thus reduces their utilities. That is, an adversary can

be a hacker aiming at identity thefts, as well as a government agency seeking to use the data to

track down and arrest users or to crack down on dissent.18 Our main analysis thus focuses on the

important commonalities across these different types of adversaries and distinguishes them only by

their cost structures.

However, some correlations between adversary types and adversaries’ cost structures are interest-
18For an example of users’ arrests in the US, see “How ICE Picks Its Targets in the Surveillance Age”, The New

York Times, 17 April 2019. For a recent discussion on how COVID-19 contact-tracing apps can turn governments into
surveillance states, see “Europe Rolls Out Contact Tracing Apps, With Hope and Trepidation”, The New York Times,
16 June 2020 and “Coronavirus apps: the risk of slipping into a surveillance state”, Financial Times, 28 April 2020.
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ing. For example, a government agency, such as ICE or the FBI in the US, may find it much less

costly to obtain data from a digital business, because they may be able to receive a court order.

This may be even easier in authoritarian political regimes, in which the so-called adversary may

have direct control of the courts. More importantly, a digital business may find it prohibitively

expensive or even impossible to protect against a government adversary.19 Finally, the ability of a

government to act as an adversary is scalable, and may thus alter the distribution of adversaries

costs altogether.

It is immediate from our model that both profits and consumer surplus will decline with a

decrease in the cost adversaries incur to obtain data. Thus suggesting that government overreach

leads to potentially harsher consequences than private hackers, and that to secure the future of

welfare-enhancing digital services, appropriate checks and balances should be put in place and

conducted by an organization that is, credibly, independent from the government.

6.2. Vertical Integration

The last two decades have seen significant consolidation of digital businesses, with many mergers and

acquisitions being led by the Big Five Tech Giants or GAFAM (Google, Amazon, Facebook, Apple,

and Microsoft).20 Many of those acquisitions are vertical. That is, the acquired business operates

in a separate market and/or provides a distinct service from the acquiring business. However, in

privacy terms, even seemingly unrelated mergers may have an important effect. This is so because

data may be shared between different subsidiaries of the same parent company.21 A few natural

questions arise: How would data collection practices change with data sharing? How will the merger

affect privacy costs? Overall, how will data mergers affect profits, consumer surplus, and aggregate

welfare?

Much in-line with public discourse, database mergers often involve businesses that can collect

different types of information and have heterogeneous abilities to capitalize on the different types
19For example, a law approved in 2014 by Russia’s president, Vladimir Putin, requires domestic and foreign

companies to store the personal data of Russian citizens on servers in Russia. For details, see "Facebook and Twitter
could be blocked in Russia in data storage row", The Guardian, 2 October 2019.

20See also https://www.visualcapitalist.com/the-big-five-largest-acquisitions-by-tech-company/
21For one of many examples, see https://www.eff.org/deeplinks/2020/04/google-fitbit-merger-would-cement-googles-data-empire

about the Google-Fitbit merger. For a recent paper that analyzes how combining datasets could feed back into user
behavior see Liang and Madsen 2020.
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of data.22 The following simple example demonstrates how our model can incorporate such

considerations and shows that whether users benefit or suffer from a merger depends heavily on

the extent to which the merger affects the businesses’ decision making process with respect to data

collection.

Consider the linear model that we introduce in Section 5 and two digital businesses j ∈ {1, 2}.

The profit function of business j has now an added term δj1mergerξ−j ā
∗
−j , where δj > 0 and 1merger

is the indicator function, taking a value of 1 if the businesses allow for reciprocal access to their

databases and 0 otherwise (i.e., 1merger = 1 if business 1 can access database of business 2 and vice

versa). Users’ utilities and adversaries’ cost-benefit structure remain the same as before.

Now consider the following three scenarios: Scenario 0 is the pre-merger scenario, the two

businesses act independently without sharing information. In Scenario DM (Data Merger), the

businesses allow for reciprocal access to their databases but maintain autonomy over setting their

data collection policies. Finally, in Scenario SM (Strategy Merger), in addition to the reciprocal

access to data, businesses decide jointly on their data collection policies.

It is easy to see that in Scenario DM, businesses’ data collection policies, user activity, privacy

costs, and consumer surplus will remain the same as in Scenario 0, but profits will increase. In

contrast, in Scenario SM the businesses will internalize the positive externalities they impose on

each other by collecting information. As a result, data collection, profits, and privacy costs will

increase, whereas user activity and consumer surplus will decrease relative to Scenarios 0 and DM.

Intuitively, the move to Scenario SM is akin to a business becoming more data-driven, leading to

increased data collection and a decrease in user activity.

