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Abstract

We study the design of rating systems that incentivize (more) efficient social learning among
self-interested agents. Agents arrive sequentially and are presented with a set of possible ac-
tions, each of which yields a positive reward with an unknown probability. A disclosure policy
sends messages about the rewards of previously-chosen actions to arriving agents. These mes-
sages can alter agents’ incentives towards exploration, taking potentially sub-optimal actions
for the sake of learning more about their rewards. Prior work achieves much progress with dis-
closure policies that merely recommend an action to each user, but relies heavily on standard,
yet very strong rationality assumptions.

We study a particular class of disclosure policies that use messages, called unbiased sub-
histories, consisting of the actions and rewards from a subsequence of past agents. Each sub-
sequence is chosen ahead of time, according to a predetermined partial order on the rounds.
We posit a flexible model of frequentist agent response, which we argue is plausible for this
class of “order-based” disclosure policies. We measure the success of a policy by its regret, i.e.,
the difference, over all rounds, between the expected reward of the best action and the reward
induced by the policy. A disclosure policy that reveals full history in each round risks induc-
ing herding behavior among the agents, and typically has regret linear in the time horizon T .

Our main result is an order-based disclosure policy that obtains regret Õ(
√
T ). This regret is

known to be optimal in the worst case over reward distributions, even absent incentives. We
also exhibit simpler order-based policies with higher, but still sublinear, regret. These policies
can be interpreted as dividing a sublinear number of agents into constant-sized focus groups,
whose histories are then revealed to future agents.
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1 Introduction

A prominent feature of online platform markets is the pervasiveness of reviews and ratings. Un-
like its brick-and-mortar competitors, Amazon accompanies its products by hundreds if not thou-
sands of reviews and ratings from past customers. Companies like Yelp and TripAdvisor have
built entire business models on the premise of providing users with crowdsourced information
about dining and hotel options so that they may make more informed choices.

The review and rating ecosystem creates a deep dilemma for online market designers. On the
one hand, platforms would like to provide each consumer with an optimal experience by present-
ing the most comprehensive and comprehensible information. On the other hand, platforms need
to encourage consumers to explore infrequently-selected choices in order to learn more about
them. The said exploration, while beneficial for the common good, is often misaligned with in-
centives of individual consumers, who are often reluctant to explore and prefer to err on the side
of less risk. This tension between exploration and incentives lies at the heart of our study. We
resolve it by providing a platform design that achieves a near-optimal rate of social learning and
withholds little information from consumers. Our platform design presents each consumer with
a subset of ratings, and allows the consumer to draw her own conclusions. Each user’s subset is
determined in advance, and so cannot be biased to make a particular action look good; we call it
an unbiased subhistory.

As an example, consider a diner searching for restaurants on a platform like Yelp. If all restau-
rants are displayed alongside their past average rating, the diner is likely to choose the restaurant
with the highest rating, especially if that restaurant has a large number of reviews. But then future
diners will follow in her footsteps, and the platform never learns about alternative restaurants. If
the platform instead recommends only a single restaurant with no accompanying data in an at-
tempt to nudge the diner towards that choice, the diner may lose faith in the system and abandon
the platform altogether.

Our design presents a third option: the platform displays a subset of past ratings, chosen
in advance of deployment. Thus, the diner might see, e.g., every fifth review entered into the
platform, or the first hundred reviews, etc. As different diners see different subhistories, random
variation incentivizes them to make different choices. If the subhistories are intertwined in a
certain way, we prove that the diners eventually receive enough information to make optimal
dining choices. As a result, the average regret of a diner, measured as the difference in reward
between her selected restaurant and the best one, is vanishing as the population grows. In fact,
we match the best possible regret rates for the version without incentives.

Background and scope. Absent incentive constraints, the so-called exploration-exploitation trade-
off has received much attention over the past decades, mainly in the relatively simple abstraction
known as multi-armed bandits (see books [21, 15, 47, 34] for background). In this literature, the
social planner repeatedly selects from a set of actions, each of which has a payoff drawn from
an unknown fixed distribution. Over time, the planner can trade off exploitation, in which she
picks an action to maximize expected reward, with exploration, in which she takes potentially
sub-optimal actions to learn more about their rewards. By coordinating actions across time, the
planner can guarantee an average reward which converges to that of the optimal action in hind-
sight with regret rate proportional to the square root of the time horizon.

In the rating platform setting, the actions are not chosen by a social planner, but rather a se-
quence of self-interested customers, henceforth agents. An agent’s incentives are skewed towards
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exploitation: indeed, the costs of exploration are all hers, whereas the benefits are spread over
many. In particular, an agent that shows up only once will only exploit, as the benefits of explo-
ration are only accrued by future agents. This behavior can cause herding, in which all agents
eventually take a sub-optimal action, as it yields maximum expected payoff given the available
information. In particular, if the platform adopts the full-disclosure policy, whereby each agent
sees the full history of observations from the previous agents, then herding happens with con-
stant probability (e.g., see Chapter 11.2 in [47]). Extreme behaviors aside, some actions may get
explored at a very suboptimal rate, and may suffer from selection bias (e.g., a movie is only seen
and reviewed by the fans).

This situation can be circumvented by a rating system that induces agents to take explorative
actions, an idea called incentivizing exploration. One way rating platforms induce exploration is
via payments. For example, a platform like Yelp might offer coupons to diners for trying cer-
tain restaurants. However, exploration-inducing payments introduce selection bias, and are often
financially or technologically infeasible. An alternative that we explore here is to rely on informa-
tion asymmetry. The rating system can choose a disclosure policy to selectively release information
about the past actions and rewards. The agent then chooses an action, using the available in-
formation as input. The problem of incentivizing exploration via information asymmetry was
introduced in [32] and further explored in subsequent work [16, 38, 39, 7, 13, 8]. Incentivizing
exploration via payments has been studied in [19, 26, 17].

All this work relies heavily on the standard assumptions of Bayesian rationality and the “power
to commit” (i.e., that users trust that the platform actually implements the policy that it claims
to implement). However, these assumptions appear quite problematic in the context of ratings
systems of actual online markets such as those mentioned above. In particular, much of the prior
work suggests policies that merely recommend an action to each agent, without any other support-
ing information, and moreover recommend exploratory actions to some randomly selected users.
This works out extremely well in theory. However, realistic users may hesitate to follow such a
policy – because of limited rationality, insufficient trust in the platform, aversion to exploration,
or preference for detailed and interpretable information (or all of the above).

Our model. We strive to design information disclosure policies which mitigate these issues by
taking a more realistic view of user behavior while (still) striking a good balance between explo-
ration and exploitation. While making some assumptions on user behavior appears unavoidable,
we relax the assumptions in two crucial ways:

1. Effectively, we only need to make assumptions on how agents interact with the full-disclosure
policy, rather than with an arbitrary disclosure policy.

2. We allow a flexible frequentist choice model: an agent can choose an action in any way that
is consistent with (a slightly narrower version of) her confidence intervals.

Let us elaborate on these two tenets. The full-disclosure policy is arguably most intelligi-
ble and satisfactory for the users. It is also relatively easy to audit, which should increase the
platform’s “power to commit” to this policy. Hence, any assumptions on user behavior are most
plausible if we only need to make them against the full-disclosure policy. Now, how would a
frequentist agent choose an action given the full history of observations? She would construct a
confidence interval on the expected reward of each action, taking into account the average reward
of this action and the number of observations. Essentially, we allow the agent to pick an arbitrary
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estimate in each confidence interval, and choose an action with the highest estimate.1 A more
detailed discussion of the economic assumptions can be found later in the Introduction.

Our information disclosure policy proceeds as follows. A partial order on the rounds is care-
fully constructed and fixed throughout (and can be made public w.l.o.g.). An agent arriving in
round t sees full history for a fixed subset St of rounds, namely for all rounds s that precede t
in the partial order. No other information is revealed. In particular, unlike all prior work on
incentivized exploration, we do not make explicit recommendations for which action to choose
next. Such disclosure policies are called order-based. By transitivity of the partial order, the only
rounds that can possibly affect round t are the ones in St . Rounds not in St are as irrelevant to
the agent arriving in round t as anything else that happens outside the mechanism. Thus, as far
as this agent is concerned, the relevant mechanism is one restricted to the rounds St ∪ {t}, and the
agent sees the full history for this mechanism.

Put differently, we construct a unidirectional communication network for the agents, and let
them engage in social learning with full disclosure (i.e., each agent communicates its full infor-
mation set). We construct the network so as to ensure that full disclosure does not lead to herding,
and instead results in a near-optimal exploration-exploitation balance.