Notably, public concerns with regards to mergers and acquisitions of digital businesses are not

limited to privacy concerns. Another consideration is whether merging the data will affect market

power in one of the markets in which the seemingly unrelated businesses operate in. Such discussions

are clearly interesting. Methodologically, considering market power requires extending our model to

allow for competition between digital businesses, which we defer to future work.
22See, e.g., https://www.propublica.org/article/google-has-quietly-dropped-ban-on-personally-identifiable-web-tracking
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6.3. Pay For Data

Whether users should be paid for their data is an interesting question that pertains to the property

rights over individual-level data and transcends the analysis of this paper.23 However, our framework

could be useful in evaluating the effect that pay-for-data schemes may have on data collection and

data protection, and subsequently on consumer surplus and total welfare.

On the business’s side, the payment for user data can be captured in our model in a way similar

to the analysis tied to Corollary 2. However, in contrast to the tax per data stored, the payment

goes to users and is proportional to their own usage and thus increases their activity.

In Online Appendix C.2, we illustrate, using an example of the linear model, that when a

regulator requires businesses to pay users for their data, users’ direct incentives to exert activity

increase (since they are now paid for their data) while business’s marginal returns from each unit of

user information decrease. An interplay between the two defines whether the business collects a

higher fraction of information or not and whether users benefit from such “pay for data” policy. We

show that there exist regimes in which incentives of users to increase activity are so strong that the

business can gain from an imposed payment by increasing data collection, ξ, in spite of the lowered

returns from user information. When the price per data is sufficiently large, we find that consumer

surplus can be higher than without the “pay for data” policy, and it can actually reach the socially

optimal level.

Notably, information generated by different users might be interdependent, so that information

generated by one user can reveal information on another. Such considerations could be introduced

into our model by: (1) replacing aiξ in user’s i utility with a function of other users’ usage levels,

and (2) replacing everywhere ā with a different function aggregating the usage levels of all users. We

defer this analysis for future work and refer the interested reader to work on the topic by Acemoglu

et al. 2019, Bergemann and Bonatti 2019, Gradwohl 2017, and Ichihashi 2020b.
23In related work, Arrieta-Ibarra et al. 2018 make the case that users should be paid for their data as if that data

were labor, whereas Ichihashi 2019 explores a scenario in which competing data brokers compensate users for their
data, and Bergemann and Bonatti 2019 and Acemoglu et al. 2019 study a setting where a data intermediary extracts
users’ information by offering monetary transfers. Emerging work in the marketing literature seeks to evaluate users’
valuation of privacy via empirical and experimental approaches (see Lin 2019 and references therein).
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6.4. Annoying Ads

In our narrative throughout the paper, we included the targeting of ads as a positive factor in users’

utility functions. That is, users prefer relevant ads and information revealed by users through their

activity improves the match between them and the ads they observe. However, in practice, targeting

of certain ads may also lead to a reduction in users’ utility. Consider, for instance, targeting adds of

addictive products to vulnerable users (e.g., an AA member can be targeted with an ad for alcoholic

beverages), similarly some ads may be misleading or even manipulative.24

At first glance, such annoying or harmful targeting does not seem to fit with our formulation of

adversaries because the digital business sells the ads to the marketers. However, harmful targeting

relies on data collected and quality targeting technology in order to be effective. Moreover, if, as

digital businesses often argue, they prefer not to advertise harmful ads, they may invest in the

better screening of the advertising content that they post. Circumventing the additional screening

is costly to marketers who seek to post harmful ads, and thus the extra screening can be thought of

as a form of data protection (or protection of the ability to target using the data). Our analysis of

optimal regulation thus follows.
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A. Appendix: Proofs of the Main Results

A.1. Proof of Proposition 1 (Page 11)

Given users’ expectation of the adversaries’ demand for information ω, there exists a unique

response of the users. Existense (sufficient condition) follows from Glaeser and Scheinkman 2000:

∃ã≥0∀a≤ã
∂Ui(ai,ā)

∂ai

∣∣∣
ai=ã

< 0 or ∃ã≥0∀a≤ã bi + βā+ ξ[ρ− ω]− ã < 0. Because ρ, ξ ∈ [0, 1] and ω ≥ 0

this is satisfied whenever ∃ã≥0 bi + βã + 1 − ã < 0 or ∃ã≥0 bi + 1 < ã (1− β), which can only be

satisfied if β < 1.

Condition for the uniqueness of the users’ response also follows from Glaeser and Scheinkman

2000: ∀i
∣∣∣∣ ∂2Ui
∂ai∂ā

/∂
2Ui
∂a2
i

∣∣∣∣ < 1 which is satisfied if β < 1.

Next, we derive our characterization of the unique response. Denote a−i the activity choice

that i conjecture about the other users. Then user i’s best reply is ai = bi + βā− ωξ + ρξ where

ā =
∫
j ajdj. In equilibrium users’ expectation are correct and so

∫
i aidi = b̄ + βā − ωξ + ρξ = ā

or ā(ω) = b̄+ρξ−ωξ
1−β . Such response induces adversaries with ā(ω)ξ ≥ γC to be active. Therefore,

the induced adversaries’ demand for information is ā(ω)ξ/C which should be consistent with the

initial belief ω, hence ω should solve ω = ā(ω)ξ
C . The expressions for ā∗(ξ) and ω∗(ξ) then follow by

substitution.