Regret. We measure the performance of a disclosure policy in terms of regret, a standard notion
from the literature on multi-armed bandits. Regret is defined as the difference in the total ex-
pected reward between the best fixed action and actions induced by the policy. Regret is typically
studied as a function of the time horizon T , which in our model is the number of agents. For
multi-armed bandits, o(T ) regret bounds are deemed non-trivial, and O(

√
T ) regret bounds are

optimal in the worst case. Regret bounds that depend on a particular problem instance are also
considered. A crucial parameter then is the gap ∆, the difference between the best and second best
expected reward. One can achieve O( 1

∆
logT ) regret rate, without knowing the ∆.

Our results and techniques. We have arrived at a concrete mathematical problem: design an
order-based disclosure policy so as to optimize regret. We focus on the fundamental case of a
constant number of actions. Our main result is policy that attains near-optimal Õ(

√
T ) regret rate.

This policy also obtains the optimal instance-dependent regret rate Õ( 1
∆
) for problem instances

with gap ∆, without knowing the ∆ in advance. In particular, we match the best possible regret
rates for the multi-armed bandit problem. Our disclosure policy also ensures a desirable property
that each agent t sees a substantial fraction of history available at time t: namely, our policy reveals
a subhistory of size at leastΩ(t/ polylog(T )).

The main challenge is that the agents still follow exploitation-only behavior, just like they do
for the full-disclosure policy, albeit based only on a portion of history. Recall that our disclosure
policy controls the flow of information (i.e., who sees what), but not its content.

The first step is to obtain any substantial improvement over the full-disclosure policy. We ac-
complish this with a relatively simple policy which runs the full-disclosure policy “in parallel” on
several disjoint subsets of agents, collects all data from these runs and discloses it to all remaining
agents. In practice, these subsets may correspond to multiple “focus groups”. While any single
run of the full-disclosure policy may get stuck on a suboptimal arm, having these parallel runs
ensure that sufficiently many of them will “get lucky” and provide some exploration. This simple
policy achieves Õ(T 2/3) regret. Conceptually, it implements a basic bandit algorithm that explores

1More precisely, we restrict the estimates to the central portion of each confidence interval, which accounts for a
constant fraction of the interval’s width.
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uniformly for a pre-set number of rounds, then picks one arm for exploitation and stays with it
for the remaining rounds. We think of this policy as having two “levels”: Level 1 contains the
parallel runs, and Level 2 is everything else.

The next step is to implement adaptive exploration, where the exploration schedule is adapted
to previous observations. This is needed to improve over the Õ(T 2/3) regret. As a proof of concept,
we focus on the case of two actions, and upgrade the simple two-level policy with a middle level.
The agents in this new level receive the data collected in some (but not all) runs from the first
level. What happens is that these agents explore only if the gap ∆ between the best and second-
best arm is sufficiently small, and exploit otherwise. When ∆ is small, the runs in the first level do
not have sufficient time to distinguish the two arms before herding on one of them. However, for
each of these arms, there is some chance that it has an empirical mean reward significantly above
its actual mean while the other arm has empirical mean reward significantly below its actual
mean in any given first-level run. The middle-level agents observing such runs will be induced
to further explore that arm, collecting enough samples for the third-level agents to distinguish
the two arms. The main result extends this construction to multiple levels, connected in fairly
intricate ways, obtaining optimal regreat of Õ(T 1/2).

Discussion: economic aspects. We argue that order-based information disclosure policies re-
quire substantially weaker trust and rationality assumptions compared to information disclosure
policies in prior work on incentivized exploration. The latter are bandit algorithms which recom-
mend an action to each agent, under a Bayesian incentive-compatibility condition to ensure that
the agents follow recommendations (and strong implicit assumptions of trust and rationality). We
will refer to this work as Bayesian incentivized exploration. Several distinct issues are in play:

• Whether agents understand the announced policy. We only need an agent to understand that
he is given some unbiased history. It does not matter what is the subset of rounds and how
it is related to the other agents’ subsets. This is arguably quite comprehensible, compared
to a full-blown specification of a bandit algorithm.

• Whether agents trust the principal’s intent to implement the stated policy. A third party can, at
least in principle, collect subhistories from multiple agents and check them for consistency
(e.g., that arms’ average rewards are within the statistical deviations). This should create
incentives for the principal not to manipulate the policy. Note that similar checks appear
virtually impossible for bandit algorithms.

• Whether agents trust the principal to implement the stated policy without bugs. Faithfully re-
vealing a subhistory is arguably easy, whereas (as noted above) debugging an actual bandit
algorithm in a large-scale production-level system tends to be quite complicated.

• Whether agents react according to our choice model. Our framework encourages an agent to
interpret the subhistory as just a set of data points collected by an algorithm. In particular,
there is no reason to “second-guess” why a particular data point has been chosen (as neither
the platform or the other agents can influence which data points are included in the subhis-
tory), or what was the data seen by an agent when she chose her action (because all that data
is included in the subhistory). The system can provide summary statistics, so that agents
would not need to actually look at the raw data.2 Whereas verifying that a recommendation
policy is incentive-compatible typically requires a sophisticated Bayesian reasoning.

2Trusting the summary statistics is a relatively minor issue, one where ”cheating” can, in principle, be easily verified.

6



Would a detail-oriented user be happy with an unbiased subhistory which contains only a
fraction of the full data? Such subhistory still contains a large number of observations, probably
more than a typical user ever needs. The platform pre-selects the observations in an unbiased
way, which is arguably not undersirable and possibly useful for the user. Note that even a small
subhistory gives much more details than a recommendation-only policy.

Our choice model allows several deviations from rationality. First, we allows for a considerable
amount of optimism/pessimism, a.k.a. risk preferences. An optimistic (risk-loving) agent may
estimate each action’s expected reward as a value towards the top of the corresponding confidence
interval, and pessimistic (risk-averse) estimates would be skewed towards the bottom. Second, we
allow Softmax-like choices that randomize around the best actions. Indeed, we allow each reward
estimate to be randomized, as long as it falls in the corresponding interval. Third, we allow agents
to have strong initial beliefs. This is because we make no assumptions on the reward estimates
after seeing n ∈ [1,Nest] samples, for some constant Nest in the model. Eventually, the effect of
initial beliefs is drowned out.

By virtue of having a frequentist choice model, we bypass a host of standard issues inherent
in Bayesian choice models: we do not need to worry whether and to which extent the algorithm
knows the prior, or whether users have correct beliefs, or whether they can handle the congnitive
load of Bayesian reasoning. While our model does not rely on Bayesian foundations, it is con-
sistent with a version of Bayesian rationality. Specifically, it is consistent with Bayesian-rational
choices based on independent Beta-Bernoulli beliefs (although these beliefs are inconsistent with
our rewards model), see Remark 2.4 for details.

For the sake of the analysis, we assume that the mean rewards lie in the [1/3,2/3] interval,3

whereas the agents’ response model is oblivious to this. This makes sense for two reasons. First,
agents may operate under incomplete information and be unaware of this restriction. Second,
typical users of a recommendation system are unsophisticated. They are more likely to follow
empirical averages rather than be fully rational (whether Bayesian or not). In particular, a realistic
user would not estimatemean rewards as (at least) 1/3 after observing a long sequence of 0 rewards.
Alternatively, we can project all reward estimates into the [1/3,2/3] interval and assume random tie-
breaking. Either variant works for the rest of the paper, see Remark 2.3.

Discussion: regret rates. Let us compare the regret rates in prior work on Bayesian incentivized
exploration against ours. The prior work [38] also achieves the optimal regret rateO(min(

√
T , 1

∆
logT ))

for a constant number of actions, where ∆ is the “gap”. TheO() in this work includes a “constant”
that can get arbitrarily large depending on the Bayesian prior, whereas the O() in our paper hides
the dependence on a constant from our choice model.

Most prior work either assumes K = 2 actions (e.g., [32, 16, 13, 7]), or targets the case of con-
stant K (e.g., [38, 39]). The regret bounds in prior work, as well as ours, scale exponentially in
K . This dependence is grossly suboptimal for multi-armed bandit algorithms without incentives,
where one can achieve regret rates that scale as

√
K . A very recent, yet unpiblished manuscript

[45] achieves Bayesian incentivized exploration with poly(K) regret scaling, albeit only for inde-
pendent priors and only for Bayesian regret (i.e., regret in expectation over the Bayesian prior).