Consumer surplus can be derived as follows: CS(ξ) =
∫
Ui(a∗i (ξ), ā∗(ξ))dbi where a∗i (ξ) =

bi + βā∗(ξ)− ω∗(ξ)ξ + ρξ.

A.2. Proof of Corollary 1 (Page 12)

Derivative of ā∗(ξ) is C(ρC(1−β)−2b̄ξ−ρξ2)
(C(1−β)+ξ2)2 the sign of which is defined by the sign of ρC(1 − β) −

2b̄ξ − ρξ2. At ξ = 0 the latter expression is positive and has negative derivative. It changes sign to

negative only once for ξ > 0 at ξ which can be found as the largest solution to the corresponding

quadratic equation. Similarly, derivative of ξā∗(ξ) is C(b̄(C(1−β)−ξ2)+2C(1−β)ρξ)
(C(1−β)+ξ2)2 which has sign of

−b̄ξ2 + 2ρξC(1− β) + b̄C(1− β). The latter expression is positive and has positive derivative at

ξ = 0, it changes sign only once at ξ̄ which is the largest solution to the corresponding quadratic

equation. Finally, ξ̄ > ξ holds trivially when b̄
ρ <

ρC(1−β)
b̄

, otherwise, rewrite it as ρC(1−β)
b̄

+ b̄
ρ >√(

b̄
ρ

)2
+ C(1− β) −

√(
ρC(1−β)

b̄

)2
+ C(1− β), RHS is positive when b̄/ρ ≥ ρC(1 − β)/b̄, taking
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square of the both sides and rearranging, we can show that this inequality holds.

It always holds that ξ ≥ 0, for ξ ≤ 1 we need to require C ≤ 2b̄+ρ
ρ(1−β) . Similarly, ξ̄ ≥ 0 always, while

for ξ̄ ≤ 1 we need to require C ≤ b̄
(1−β)(b̄+2ρ) . The latter inequality is binding and is guaranteed by

Assumption 1.

A.3. Proof of Proposition 2 (Page 14)

First-order condition (FOC) is given by Eq. (8):

−d(ξā∗(ξ))
dξ

/dā∗(ξ)
dξ ≡ r(ξ) = Φ′ā(ā∗(ξ), ξā∗(ξ))

Φ′ξā(ā∗(ξ), ξā∗(ξ))

We will first show that solution to FOC exists and is unique. r′(ξ) = −2(C(1−β)+ξ2)(b̄2+ρ2C(1−β))
(2b̄ξ+ρ(ξ2−C(1−β)))2 ≤ 0.

Also, r(ξ) = +∞ and r(ξ̄) = 0. Furthermore, the RHS of the FOC is non-negative on [ξ, ξ̄].

Assuming that the RHS of the FOC is finite at ξ (i.e. that Φ′ā(ā∗(ξ),ξā∗(ξ))
Φ′
ξā

(ā∗(ξ),ξā∗(ξ)) is finite), existence follows.

Denote ξ? – a solution to FOC on [ξ, ξ̄]. We will show that ∂
∂ξ

(
Φ′ā(ā∗(ξ),ξā∗(ξ))
Φ′
ξā

(ā∗(ξ),ξā∗(ξ))

)∣∣∣
ξ=ξ?
≥ 0 from where

uniqueness follows. Taking this derivative, we obtain:

1
(Φ′ξā)2 ·

[
Φ′ξā · (Φ′′ā,ā

dā∗(ξ)
dξ + Φ′′ξā,ā

d(ξā∗(ξ))
dξ )− Φ′ā · (Φ′′ξā,ā

dā∗(ξ)
dξ + Φ′′ξā,ξā

d(ξā∗(ξ))
dξ )

]

where we omitted repeated arguments of the functions for brevity. In order to evaluate this expression

at ξ?, we substitute from FOC: Φ′ξā = Φ′ā/r(ξ?) (derivatives are evaluated at ξ?). We obtain that

the sign of the derivative of the RHS is defined by:

− Φ′ā
(dā∗(ξ)/dξ)2

d(ξā∗(ξ))/dξΦ′′ā,ā − 2Φ′āΦ′′ξā,ā
dā∗(ξ)

dξ − Φ′āΦ′′ξā,ξā
d(ξā∗(ξ))

dξ (16)

all evaluated at ξ?. Note that on [ξ, ξ̄], we have dā∗(ξ)
dξ ≤ 0 and d(ξā∗(ξ))

dξ ≥ 0, also we have Φ′ā ≥ 0.

From concavity of Φ, we have Φ′′ā,ā ≤ 0,Φ′′ξā,ξā ≤ 0 and |Φ′′ξā,ā| ≤
√

Φ′′ā,āΦ′′ξā,ξā. If at ξ?, Φ′′ξā,ā ≥ 0 then

the expression (16) is positive. Similarly, if at ξ?, Φ′′ξā,ā ≤ 0, then substitute Φ′′ξā,ā = −
√

Φ′′ā,āΦ′′ξā,ξā
to expression (16) to find its lower bound which can be shown to be non-negative. Hence evaluated

at ξ?, derivative ∂
∂ξ

(
Φ′ā
Φ′
ξā

)
is positive, from where uniqueness of ξ? on [ξ, ξ̄] follows.
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We will derive Π′′(ξ) to check for second-order conditions at ξ?:

Φ′′ā,ā
(dā∗(ξ)

dξ
)2

+ 2Φ′′ξā,ā
dā∗(ξ)

dξ
d(ξā∗(ξ))

dξ + Φ′′ξā,ξā
(d(ξā∗(ξ))

dξ
)2

+ Φ′ā
d2ā∗(ξ)

dξ2 + Φ′ξā
d2(ξā∗(ξ))

dξ2

The sign of the first three terms can be shown to be negative using concavity of Φ as above. The

sign of the last two terms can be determined by substituting Φ′ξā = Φ′ā/r(ξ?) from the FOC and

calculating the derivatives explicitly, which leads to Φ′ā
2C(b̄2+C(1−β)ρ2)

(C(1−β)+ξ2)(b̄(ξ2−C(1−β))−2ρξC(1−β)) which can

be shown to be negative for any ξ < ξ̄. Hence, Π′′(ξ̂) ≤ 0.

If Φ′ā = 0 then FOC is r(ξ) = 0 which is satisfied at ξ̄. If Φ′ξā = 0 then FOC is r(ξ) =∞ which is

satisfied at ξ. A decrease in the RHS of FOC (i.e., increase in Φ′ξā/Φ′ā) leads to higher solution ξ? to

FOC (r(ξ) is decreasing, RHS is increasing at ξ?). The rest of the results follows from Corollary 1.

A.4. Proof of Proposition 3 (Page 15)

First-order condition has the following form for the welfare maximization:

r(ξ) = αā∗(ξ) + (1− α)Φ′ā(ā∗(ξ), ξā∗(ξ))
(1− α)Φ′ξā(ā∗(ξ), ξā∗(ξ))

Existence of the solution can be shown in the same way as in the proof of Proposition 2. α = 0

corresponds to the case of profit maximization. Rewrite the RHS of the FOC as αā∗(ξ)
(1−α)Φ′

ξā
+ Φ′ā

Φ′
ξā
, the

second term is the same as in the FOC of Proposition 2 (profit maximization). The first term is

positive. Given that r(ξ) is decreasing, convex, conclude that ∀α: ξW < ξ? (unless Φ′ξā = 0) and

properties of information and activity follow from the fact that ξW ∈ [ξ, ξ̄]. Notice that there might

be several solutions ξW to FOC. Also, it is not guaranteed anymore that derivative of the RHS is

positive at all such solutions ξW . Indeed, for the RHS, the derivative wrt ξ is

(
αdā∗(ξ)

dξ + (1− α)
(
Φ′′ā,ā

dā∗(ξ)
dξ + Φ′′ā,ξā

d(ξā∗(ξ))
dξ

))
Φ′ξā − (αā∗(ξ) + (1− α)Φ′ā)

(
Φ′′ā,ξā

dā∗(ξ)
dξ + Φ′′ξā,ξā

d(ξā∗(ξ))
dξ

)
(1− α)(Φ′ξā(ā∗(ξ), ξā∗(ξ)))2

Where we omitted the arguments of derivatives of Φ for the sake of brevity. At ξW – solution of the

FOC, substitute the numerator of the RHS of the FOC into the derivative. We thus get that the
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sign of the derivative of the RHS at ξW is defined by:

(
α

dā∗(ξ)
dξ + (1− α)

(
Φ′′ā,ā

dā∗(ξ)
dξ + Φ′′ā,ξā

d(ξā∗(ξ))
dξ

))
Φ′ξā−(1−α)Φ′ξār(ξ)(Φ′′ā,ξā

dā∗(ξ)
dξ +Φ′′ξā,ξā

d(ξā∗(ξ))
dξ )

Evaluated at ξW . After further simplification (and multiplication by −dā∗(ξ)
dξ ) we obtain that the

sign of this expression is defined by:

−α
(dā∗(ξ)

dξ

)2
− (1− α)

[
Φ′′ā,ā

(dā∗(ξ)
dξ

)2
+ 2Φ′′ā,ξā

d(ξā∗(ξ))
dξ

dā∗(ξ)
dξ + Φ′′ξā,ξā

(d(ξā∗(ξ))
dξ

)2]

all evaluated at ξW . The first term is negative. The expression in the brackets is shown to be

negative using concavity of Φ in the proof of Proposition 2.