3This interval can be replaced with [ǫ,1 − ǫ] for any absolute constant ǫ > 0 (which then propagates throughout).
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1.1 Related work

The problem of incentivizing exploration via information asymmetry was introduced in [32], un-
der Bayesian rationality and (implicit) power-to-commit assumptions. Information disclosure
policies are unrestricted, and therefore they can be reduced to recommendation policies w.l.o.g.,
by a version of revelation principle. The original problem (which corresponds to stochastic K-armed
bandits with a Bayesian prior) was largely resolved in [32] and the subsequent work [38, 39, 45].
The technical results come in a variety of flavors, concerning regret rates [32, 38, 45], a black-box
reduction from arbitrary bandit algorithms to incentive-compatible ones [38], Bayesian-optimal
policies for special cases [32], and exploring all “explorable” actions [39]. Several extensions were
considered: to contextual bandits [38], repeated games and misaligned incentives [39], and so-
cial networks [7]. Several other papers study related, but technically different models: a version
with time-discounted utilities [13]; a version with monetary incentives [19, 17]; a version with a
continuous information flow and a continuum of agents [16]; coordination of costly “exploration
decisions” when they are separate from “payoff-generating decisions” [30, 35, 36].

Incentivized exploration is closely related to two prominent subareas of theoretical economics:
information design and social learning. Information design [10, 48] studies the design of informa-
tion disclosure policies and incentives that they create. In particular, a single round of incen-
tivized exploration is a version of the Bayesian Persuasion game [25], where the signal observed
by the principal is distinct from, but correlated with, the unknown “state”. A strand of subse-
quent literature investigates conditions under which the optimal disclosure policy has a simple
structure [23, 31, 37, 40], including conditions that make assumptions on the agent behavior [41].
A large literature on social learning studies long-lived agents that learn in a shared environment,
with no principal to coordinate them. Most of this literature posits that only actions of the past
agents (but not their outcomes) are observable in the future. A prominent topic is the presence
or absence of herding phenomena. Scenarios with long-lived learning agents that observe both
actions and rewards of one another have been studied in [14, 28].

Full-disclosure policy, and closely related “greedy” (exploitation-only) algorithm in multi-
armed bandits, have been a subject of a recent line of work [44, 27, 9, 43]. A common theme
is that the greedy algorithm performs well in theory, under substantial assumptions on hetero-
geneity of the agents. Yet, it suffers Ω(T ) regret in the worst case (see Chapter 11.2 in [47]).

Exploration-exploitation problems with incentives issues naturally arise in a variety of sce-
narios, e.g., dynamic pricing [29, 12, 6], dynamic auctions [1, 11, 24], pay-per-click ad auctions
[5, 18, 4], and human computation [22, 20, 46]. For more background, see Chapter 11 of [47].

2 Model and Preliminaries

We study the multi-armed bandit problem in a social learning context, in which a principal faces
a sequence of T myopic agents. There is a set A of K possible actions, a.k.a. arms. At each round
t ∈ [T ], a new agent t arrives, receives a message mt from the principal, chooses an arm at ∈ A,
and collects a reward rt ∈ {0,1} that is immediately observed by the principal. The reward from
pulling an arm a ∈ A is drawn independently from Bernoulli distribution Da with an unknown
mean µa. An agent does not observe anything from the previous rounds, other than the message
mt . The problem instance is defined by (known) parameters K,T and the (unknown) tuple of
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mean rewards, (µa : a ∈ A). We are interested in regret, defined as

Reg(T ) = T maxa∈Aµa −
∑

t∈[T ]E[µat ]. (1)

(The expectation is over the chosen arms at , which depend on randomness in rewards, and possi-
bly in the algorithm.) The principal chooses messages mt according to an online algorithm called
disclosure policy, with a goal to minimize regret. We assume that mean rewards are bounded away
from 0 and 1, to ensure sufficient entropy in rewards. For concreteness, we posit µa ∈ [13 , 23 ].
Unbiased subhistories. The subhistory for a subset of rounds S ⊂ [T ] is defined as

HS = { (s,as , rs) : s ∈ S } . (2)

Accordingly,H[t−1] is called the full history at time t. The outcome for agent t is the tuple (t,at , rt).
We focus on disclosure policies of a particular form, where the message in each round t is

mt = HSt for some subset St ⊂ [t − 1]. We assume that the subset St is chosen ahead of time,
before round 1 (and therefore does not depend on the observationsHt−1). Such message is called
unbiased subhistory. To define subsets St , we fix a partial order on the rounds, and define each St
as the set of all rounds that precede t in the partial order. The resulting disclosure policy is called
order-based.

Note that order-based disclosure policies are transitive, in the following sense:

t ∈ St′ ⇒ St ⊂ St′ for all rounds t, t′ ∈ [T ].

In words, if agent t′ observes the outcome for some previous agent t, then she observes the en-
tire message revealed to that agent. In particular, agent t′ does not need to second-guess which
message has caused agent t to choose action at .

For convenience, we will represent an order-based policy as an undirected graph, where nodes
correspond to rounds, and any two rounds t < t′ are connected if and only if t ∈ St′ and there is
no intermediate round t′′ with t ∈ St′′ and t′′ ∈ St′ . This graph is henceforth called the information
flow graph of the policy, or info-graph for short. We assume that this graph is common knowledge.

Agents’ behavior. Let us define agents’ behavior in response to an order-based policy. We posit
that each agent t uses its observed subhistorymt to form a reward estimate µ̂t,a ∈ [0,1] for each arm
a ∈ A, and chooses an arm with a maximal estimator. (Ties are broken according to an arbitrary
rule that is the same for all agents.) The basic model is that µ̂t,a is the sample average for arm a
over the subhistory mt , as long as it includes at least one sample for a; else, µ̂t,a ≥ 1

3 .
We allow amuchmore permissivemodel that allows agents to form arbitrary reward estimates

as long as they lie within some “confidence range” of the sample average. Formally, the model is
characterized by the following assumptions (which we make without further notice).

Assumption 2.1. Reward estimates are close to empirical averages. Let Nt,a and µ̄t,a denote the number
of pulls and the empirical mean reward of arm a in subhistory mt . Then for some absolute constant
Nest ∈N and Cest =

1
16 , and for all agents t ∈ [T ] and arms a ∈ A it holds that

ifNt,a ≥Nest then
∣

∣

∣µ̂ta − µ̄ta
∣

∣

∣ <
Cest
√

Nt,a

.

Also, µ̂ta ≥ 1
3 if Nt,a = 0. (NB: we make no assumption if 1 ≤Nt,a < Nest.)
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Remark 2.2. In the µ̂ta ≥ 1
3 assumption above, the 1

3 can be replaced with an arbitrary strictly
positive constant, with very minor changes in the proofs. In words, we posit that each agent’s
initial belief on each arm is bounded away from zero.

Remark 2.3. The choice model in Assumption 2.1 is oblivious to the fact that the mean rewards
are restricted to lie in the [1/3,2/3] interval. As pointed out in the Introduction, we could project all
reward estimates into this interval (so that an estimate smaller than 1/3 becomes exactly 1/3, and
similarly for the upper bound), and assume random tie-breaking. This variant works, too, with
minimal changes to the analysis.

Remark 2.4. While our frequentist choice model does not rely on Bayesian foundations, we note
that it is consistent with a version of Bayesian rationality. Indeed, suppose an agent has an in-
dependent Beta-Bernoulli prior for each arm a, and the estimate µ̂ta is the posterior mean reward
given the history. Then the estimates satisfy Assumption 2.1 for a large enough constant Nest

which depends on the priors. (This is because for Beta-Bernoulli priors the absolute difference
between the posterior mean and the empirical mean scales as 1/#samples.) However, such beliefs
would necessarily be inconsistent our model of rewards, as they place positive probability outside
of the [1/3,2/3] interval.

Assumption 2.5. In each round t, the estimates µ̂t,a depend only on the multisetm′t = { (as, rs) : s ∈ St },
called anonymized subhistory. Each agent t forms its estimates according to an estimate function ft
from anonymized subhistories to [0,1]K , so that the estimate vector (µ̂t,a : a ∈ A) equals ft(m′t). This
function is drawn from some fixed distribution over estimate functions.