A.5. Proof of Proposition 4 (Page 17)

Given liability policy `, business is choosing ξ to maximize Π(ξ, `) = Φ(ā∗(ξ), ξā∗(ξ))− `
C (ξā∗(ξ))2.

The FOC is d
dξ (Φ(ā∗(ξ), ξā∗(ξ))) = 2 `

C ξā
∗(ξ)d(ξā∗(ξ))

dξ . From Proposition 3, socially optimal data

collection policy ξW solves d
dξ (Φ(ā∗(ξ), ξā∗(ξ))) = − α

1−α ā
∗(ξ)dā∗(ξ)

dξ . In order for liability `? to

correct inefficiency in data collection, it must be:

2`
?

C
ξW ā∗(ξW )d(ξā∗(ξ))

dξ

∣∣∣
ξ=ξW

= − α

1− αā
∗(ξW )dā∗(ξ)

dξ

∣∣∣
ξ=ξW

Recall that r(ξ) = −d(ξā∗(ξ))
dξ

/
dā∗(ξ)

dξ . Then the expression for `? follows. If α = 1 then FOC for

welfare maximization is dā∗(ξ)
dξ = 0 which is satisfied at ξW = ξ. Hence, optimal liability `? follows

from Φ′ā
dā∗(ξ)

dξ + Φ′ξā
d(ξā∗(ξ))

dξ = 2 `?C ξā
∗(ξ)d(ξā∗(ξ))

dξ evaluated at ξ = ξ. Notice that d(ξā∗(ξ))
dξ |ξ = ā∗(ξ).

Then `? = Φ′ξā C
2ξā∗(ξ) . Substituting ā

∗(ξ) and simplifying we get the formula for `?.

A.6. Proof of Corollary 2 (Page 18)

Proof is similar to the one of Proposition 4. Given tax t, the business is choosing ξ to maximize

Π(ξ, t) = Φ(ā∗(ξ), ξā∗(ξ))− tξā∗(ξ). The FOC is d
dξ (Φ(ā∗(ξ), ξā∗(ξ))) = td(ξā∗(ξ))

dξ . From Proposi-

tion 3, socially optimal data collection policy ξW solves d
dξ (Φ(ā∗(ξ), ξā∗(ξ))) = − α

1−α ā
∗(ξ)dā∗(ξ)

dξ . In

order for tax t? to correct inefficiency in data collection, it must be that: t? = α
1−α

ā∗(ξW )
r(ξW ) . Case of

α = 1 follows from the fact that ξW = ξ when α = 1.
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A.7. Proof of Proposition 5 (Page 19)

Average activity in the case with no adversaries can be obtained by setting ω = 0 in the proof of

Proposition 1. Average damage from Definition 2 is D(ξ) = (ξā∗(ξ))2

C . Then we have:

M(ξ) = CSno adversaries(ξ)− CS(ξ)
D(ξ) = C

2ξ2

( b̄+ ρξ

1− β

)2

−
(

C(b̄+ ρξ)
C(1− β) + ξ2

)2
/( C(b̄+ ρξ)

C(1− β) + ξ2

)2

Simplifying we obtainM(ξ) = ξ2+2C(1−β)
2C(1−β)2 = ξ2

2C(1−β)2 + 1
1−β ≥

1
1−β .

A.8. Second-Order Conditions for Maximization Problem (12) (Page 20)

First, solve first-order condition (13) and (14) wrt Φ′ā and Φ′ξā. We get:

Φ′ā(ā∗(ξ, C)) = −K ′(C)(ξ2 + C̃)(b̄(ξ2 − C̃)− 2ρξC̃)
ξ2(b̄+ ρξ)2

Φ′ξā(ā∗(ξ, C)) = K ′(C)(ξ2 + C̃)(2b̄ξ + ρξ2 − C̃ρ)
ξ2(b̄+ ρξ)2

where C̃ = C(1 − β). As before, we will use shorthand notation Φ′′ā,ā,Φ′′ξā,ξā,Φ′′ξā,ā to denote

second-order derivatives of function Φ. For the rest of the proof, all functions are evaluated

at optimal ξ?, C?, yet we will write ξ, C for simplicity. We will also use the following notation:

A ≡ ∂ā∗(ξ,C)
∂ξ , B ≡ ∂(ξā∗(ξ,C))

∂ξ and D ≡ ∂ā∗(ξ,C)
∂C , E ≡ ∂(ξā∗(ξ,C))

∂C . Then second-order derivatives of

the function Π̃(ξ, C) = Φ(ā∗(ξ, C), ξā∗(ξ, C)):

∂2Π̃(ξ, C)
∂ξ2 = Φ′′ā,āA2 + 2Φ′′ξā,āAB + Φ′′ξā,ξāB2 + Φ′ā

∂2ā∗(ξ, C)
∂ξ2 + Φ′ξā

∂2(ξā∗(ξ, C))
∂ξ2

∂2Π̃(ξ, C)
∂ξ∂C

= Φ′′ā,āAD + Φ′′ξā,ā (AE +BD) + Φ′′ξā,ξāBE + Φ′ā
∂2ā∗(ξ, C)
∂ξ∂C

+ Φ′ξā
∂2(ξā∗(ξ, C))