Connection to multi-armed bandits. The special case when each message mt is an arm, and
the t-th agent always chooses this arm, corresponds to a standard multi-armed bandit problem
with IID rewards. Thus, regret in our problem can be directly compared to regret in the bandit
problem with the same mean rewards (µa : a ∈ A). Following the literature on bandits, we define
the gap parameter ∆ as the difference between the largest and second largest mean rewards.4 The
gap parameter is not known to the principal (in our problem), or to the algorithm (in the bandit
problem). Optimal regret rates for bandits with IID rewards are as follows [2, 3, 33]:

Reg(T ) ≤O
(

min
(√

KT logT , 1
∆
logT

))

. (3)

This regret bound can only be achieved using adaptive exploration: i.e., when exploration sched-
ule is adapted to the observations. A simple example of non-adaptive exploration is the explore-
then-exploit algorithm which samples arms uniformly at random for the first N rounds, for some
pre-set numberN , then chooses one arm and sticks with it till the end. More generally, exploration-
separating algorithms have a property that in each round t, either the choice of an arm does not
depend on the observations so far, or the reward collected in this round is not used in the subse-
quent rounds. Any such algorithm suffers fromΩ(T 2/3) regret in the worst case.5

Preliminaries. We assume that K is constant, and focus on the dependence on T . However, we
explicitly state the dependence on K , e.g., using the OK () notation.

Throughout the paper, we use the standard concentration and anti-concentration inequalities:
respectively, Chernoff Bounds and Berry-Esseen Theorem. The former states that X̄ = 1

n

∑n
i=1Xi ,

4Formally, the second-largest mean reward is maxa∈A:µ(a)<µ∗ µ(a), where µ∗ =maxa∈Aµ(a).
5The first explicit reference we know of is [5, 18], but this fact has been known in the community for much longer.
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the average of n independent random variables X1 , . . . ,Xn, converges to its expectation quickly.
The latter states that the CDF of an appropriately scaled average X̄ converges to the CDF of the
standard normal distribution pointwise. In particular, the average strays far enough from its
expectation with some guaranteed probability. The theorem statements are as follows:

Theorem 2.6. Fix n. Let X1, ...,Xn be independent random variables, and let X̄ = 1
n

∑n
i=1Xi . Then:

(a) (Chernoff Bounds) Assume Xi ∈ [0,1] for all i. Then

Pr[|X̄ −E[X̄]| > ε] ≤ 2exp(−2nε2).

(b) (Berry-Esseen Theorem) Assume X1 , . . . ,Xn are identically distributed, with

σ2 :=E[(X1 −E[X1])
2] = σ2 and ρ :=E[|X1 −E[X1]|3] <∞.

Let Fn be the cumulative distribution function of
(X̄−E[X̄])

√
n

σ and Φ be the cumulative distribution
function of the standard normal distribution.

|Fn(x)−Φ(x)| ≤ ρ

2σ3
√
n
∀x ∈R.

We use the notion of reward tape to simplify the application of (anti-)concentration inequali-
ties. This is a K × T random matrix with rows and columns corresponding to arms and rounds,
respectively. For each arm a and round t, the value in cell (a, t) is drawn independently from
Bernoulli distributionDa. W.l.o.g., rewards in our model are defined by the rewards tape: namely,
the reward for the j-th pull of arm a is taken from the (a, j)-th entry of the reward matrix.

We use OK (·) notation to hide the dependence on parameter K , and Õ(·) notation to hide poly-
logarithmic factors. We denote [T ] = {1,2 , . . . ,T }.

3 Warm-up: full-disclosure paths

We first consider a disclosure policy that reveals the full history in each round t, i.e., mt = Ht−1;
we call it the full-disclosure policy. The info-path for this policy is a simple path. We use this policy
as a “gadget” in our constructions. Hence, we formulate it slightly more generally:

Definition 3.1. A subset of rounds S ⊂ [T ] is called a full-disclosure path in the info-graph G if the
induced subgraph GS is a simple path, and it connects to the rest of the graph only through the
terminal node max(S), if at all.

We prove that for a constant number of arms, with constant probability, a full-disclosure path
of constant length suffices to sample each arm at least once. We will build on this fact throughout.

Lemma 3.2. There exist numbers LFDPK > 0 and pFDPK > 0 that depend only on K , the number of arms, with
the following property. Consider an arbitrary disclosure policy, and let S ⊂ [T ] be a full-disclosure path
in its info-graph, of length |S | ≥ LFDPK . Under Assumption 2.1, with probability at least pFDPK , subhistory
HS contains at least once sample of each arm a.

11



Proof. Fix any arm a. Let LFDPK = (K − 1) ·Nest + 1 and pFDPK = (1/3)L
FDP
K . We will condition on the

event that all the realized rewards in LFDPK rounds are 0, which occurs with probability at least pFDPK
under Assumption 2.1. In this case, we want to show that arm a is pulled at least once. We prove
this by contradiction. Suppose arm a is not pulled. By the pigeonhole principle, we know that
there is some other arm a′ that is pulled at least Nest +1 rounds. Let t be the round in which arm
a′ is pulled exactly Nest +1 times. By Assumption 2.1, we know

µ̂ta′ ≤ 0+Cest/
√

Nest ≤ Cest < 1/3.

On the other hand, we have µ̂ta ≥ 1/3 > µ̂ta′ . This contradicts with the fact that in round t, arm a′ is
pulled, instead of arm a.

We provide a simple disclosure policy based on full-disclosure paths. The policy follows the
“explore-then-exploit” paradigm. The “exploration phase” comprises the firstN = T1·LFDPK rounds,
and consists of T1 full-disclosure paths of length LFDPK each, where T1 is a parameter. In the “ex-
ploitation phase”, each agent t > N receives the full subhistory from exploration, i.e., mt = H[N ].
The info-graph for this disclosure policy is shown in Figure 1.

· · · · · · · · · · · ·

all remaining rounds

LFDPK LFDPK LFDPK LFDPK LFDPKLevel 1

Level 2

T
im

e

T1 full-disclosure paths of length LFDPK each

Figure 1: Info-graph for the 2-level policy.

The info-graph has two “levels”, corresponding to exploration and exploitation. Accordingly,
we call this policy the two-level policy. We show that it incentivizes the agents to perform non-
adaptive exploration, and achieves a regret rate of ÕK (T

2/3). The key idea is that since one full-
disclosure path collects one sample of a given arm with constant probability, using many full-
disclosure paths “in parallel” ensures that sufficiently many samples of this arm are collected.

Theorem 3.3. The two-level policy with parameter T1 = T 2/3 log(T )1/3 achieves regret

Reg(T ) ≤OK

(

T 2/3 (logT )1/3
)

.

Remark 3.4. For a constant K , the number of arms, we match the optimal regret rate for non-
adaptive multi-armed bandit algorithms. If the gap parameter ∆ is known to the principal, then
(for an appropriate tuning of parameter T1) we can achieve regret Reg(T ) ≤OK (log(T ) ·∆−2).

The proof can be found in Section 3.1. One important quantity is the expected number of
samples of a given arm a collected by a full-disclosure path S of length LFDPK (i.e., present in the
subhistoryHS . Indeed, this number, denoted NFDP

K,a , is the same for all such paths. Then,

Lemma 3.5. Suppose the info-graph contains T1 full-disclosure paths of LFDPK rounds each. Let Na be
the number of samples of arm a collected by all paths. Then with probability at least 1− δ,

∣

∣

∣Na −NFDP
K,a T1

∣

∣

∣ ≤ LFDPK ·
√

T1 log(2K/δ)/2 for all a ∈ A.
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3.1 Detailed analysis: proof of Theorem 3.3

We will set T1 later in the proof, depending on whether the gap parameter ∆ is known. For now,

we just need to know we will make T1 ≥
4(LFDPK )2

(pFDPK )2
log(T ). Since this policy is agnostic to the indices

of the arms, we assume w.l.o.g. that arm 1 has the highest mean.
The first T1 ·LFDPK rounds will get total regret at most T1 ·LFDPK . We focus on bounding the regret

from the second level of T − T1 · LFDPK rounds. We consider the following two events. We will first
bound the probability that both of them happen and then we will show that they together imply
upper bounds on |µ̂ta −µa|’s for any agent t in the second level. Recall µ̂ta is the estimated mean of
arm a by agent t and agent t picks the arm with the highest µ̂ta.

Define W a
1 to be the event that the number of arm a pulls in the first level is at least NFDP

K,a T1 −
LFDPK

√

T1 log(T ). As long as we set T1 ≥
4(LFDPK )2

(pFDPK )2
log(T ), this implies that the number of arm a pulls

is then at least NFDP
K,a T1/2. Define W1 to be the intersection of all these events (i.e. W1 =

⋂

aW
a
1 ).