∂ξ∂C

∂2Π̃(ξ, C)
∂C2 = Φ′′ā,āD2 + 2Φ′′ξā,āDE + Φ′′ξā,ξāE2 + Φ′ā

∂2ā∗(ξ, C)
∂C2 + Φ′ξā

∂2(ξā∗(ξ, C))
∂C2
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Substituting Φ′ā,Φ′ξā found above, we get:

Π̃′′ξξ(ξ, C) = Φ′′ā,āA2 + 2Φ′′ξā,āAB + Φ′′ξā,ξāB2 + λξξ, where λξξ = −2K ′(C)C(b̄2 + C̃ρ)
ξ2(b̄+ ρξ)2 < 0

Π̃′′ξC(ξ, C) = Φ′′ā,āAD + Φ′′ξā,ā (AE +BD) + Φ′′ξā,ξāBE + λξC , where λξC = 2K ′(C) C̃

ξ(ξ2 + C̃)
> 0

Π̃′′ξξ(ξ, C) = Φ′′ā,āD2 + 2Φ′′ξā,āDE + Φ′′ξā,ξāE2 + λCC , where λCC = −2K ′(C)(1− β)
ξ2 + C̃

< 0

It can be easily shown that Π̃′′ξξ(ξ, C) ≤ 0 and Π̃′′CC(ξ, C) ≤ 0 using concavity of Φ (e.g., see, proof

of Proposition 2). Finally, Π̃ξξ(ξ, C)Π̃CC(ξ, C)− Π̃2
ξC(ξ, C) after simple algebraic manipulations can

be rewritten as:

(
Φ′′ā,āΦ′′ξā,ξā − (Φ′′ξā,ā)2

)
(BD −AE)2 + λCCλξξ − λ2

ξC + 2Φ′′ξā,ā(ABλCC − (BD +AE)λξC +DEλξξ)+

Φ′′ā,ā(A2λCC − 2ADλξC +D2λξξ) + Φ′′ξā,ξā(B2λCC − 2BEλξC + E2λξξ)

The first term is non-negative due to concavity of Φ. The second and the third terms can be

combined and simplified (substitute the expressions for λ) to 4C̃(b̄ξ−ρC̃)2K′(C)2

ξ2(ξ2+C̃)2(b̄+ρξ)2 which is non-negative.

Thus, we are left to determine the sign of the last three terms. We can rewrite those as follows:

2CK ′(C)
(ξ2 + C̃)4

(
−Φ′′ā,āµ2 − 2Φ′′ξā,āµη − Φ′′ξā,ξāη2 − Φ′′ξā,ξāC̃ξ2(b̄+ ρξ)2

)
(17)

where µ = b̄ξ − C̃ρ and η = b̄(ξ2 − C̃) − 2ρξC̃. Notice that sign of µ can be either positive or

negative, while η < 0 since ξ < ξ̄ (by Assumption 1), where ξ̄ solves η = 0. The multiplier of

expression (17) is positive. The last term is also positive since Φ′′ξā,ξā ≤ 0. Finally, irrespective of

the sign of µ The first three terms can also be shown positive using concavity of Φ (applying the

same technique as in the proof of Proposition 2). Hence, we showed that at optimal ξ?, C? Hessian

of Π̃(ξ, C) is negative semi-definite. Given that K ′′(C) ≥ 0, we have Hessian of the profit function

Π(ξ, C) is also negative semi-definite at ξ?, C?.
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A.9. Proof of Proposition 6 (Page 21)

Result follows from the proof A.8. Evaluate Π̃ξC(ξ, C) at ξ?, C?. We know that λξC > 0. The rest

can be rewritten as follows:

∂ā∗(ξ, C)
∂C

∂ā∗(ξ, C)
∂ξ

(
Φ′′ā,ā + 2Φ′′ξā,āξ + ξ2Φ′′ξā,ξā

)
+ ā∗(ξ, C)∂ā

∗(ξ, C)
∂C

(
Φ′′ξā,ā + ξΦ′′ξā,ā

)

The first term is non-negative due to concavity of function Φ (see proof of Proposition 2). The

second term is non-negative by assumption of the Proposition.