By Lemma 3.5, we have Pr[W1] ≥ 1− K
T 2 ≥ 1− 1

T .
Next, we show that the empirical mean of each arm a is close to the true mean. To facilitate

our reasoning, let us imagine there is a tape of length T for each arm a, with each cell containing
an independent draw of the realized reward from the distribution Da. Then for each arm a and
any τ ∈ [T ], we can think of the sequence of the first τ realized rewards of a coming from the
prefix of τ cells in its reward tape. Define W a,τ

2 to be the event that the empirical mean of the

first τ realized rewards in the tape of arm a is at most

√

2log(T )
τ away from µa. DefineW2 to be the

intersection of these events (i.e.
⋂

a,τ∈[T ]W
a,τ
2 ). By Chernoff bound,

Pr[W a,τ
2 ] ≥ 1− 2exp(−4log(T )) ≥ 1− 2/T 4.

By union bound, Pr[W2] ≥ 1−KT · 2
T 4 ≥ 1− 2

T .
By union bound, we know Pr[W1 ∩W2] ≥ 1 − 3/T . For the remainder of the analysis, we will

condition on the event W1 ∩W2.
For any arm a and agent t in the second level, by W1 andW2, we have

|µ̄ta −µa| ≤
√

2log(T )

NFDP
K,a T1/2

.

By W1 and Assumption 2.1, we have

|µ̄ta − µ̂ta| ≤
Cest

√

NFDP
K,a T1/2

.

Therefore,

|µ̂ta −µa| ≤
√

2log(T )

NFDP
K,a T1/2

+
Cest

√

NFDP
K,a T1/2

≤ 3

√

log(T )

pFDPK T1
.

So the second-level agents will pick an arm a which has µa at most 6

√

log(T )

pFDPK T1
away from µ1. To sum
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up, the total regret is at most

T1 · LFDPK +T · (1−Pr[W1 ∩W2]) +T · 6
√

log(T )

pFDPK T1
.

By setting T1 = T 2/3 log(T )1/3, we get regret O(T 2/3 log(T )1/3).

4 Adaptive exploration with a three-level disclosure policy

The two-level policy from the previous section implements the explore-then-exploit paradigm us-
ing a basic design with parallel full-disclosure paths. The next challenge is to implement adaptive
exploration, and go below the T 2/3 barrier. We accomplish this using a construction that adds a
middle level to the info-graph. This construction also provides intuition for the main result, the
multi-level construction presented in the next section. For simplicity, we assume K = 2 arms.

For the sake of intuition, consider the framework of bandit algorithms with limited adaptivity
[42]. Suppose a bandit algorithm outputs a distribution pt over arms in each round t, and the
arm at is then drawn independently from pt . This distribution can change only in a small number
of rounds, called adaptivity rounds, that need to be chosen by the algorithm in advance. A single
round of adaptivity corresponds to explore-then-exploit paradigm. Our goal here is to implement
one extra adaptivity round, and this is what the middle level accomplishes.

Construction 4.1. The three-level policy is defined as follows. The info-graph consists of three levels:
the first two correspond to exploration, and the third implements exploitation. Like in the two-level
policy, the first level consists of multiple full-disclosure paths of length LFDPK each, and each agent t in the
exploitation level sees full history from exploration (see Figure 2).

The middle level consists of σ disjoint subsets of T2 agents each, called second-level groups. Each
second-level group G has the following property:

all nodes in G are connected to the same nodes outside of G, but not to one another. (4)

The full-disclosure paths in the first level are also split into σ disjoint subsets, called first-level
groups. Each first-level group consists of T1 full-disclosure paths, for the total of T1 · σ · LFDPK rounds in
the first layer. There is a 1-1 correspondence between first-level groups G and second-level groups G′,
whereby each agent in G′ observes the full history from the corresponding group G. More formally, agent
in G′ is connected to the last node of each full-disclosure path in G. In other words, this agent receives
message HS , where S is the set of all rounds in G.

The key idea is as follows. Consider the gap parameter ∆ = |µ1 −µ2|. If it is is large, then each
first-level group produces enough data to determine the best arm with high confidence, and so
each agent in the upper levels chooses the best arm. If ∆ is small, then due to anti-concentration
each arm gets “lucky” within at least once first-level group, in the sense that it appears much
better than the other arm based on the data collected in this group (and therefore this arm gets
explored by the corresponding second-level group). To summarize, the middle level exploits if
the gap parameter is large, and provides some more exploration if it is small.

Theorem 4.2. For two arms, the three-level policy achieves regret

Reg(T ) ≤O
(

T 4/7 logT
)

.
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T2 rounds

LFDPK
· · · LFDPK

T1 paths

T2 rounds

LFDPK
· · · LFDPK

T1 paths

T2 rounds

LFDPK
· · · LFDPK

T1 paths

all remaining rounds

· · · · · ·

· · · · · ·

Level 1

Level 2

Level 3

T
im

e

σ groups

Figure 2: Info-graph for the three-level policy. Each red box in level 1 corresponds to T1
full-disclosure paths of length LFDPK each.

This is achieved with parameters T1 = T 4/7 log−1/7(T ), σ = 210 log(T ), and T2 = T 6/7 log−5/7(T ).

Let us sketch the proof of this theorem; the full proof can be found in Sections 4.1 and 4.2.

The “good events”. We establish four “good events” each of which occurs with high probability.

(event1) Exploration in Level 1: Every first-level group collects at leastΩ(T1) samples of each arm.

(event2) Concentration in Level 1: Within each first-level group, empirical mean rewards of each
arm a concentrate around µa.

(event3) Anti-concentration in Level 1: For each arm, some first-level subgroup collects data which
makes this arm look much better than its actual mean and other arms look worse than their
actual means.

(event4) Concentration in prefix: The empirical mean reward of each arm a concentrates around
µa in any prefix of its pulls. (This ensures accurate reward estimates in exploitation.)

The analysis of these events applies Chernoff Bounds to a suitable version of “reward tape”
(see the definition of “reward tape” in Section 2). For example, event2 considers a reward tape
restricted to a given first-level group.

Case analysis. We now proceed to bound the regret conditioned on the four “good events”.
W.l.o.g., assume µ1 ≥ µ2. We break down the regret analysis into four cases, based on the magni-

tude the gap parameter ∆ = µ1 − µ2. As a shorthand, denote conf (n) =
√

log(T )/n. In words, this
is a confidence term, up to constant factors, for n independent random samples.

The simplest case is very small gap, which trivially yields an upper bound on regret.

Claim 4.3 (Negligible gap). If ∆ ≤ 3
√
2 · conf (T2) then Reg(T ) ≤O(T 4/7 log6/7(T )).

Another simple case is when ∆ is sufficiently large, so that the data collected in any first-level
group suffices to determine the best arm. The proof follows from event1 and event2.
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Lemma 4.4 (Large gap). If ∆ ≥ 4
∑

a∈A conf
(

NFDP
K,a ·T1

)

then all agents in the second and the third
levels pull arm 1.

In the medium gap case, the data collected in a given first-level group is no longer guaranteed
to determine the best arm. However, agents in the third level see the history of not only one but all
first-level groups and the data collected by all first-level groups enables agents in the third level
to correctly identify the best arm.

Lemma 4.5 (Medium gap). All agents pull arm 1 in the third level, when ∆ satisfies

∆ ∈
[

4
∑

a∈A conf
(

σ ·NFDP
K,a ·T1

)

, 4
∑

a∈A conf
(

NFDP
K,a ·T1

)]

.

Finally, the small gap case, when ∆ is between Ω̃(
√
1/T2) and Õ(

√

1/(σ T1)) is more challenging
since even aggregating the data from all σ first-level groups is not sufficient for identifying the
best arm. We need to ensure that both arms continue to be explored in the second level. To
achieve this, we leverage event3, which implies that each arm a has a first-level group sa where
it gets “lucky”, in the sense that its empirical mean reward is slightly higher than µa, while the
empirical mean reward of the other arm is slightly lower than its true mean. Since the deviations
are in the order of Ω(

√
1/T1), and Assumption 2.1 guarantees the agents’ reward estimates are

also within Ω(
√
1/T1) of the empirical means, the sub-history from this group sa ensures that all

agents in the respective second-level group prefer arm a. Therefore, both arms are pulled at least
T2 times in the second level, which in turn gives the following guarantee:

Lemma 4.6 (Small gap). All agents pull arm 1 in the third level, when ∆ satisfies

∆ ∈
(

3
√
2 · conf (T2) , 4

∑

a∈A conf
(

σ ·NFDP
K,a ·T1

))

.

Wrapping up: proof of Theorem 4.2. In negligible gap case, the stated regret bound holds
regardless of what the algorithm does. In the large gap case, the regret only comes from the first
level, so it is upper-bounded by the total number of agents in this level, which is σ · LFDPK · T1 =
O(T 4/7 logT ). In both intermediate cases, it suffices to bound the regret from the first and second
levels, so

Reg(T ) ≤ (σ T1 · LFDPK +σ T2) · 4
∑

a∈A conf
(

NFDP
K,a ·T1

)

=O(T 4/7 log6/7(T )).

Therefore, we obtain the stated regret bound in all cases.

4.1 High-probability events

The following lemmas can be derived from combining Lemma 3.5 and union bound.

Lemma 4.7 (Concentration of first-level number of pulls.). Let W1 be the event that for all groups
s ∈ [σ] and arms a ∈ {1,2}, the number of arm a pulls in the s-th first-level group is in the range of

[

NFDP
K,a T1 − LFDPK

√

T1 log(T ),N
FDP
K,a T1 +LFDPK

√

T1 log(T )
]

,

where NFDP
K,a is the expected number of arm a pulls in a f ull − disclosurepath run of length LFDPK . Then

Pr[W1] ≥ 1− 4σ
T 2 .
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Proof of Lemma 4.7. For the s-th first-level group, define W a,s
1 to be the event that the number

of arm a pulls in the s-th first-level group is between NFDP
K,a T1 − LFDPK

√

T1 log(T ) and NFDP
K,a T1 +

LFDPK

√

T1 log(T ). By Lemma 3.5

Pr[W a,s
1 ] ≥ 1− 2exp(−2log(T )) ≥ 1− 2/T 2.

By union bound, the intersection of all these events,
⋂

a,sW
a,s
1 , has probability at least 1− 4σ

T 2 .

To state the events, it will be useful to think of a hypothetical reward tape T 1
s,a of length T for

each group s and arm a, with each cell independently sampled fromDa. The tape encodes rewards
as follows: the j-th time arm a is chosen by the group s in the first level, its reward is taken from
the j-th cell in this arm’s tape. The following result characterizes the concentration of the mean
rewards among all consecutive pulls among all such tapes, which follows from Chernoff bound
and union bound.

Lemma 4.8 (Concentration of empirical means in the first level). For any τ1,τ2 ∈ [T ] such that
τ1 < τ2, s ∈ [σ], and a ∈ {1,2}, let W s,a,τ1,τ2

2 be the event that the mean among the cells indexed by

τ1, (τ1 + 1), . . . ,τ2 in the tape T 1
a,s is at most

√

2log(T )
τ2−τ1+1 away from µa. Let W2 be the intersection of all

these events (i.e. W2 =
⋂

a,s,τ1,τ2
W

s,a,τ1 ,τ2
2 ). Then Pr[W2] ≥ 1− 4σ

T 2 .

Proof of Lemma 4.8. By Chernoff bound,

Pr[W
s,a,τ1,τ2
2 ] ≥ 1− 2exp(−4log(T )) ≥ 1− 2/T 4.

By union bound, we have Pr[W2] ≥ 1− 4σ/T 2.

Our policy also relies on the anti-concentration of the empirical means in the first round. We
show that for each arm a ∈ {1,2}, there exists a group sa such that the empirical mean of a is slightly
above µa, while the other arm (3−a) has empirical mean slightly below µ(3−a). This event is crucial
for inducing agents in the second level to explore both arms when the their mean rewards are
indistinguishable after the first level.

Lemma 4.9 (Co-occurence of high and low deviations in this first level). For any group s ∈ [σ],

any arm a, let µ̃a,s be the empirical mean of the first NFDP
K,a T1 cells in tape T 1

a,s. Let W
s,a,high
3 be the event

µ̃a,s ≥ µa+1/
√

NFDP
K,a T1 and letW

s,a,low
3 be the event that µ̃a,s ≤ µa−1/

√

NFDP
K,a T1. LetW3 be the event that

for every a ∈ {1,2}, there exists a group sa ∈ [σ] in the first level such that both W
sa ,a,high
3 and W

sa ,3−a,low
3

occur. Then Pr[W3] ≥ 1− 2/T .

Proof of Lemma 4.9. By Berry-Esseen Theorem and µa ∈ [1/3,2/3], we have for any a,

Pr[W
s,a,high
3 ] ≥ (1−Φ(1/2))− 5

√

NFDP
K,a T1

> 1/4.

The last inequality follows when T is larger than some constant. Similarly we also have

Pr[W s,a,low
3 ] > 1/4.
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SinceW
s,a,high
3 is independent with W s,3−a,low

3 , we have

Pr[W
s,a,high
3 ∩W s,3−a,low

3 ] = Pr[W
s,a,high
3 ] ·Pr[W s,3−a,low

3 ] > (1/4)2 = 1/16.

Notice that (W
s,a,high
3 ∩W s,3−a,low

3 ) are independent across different s’s. By union bound, we have

Pr[W3] ≥ 1− 2(1− 1/16)σ ≥ 1− 2/T .
Lastly, we will condition on the event that the empirical means of both arms are concentrated

around their true means in any prefix of their pulls. This guarantees that the policy obtains an
accurate estimate of rewards for both arms after aggregating all the data in the first two levels.

Lemma 4.10 (Concentration of empirical means in the first two levels). With probability at least
1− 4

T 3 , the following event W4 holds: for all a ∈ {1,2} and τ ∈ [NT ,a], the empirical means of the first τ

arm a pulls is at most

√

2log(T )
τ away from µa, where NT ,a is the total number of arm a pulls by the end

of T rounds.

Proof of Lemma 4.10. For any arm a, let’s imagine a hypothetical tape of length T , with each cell
independently sampled from Da. The tape encodes rewards of the first two levels as follows: the
j-th time arm a is chosen in the first two levels, its reward is taken from the j-th cell in the tape.

Define W a,τ
4 to be the event that the mean of the first t pulls in the tape is at most

√

2log(T )
τ away

from µa. By Chernoff bound,

Pr[W a,τ
4 ] ≥ 1− 2exp(−4log(T )) ≥ 1− 2/T 4.

By union bound, the intersection of all these events has probability at least:

Pr[W4] ≥ 1− 4

T 3
.

LetW =
⋂4

i=1Wi be the intersection of all 4 events. By union bound,W occurs with probability
1−O(1/T ). Note that the regret conditioned onW not occurring is at most O(1/T ) ·T =O(1), so it
suffices to bound the regret conditioned on W .

4.2 Case Analysis

Now we assume the intersection W of events W1, · · · ,W4 happens. We will first provide some
helper lemmas for our case analysis.

Lemma 4.11. For the s-th first-level group and arm a, define µ̄1,sa to be the empirical mean of arm a
pulls in this group. If W holds, then

|µ̄1,sa −µa| ≤
√

4log(T )

NFDP
K,a T1

.

Proof. The events W1 and W a,s,1,τ
2 for τ = NFDP

K,a T1 − LFDPK

√

T1 log(T ), ...,N
FDP
K,a T1 + LFDPK

√

T1 log(T ) to-
gether imply that

|µ̄1,sa −µa| ≤
√

2log(T )

NFDP
K,a T1 − LFDPK

√

T1 log(T )
≤
√

4log(T )

NFDP
K,a T1

.

The last inequality holds when T is larger than some constant.
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Lemma 4.12. For each arm a, define µ̄a to be the empirical mean of arm a pulls in the first two levels.
If W holds, then

|µ̄a −µa| ≤
√

4log(T )

σNFDP
K,a T1

.

Furthermore, if there are at least T2 pulls of arm a in the first two levels,

|µ̄a −µa| ≤

√

2log(T )

T2
.

Proof. The events W1 andW a,τ
4 for τ ≥ (NFDP

K,a T1 − LFDPK

√

T1 log(T ))σ together imply that

|µ̄a −µa| ≤
√

2log(T )

σ
(

NFDP
K,a T1 − LFDPK

√

T1 log(T )
) ≤

√

4log(T )

σNFDP
K,a T1

.

The last inequality holds when T is larger than some constant.