A.10. Proof of Proposition 7 (Page 24)

We will prove statement of the proposition for the case when liability policy `? is used. Proof

when tax rate t? is used is similar. The profit function of the business under liability policy is

Π(ξ, C, `) = Φ(ā∗(ξ, C), ξā∗(ξ, C))−K(C)− `
C [ξā∗(ξ, C)]2. The first-order conditions are:

∂Π(ξ, C, `)
∂ξ

= ∂Φ(ā∗(ξ, C), ξā∗(ξ, C))
∂ξ

− 2 `
C
ā∗(ξ, C)ξ ∂(ξā∗(ξ, C))

∂ξ

∂Π(ξ, C, `)
∂C

= ∂Φ(ā∗(ξ, C), ξā∗(ξ, C))
∂C

+ `

C
ā∗(ξ, C)ξ2

(
ā∗(ξ, C)ξ

C
− 2∂(ξā∗(ξ, C))

∂C

)

Now, evaluate these conditions at socially-optimal ξW , CW . We will suppress subscript W from

ξW , CW for the rest of the proof. Substitute ∂Φ
∂ξ ,

∂Φ
∂C from the first-order conditions for welfare

function (expression (15) and its counterpart for ξ), also substitute `? from the expression (10).

After simplification, we obtain:

∂Π(ξ, C, `?)
∂ξ

∣∣∣
ξW ,CW

= 0

∂Π(ξ, C, `?)
∂C

∣∣∣
ξW ,CW

= CWρξW (b̄+ ρξW )2

2((ξW )2 + CW (1− β))(b̄((ξW )2 − CW (1− β))− 2ρξWCW (1− β))
< 0

Where the second inequality follows from the fact that ξW , CW are such that ξW < ξ̄ (based

on Assumption 1) – see Corollary 1. Thus, business under minimum data protection C ≥ Cmin

requirement and liability policy `?, sets ξW , CW . In case if Φ′ξā = 0, welfare is maximized when

activity ā∗(ξ, C) is maximized, hence condition ∂Π(ξ,C)
∂ξ |ξW ,CW ,` = 0 is satisfied with ` = 0.
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Online Appendices

B. Hybrid Revenue Model – an Additional Example for Section 2.5 (Page 10)

Consider a digital business with the revenue model that has both an information-driven component

and a usage driven component, say Facebook. Using Facebook is free. Private benefit and cost of

using the service as well as positive network effects are captured by the first and the second terms

of expression 1. Each user i has a characteristic θi ∈ {0, 1, . . . , n}, which captures a unit demand to

one of a class of products. θi is ex-ante unknown to the business. However, if business knew this

characteristic, then it could target user i with a product of value V to her. Note that, in contrast

with a pure data-driven business model, Facebook wishes that users are active and use its service in

order to be able to show them ads.

The business knows that for any m ∈ {0, 1, . . . , n}, θi = m with probability 1/n. The user’s

activity provides signals to the business about θi, but only if this activity is registered and processed.

In particular, if the business sets ξ and the user exerts activity level ai, then ξai is the probability

that the business observes the true realization of θi, whereas with the remaining probability the

business learns nothing. In this case, the ex-ante expected probability that the platform creates

value V to the user is:
1
n

[1 + (n− 1) aiξ] .

Depending on the competitiveness of the market, this value will be shared between the advertiser

and the user, and then the platform is able to extract payments from the advertiser via advertising

fees (described below). Let S be the share that is extracted by the advertiser. Then, the positive

externality to the user is V (1− S) [1 + (n− 1) aiξ] /n and ρ = V (1− S) (n− 1) /n.

In addition to revenues from selling a product (in expectation SV [1 + (n− 1) aiξ] /n), advertisers

benefit from views that contribute to brand recognition. That is, the total value to an advertiser (or

advertisers) from targeting a user is SV [1 + (n− 1) aiξ] /n+ vai where v is the value in terms of

brand recognition of each ad-view. Let s be the share of this value extracted by the platform in the

form of per view fees. Then the profit to the platform from user i is s (SV [1 + (n− 1) aiξ] /n+ vai).
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C. Additional Analysis

C.1. General User Utility and Adversary Specification

Assume that user i’s utility is generalized to the following form: Ui(ai) = U [ai, ξ(ρ − ω)].25 The

first argument is the user’s activity, while the second argument is the user’s expectation on the

benefit/downside of exerting each unit of activity. We assume that function U is concave in its two

arguments and the arguments are complements. We will denote U ′x, U ′y – partial derivatives of U

wrt the first and the second arguments respectively. The first-order condition for the user is thus

U ′x(a, ξ(ρ− ω)) = 0.

We assume that adversaries’ abilities γ are distributed with cdf G and pdf g. We also assume that

distribution of γ satisfies increasing generalized failure rate (IGFR) property (see Lariviere 2006).

In other words, we have that xg(x)/(1−G(x)) increases in x or alternatively g′(z) ≥ − g(z)2

1−G(z) .

The main driving force of the results of the paper was the fact that the equilibrium average

activity was non-monotone in the level of information collection policy ξ. In particular, activity

increases with ξ for low ξ and it decreases in ξ when ξ is large. This non-monotonicity in user activity

is the result of the interplay between positive and negative externalities that information imposes on

users along with the adversaries’ endogenous demand for information. When ξ is low, adversaries’

demand for information is small, hence information produces more positive than negative externality

to users – thus, an increase in ξ incentivises users to be more active. When ξ is large, the adversaries’

demand for information is strong, and so negative externalities dominate, and users decrease their

activity as ξ grows. We can show that the behavior of user activity inherits such traits in this more

general model.