Lemma 4.13. For the s-th first-level group and arm a, define µ̄1,sa to be the empirical mean of arm a
pulls in this group. For each a ∈ {1,2}, there exists a group sa such that

µ̄
1,sa
a > µa +

1

4
√

NFDP
K,a T1

and, µ̄
1,sa
3−a < µ3−a −

1

4
√

NFDP
K,3−aT1

.

Proof. For each a ∈ {1,2}, W3 implies that there exists sa such that both W
sa ,a,high
3 and W

sa ,3−a,low
3

happen. The events W
sa ,a,high
3 , W1, W

sa ,a,τ,N
FDP
K,a T1

2 for τ = NFDP
K,a T1 − LFDPK

√

T1 log(T ) + 1, ...,NFDP
K,a T1 − 1

and W
sa ,a,N

FDP
K,a T1,τ

2 for τ =NFDP
K,a T1, ...,N

FDP
K,a T1 +LFDPK

√

T1 log(T ) together imply that

µ̄
1,sa
a ≥ µa +





















NFDP
K,a T1 ·

1
√

NFDP
K,a T1

− LFDPK

√

T1 log(T ) ·
√

2log(T )

LFDPK

√

T1 log(T )





















· 1

NFDP
K,a T1 +LFDPK

√

T1 log(T )

> µa +
1

4
√

NFDP
K,a T1

.

The second to the last inequality holds when T is larger than some constant. Similarly, we also
have

µ̄
1,sa
3−a < µ3−a −

1

4
√

NFDP
K,3−aT1

.

Now we proceed to the case analysis.

Proof of Lemma 4.4 (Large gap case). Observe that for any group s in the first level, the empirical
means satisfy

µ̄1,s1 − µ̄
1,s
2 ≥ µ1 −µ2 −

√

4log(T )

NFDP
K,1 T1

−
√

4log(T )

NFDP
K,2 T1

≥
√

4log(T )

NFDP
K,1 T1

+

√

4log(T )

NFDP
K,2 T1

.
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For any agent t in the s-th second-level group, by Assumption 2.1, we have

µ̂t1 − µ̂t2 > µ̄1,s1 − µ̄
1,s
2 −

Cest
√

NFDP
K,1 T1/2

− Cest
√

NFDP
K,2 T1/2

≥
√

4log(T )

NFDP
K,1 T1

+

√

4log(T )

NFDP
K,2 T1

− Cest
√

NFDP
K,1 T1/2

− Cest
√

NFDP
K,2 T1/2

> 0.

Therefore, we know agents in the s-th second-level group will all pull arm 1.
Now consider the agents in the third level group. Recall µ̄a is the empirical mean of arm a in

the history they see. We have

µ̄1 − µ̄2 ≥ µ1 −µ2 −
√

4log(T )

σNFDP
K,1 T1

−
√

4log(T )

σNFDP
K,2 T1

≥
√

4log(T )

NFDP
K,1 T1

+

√

4log(T )

NFDP
K,2 T1

.

Similarly as above, by Assumption 2.1, we know µ̂t1 − µ̂t2 > 0 for any agent t in the third level.
Therefore, the agents in the third-level group will all pull arm 1.

Proof of Lemma 4.5 (Medium gap case). Recall µ̄a is the empirical mean of arm a in the first two
levels. We have

µ̄1 − µ̄2 ≥ µ1 −µ2 −
√

4log(T )

σNFDP
K,1 T1

−
√

4log(T )

σNFDP
K,2 T1

≥
√

4log(T )

σNFDP
K,1 T1

+

√

4log(T )

σNFDP
K,2 T1

.

For any agent t in the third level, by Assumption 2.1, we have

µ̂t1 − µ̂t2 > µ̄1 − µ̄2 −
Cest

√

σNFDP
K,1 T1/2

− Cest
√

σNFDP
K,2 T1/2

≥
√

4log(T )

σNFDP
K,1 T1

+

√

4log(T )

σNFDP
K,2 T1

− Cest
√

σNFDP
K,1 T1/2

− Cest
√

σNFDP
K,2 T1/2

> 0.

So we know agents in the third-level group will all pull arm 1.

Proof of Lemma 4.6 (Small gap case). In this case, we need both arms to be pulled at least T2 rounds
in the second level. For every arm a, consider the sa-th second-level group, with sa given by
Lemma 4.13. We have

µ̄
1,sa
a − µ̄1,sa3−a > µa +

1

4
√

NFDP
K,a T1

−µ3−a +
1

4
√

NFDP
K,3−aT1

>
1

4
√

NFDP
K,1 T1

+
1

4
√

NFDP
K,2 T1

− 2














√

4log(T )

σNFDP
K,1 T1

+

√

4log(T )

σNFDP
K,2 T1















≥ 1

8
√

NFDP
K,1 T1

+
1

8
√

NFDP
K,2 T1

.
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For any agent t in the sa-th second-level group, by Assumption 2.1, we have

µ̂ta − µ̂t3−a > µ̄
1,sa
a − µ̄1,sa3−a −

Cest
√

NFDP
K,1 T1/2

− Cest
√

NFDP
K,2 T1/2

≥ 1

8
√

NFDP
K,1 T1

+
1

8
√

NFDP
K,2 T1

− Cest
√

NFDP
K,1 T1/2

− Cest
√

NFDP
K,2 T1/2

> 0.

So we know agents in the sa-th second-level group will all pull arm a. Therefore in the first two
levels, both arms are pulled at least T2 times. Now consider the third-level. We have

µ̄1 − µ̄2 ≥ µ1 −µ2 − 2

√

2log(T )

T2
≥

√

2log(T )

T2
.

Similarly as above, by Assumption 2.1, we know µ̂t1 − µ̂t2 > 0 for any agent t in the third level. So
we know agents in the third-level group will all pull arm 1.

5 Õ(
√
T ) regret with L-level policy

In this section, we give an overview of how we extend our three-level policy to a more adaptive
L-level policy for L > 3 in order to achieve a regret rate of OK (

√
T polylog(T )). We provide two

such policies. The first policy achieves the root-T regret rate with O(loglogT ) levels.

Theorem 5.1. For any L > 3, there exists an L-level disclosure policy with regret

OK

(

T 2L−1/(2L−1) ·polylog(T )
)

.

In particular, there exists aO(loglog(T ))-level recommendation policy with regretOK (T
1/2polylog(T )).

Our second policy achieves an instance-dependent regret guarantee. This policy has the same
info-graph structure as the first one in Theorem 5.1, but requires a higher number of levels L =
O(log(T / loglog(T ))) and different group sizes. We will bound its regret as a function of the gap
parameter ∆ even though the construction of the policy does not depend on ∆. In particular, this
regret bound outperforms the one in Theorem 5.1 when ∆ is much bigger than T −1/2. It also has
the desirable property that the policy does not withhold too much information from agents—any
agent t observes a good fraction of history in previous rounds.

Theorem 5.2. There exists anO(log(T )/ loglog(T ))-level policy such that for every multi-armed bandit
instance with gap parameter ∆, the policy has regret

OK (min(1/∆,T 1/2) ·polylog(T )).

Moreover, under this policy, each agent t observes a subhistory of size at least Ω(t/ polylog(T )).
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Note for constant number of arms, this result matches the optimal regret rate (given in Equa-
tion (3)) for stochastic bandits, up to logarithmic factors.

Let us present the main techniques in our solution; the full proofs are deferred to Section 5.1.
Similarly as Section 4, we first prove them in the case of 2 arms (Theorem 5.3 and Corollary 5.6).
We then extend them to the case of constant number of arms (Theorem 5.7).

A natural idea to extend the three-level policy is to insert more levels as multiple “check
points”, so the policy can incentivize the agents to perform more adaptive exploration. How-
ever, we need to introduce two main modifications in the info-graph to accommodate some new
challenges. We will first informally describe our techniques for the two-arm case.

Interlacing connections between levels. A tempted approach to generalize the three-level pol-
icy is to build an L-level info-graph with the structure of a σ-ary tree: for every l ∈ {2, . . . ,L}, each
l-level group observes the sub-history from a disjoint set σ groups in level (l−1). The disjoint sub-
histories observed by all the groups in level l are independent, and under the small gap regime
(similar to Lemma 4.6) it ensures that each arm a has a “lucky” l-level group of agents that only
pull a. This “lucky” property is crucial for ensuring that both arms will be explored in level l.

However, in this construction, the first level will have σL−1 groups, which introduces a mul-
tiplicative factor of σΩ(L) in the regret rate. The exponential dependence in L will heavily limit
the adaptivity of the policy, and prevents having the number of levels for obtaining the result in
Theorem 5.2. To overcome this, we will design an info-graph structure such that the number of
groups at each level stays as σ2 =Θ(log2(T )).