Similar to the result of Proposition 1 we can solve for user’s equilibrium activity. In particular,

it is such a∗(ξ) solves: U ′x(a, ξρ− ξG(aξ/C)) = 0. Derivative of user activity wrt ξ:

da∗(ξ)
dξ = −

U ′′x,y(a, ξρ− ξG(aξ/C))[ρ−G(aξ/C)− g(aξ/C)aξ/C]
U ′′x,x(a, ξρ− ξG(aξ/C))− U ′′x,y(a, ξρ− ξG(aξ/C))g(aξ/C)ξ2/C

|a=a∗(ξ)

Thus, the sign of this expression is defined by µ(ξ) = ρ−G(a∗(ξ)ξ/C)− g(a∗(ξ)ξ/C)a∗(ξ)ξ/C. At

ξ = 0 this expression is positive. Its derivative wrt ξ is µ′(ξ) = (a∗(ξ)′ξ + a∗(ξ))(−2g(a∗(ξ)ξ/C)−
25For simplicity, we omit network effects.
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g′(a∗(ξ)ξ/C)). In order to show that a∗(ξ) first increases and then decreases with ξ, we need to

show that µ(ξ) either always remains positive (then a∗(ξ) always increases) or crosses 0 only once.

Assume that there exists ξ̂, such that µ(ξ̂) = 0, then also da∗(ξ)
dξ |ξ̂ = 0. Using IGFR property of

distribution of γ, we conclude that sign of µ′(ξ̂) is defined by −2 + 2G(a∗(ξ̂)ξ̂/C) + g(a∗(ξ̂)ξ̂/C)

which is negative given that we know that at ξ̂: ρ = G(a∗(ξ̂)ξ̂/C) + g(a∗(ξ̂)ξ̂/C). Clearly a∗(ξ)ξ

increases with ξ when a∗(ξ) increases. Behavior of a∗(ξ)ξ when a∗(ξ) decreases is defined by the

sign of ξU ′′x,y(. . .)(ρ−G(a∗(ξ)ξ/C))− U ′′x,x(. . .)a∗(ξ) and depends on the higher-order derivatives of

function U . Notice that for a∗(ξ)ξ to decrease, necessarily it must be that ρ < ω = G(a∗(ξ)ξ/C)

or a∗(ξ)ξ is high enough. a∗(ξ)ξ increases first and then decreases if ξ(ρ− ω)/a∗(ξ) single-crosses

U ′′x,x(a∗(ξ), ξ(ρ− ω))/U ′′x,y(a∗(ξ), ξ(ρ− ω)).

C.2. Paying Users for Data (Section 6.3, Page 28)

Users’ utility is modified by adding tāξ, which, in the case of exogenous t is equivalent to setting

ρ̃ = ρ+ t. Thus, ā∗(ξ) is modified by increasing ρ to ρ̃. Denote modified users’ response as ã∗(ξ).

Then business’s profit without paying for data is Π(ξ) = Φ(ā∗(ξ), ξā∗(ξ)) and when paying for data

it is Π̃ = Φ(ã∗(ξ), ξã∗(ξ))− tã∗(ξ)ξ. We will further assume linear function form for Φ, such that

Φ(ā, ξā) = Puā+ Pdξā. Also wlog let β = 0.

Equilibrium data collection policy of the business which doesn’t pay for data is ξ? such that

solves (8). Equilibrium data collection policy of the business which pays for data ξ?(t) has

the following form: Pu
dã∗(ξ)

dξ + (Pd − t)d(ξã∗(ξ))
dξ = 0. Solving for equilibrium ξ?(t) we obtain:

ξ?(t) = −κ(t) +
√
κ(t)2 + C – decreasing in κ(t), where κ(t) = b̄Pu−(Pd−t)(ρ+t)C

(Pd−t)b̄+Pu(ρ+t) . The sign of the

derivative of κ(t) is defined by t2C(Pu− b̄) + 2tC(b̄Pd + ρPu) + b̄Pu(b̄−Pu) +C(Puρ2− b̄P 2
d ). Notice

that if b̄ = 0 then this expression is positive for any t and hence, ξ?(t) ≤ ξ? for any t. If b̄ > 0, it

may happen that ξ?(t) > ξ?. Consider, for instance, t→ 0, then sufficient condition for ξ?(t)′t > 0

is b̄Pu(b̄ − Pu) + C(Puρ2 − b̄P 2
d ) < 0. If this condition holds, then at least for small t business

collects higher fraction of user information than with t = 0. Now, consider t = Pd, then business

sets ξ(t = Pd) (s.t. dã∗(ξ)
dξ = 0) – data collection policy maximizing consumer surplus.
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