We will leverage the following key observation: in order to maintain the “lucky” property,
it suffices to have Θ(logT ) l-th level groups that observe disjoint sub-histories that take place in
level (l−1). Moreover, as long as the group size in levels lower than (l−1) are substantially smaller
than group size of level l −1, the “lucky” property does not break even if different groups in level
l observe overlapping sub-history from levels {1, . . . , l − 2}.

This motivates the following interlacing connection structure between levels. For each level
in the info-graph, there are σ2 groups for some σ = Θ(log(T )). The groups in the l-th level are
labeled as Gl,u,v for u,v ∈ [σ]. For any l ∈ {2, . . . ,L} and u,v,w ∈ [σ], agents in group Gl,u,v see the
history of agents in group Gl−1,v,w (and by transitivity all agents in levels below l − 1). See Figure
3 for a visualization of simple case with σ = 2). Two observations are in order:

(i) Consider level (l − 1) and fix the last group index to be v, and consider the set of groups
Gl−1,v = {Gl−1,i,v | i ∈ [σ]} (e.g. Gl−1,1,1 and Gl−1,2,1 circled in red in the Figure 3). The agents
in any group of Gl−1,v observe the same sub-history. As a result, if the empirical mean of
arm a is sufficiently high in their shared sub-history, then all groups in Gl−1,v will become
“lucky” for a.

(ii) Every agent in level l observes the sub-history from σ (l − 1)-th level groups, each of which
belonging to a different set Gl−1,v . Thus, for each arm a, we just need one set of groups Gl−1,v
in level l − 1 to be “lucky” for a and then all agents in level l will see sufficient arm a pulls.

Amplifying groups for boundary cases. Recall in the three-level policy, the medium gap case

(Lemma 4.5) corresponds to the case where the gap ∆ is between Ω

(√
1/T1

)

and O
(
√

log(T )/T1
)

.
This is a boundary case since ∆ is neither large enough to conclude that with high probability
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Figure 3: Interlacing connections between levels for the L-level policy.

agents in both the second level and the third level all pull the best arm, nor small enough to
conclude that both arms are explored enough times in the second level (due to anti-concentration).
In this case, we need to ensure that agents in the third level can eliminate the inferior arm. This
issue is easily resolved in the three-level policy since the agents in the third level observe the
entire first-level history, which consists ofΩ(T1 log(T )) pulls of each arm and provides sufficiently
accurate reward estimates to distinguish the two arms.

In the L-level policy, such boundary cases occur for each intermediate level l ∈ {2, . . . , l −1}, but
the issue mentioned above does not get naturally resolved since the ratios between the upper and

lower bounds of ∆ increase fromΘ

(
√

log(T )
)

toΘ(log(T )), and it would require more observations

from level (l − 2) to distinguish two arms at level l. The reason for this larger disparity is that,
except the first level, our guarantee on the number of pulls of each arm is no longer tight. For
example, as shown in Figure 3, when we talk about having enough arm a pulls in the history
observed by agents in Gl,1,1, it could be that only agents in group Gl−1,1,1 are pulling arm a and it
also could be that most agents in groups Gl−1,1,1,Gl−1,1,2, ...,Gl−1,1,σ are pulling arm a. Therefore
our estimate of the number of arm a pulls can be off by an σ = Θ(log(T )) multiplicative factor.
This ultimately makes the boundary cases harder to deal with.

We resolve this problem by introducing an additional type of amplifying groups, called Γ-
groups. For each l ∈ [L],u,v ∈ [σ], we create a Γ-group Γl,u,v . Agents in Γl,u,v observe the same
history as the one observed by agents in Gl,u,v and the number of agents in Γl,u,v is Θ(log(T )) times
the number of agents in Gl,u,v . The main difference between G-groups and Γ-groups is that the
history of Γ-groups in level l is not sent to agents in level l + 1 but agents in higher levels. When
we are in the boundary case in which we don’t have good guarantees about the l + 1 level agents’
pulls, the new construction makes sure that agents in levels higher than l + 1 get to see enough
pulls of each arm and all pull the best arm.

5.1 Detailed analysis

In this section, we design our L-level recommendation policy for L > 3. Similarly as Section 4, we
first prove them in the case of 2 arms (Theorem 5.3 and Corollary 5.6). We then extend them to
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the case of constant number of arms (Theorem 5.7).
Now we start with the case of 2 arms. Our recommendation policy has L levels and two types

of groups: G-groups and Γ-groups. Each level has σ2 G-groups for σ = 210 log(T ). Label the G-
groups in the l-th level as Gl,u,v for u,v ∈ [σ]. Level 2 to level L also have σ2

Γ-groups. Label the
Γ-groups in the l-th level as Γl,u,v for u,v ∈ [σ]. Each first-level group (G1,u,v for u,v ∈ [σ]) has T1
full-disclosure path of LFDPK rounds in parallel. For l ≥ 2, there are Tl agents in group Gl,u,v and
there are Tl(σ − 1) agents in group Γl,u,v . We will pick T1, ...,TL in the proof of Theorem 5.3.

Finally we define the info-graph. Agents in the first level only observe the history defined in
the full-disclosure path run. For agents in group Gl,u,v with l ≥ 2, they observe all the history in
the first l − 2 levels (both G-groups and Γ-groups) and history in group Gl−1,v,w for all w ∈ [σ].
Agents in group Γl,u,v observe the same history as agents in group Gl,u,v .

Theorem 5.3. The L-level recommendation policy gets regret

O
(

T 2L−1/(2L−1) log2(T )
)

for L ≤ log(ln(T )/ log(σ4)).

In particular, if we pick L = log(ln(T )/ log(σ4)), the regret is O(T 1/2polylog(T )).

Proof. Wlog we assume µ1 ≥ µ2 as the recommendation policy is symmetric to both arms. We will
set Tl ’s later in the proof. Before that, we are only going to assume Tl /Tl−1 ≥ σ4 for l = 2, ...,L − 1
and T1 ≥ σ4.

Similarly as the proof of Theorem 4.2, we start with some clean events.

• Concentration of the number of arm a pulls in the first level:

For a ∈ {1,2}, define NFDP
K,a to be the expected number of arm a pulls in one run of full-

disclosure path used in the first level. By Lemma 3.2, we know pFDPK ≤NFDP
K,a ≤ LFDPK For group

G1,u,v , define W
a,u,v
1 to be the event that the number of arm a pulls in this group is between

NFDP
K,a T1 − LFDPK

√

T1 log(T ) and NFDP
K,a T1 +LFDPK

√

T1 log(T ). By Chernoff bound,

Pr[W a,u,v
1 ] ≥ 1− 2exp(−2log(T )) ≥ 1− 2/T 2.

DefineW1 to be the intersection of all these events (i.e. W1 =
⋂

a,u,vW
a,u,v
1 ). By union bound,

we have

Pr[W1] ≥ 1− 4σ2

T 2
.

• Concentration of the empirical mean for arm a in the history observed by agent t:

For each agent t and arm a, imagine there is a tape of enough arm a pulls sampled before the
recommendation policy starts and these samples are revealed one by one whenever agents

in agent t’s observed history pull arm a. Define W
t,a,τ1,τ2
2 to be the event that the mean of

τ1-th to τ2-th pulls in the tape is at most
√

3log(T )
τ2−τ1+1 away from µa. By Chernoff bound,

Pr[W
t,a,τ1,τ2
2 ] ≥ 1− 2exp(−6log(T )) ≥ 1− 2/T 6.

Define W2 to be the intersection of all these events (i.e. W2 =
⋂

t,a,τ1,τ2
W

t,a,τ1,τ2
2 ). By union

bound, we have

Pr[W2] ≥ 1− 4

T 3
.
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• Anti-concentration of the empirical mean of arm a pulls in the l-th level for l ≥ 2:

For 2 ≤ l ≤ L − 1, u ∈ [σ] and each arm a, define nl,u,a to be the number of arm a pulls in

groups Gl,u,1, ...,Gl,u,σ . Define W
l,u,a,high
3 as the event that nl,u,a ≥ Tl implies the empirical

mean of arm a pulls in group Gl,u,1, ...,Gl,u,σ is at least µa + 1/
√
nl,u,a. Define W l,u,a,low

3 as the
event that nl,u,a ≥ Tl implies the empirical mean of arm a pulls in group Gl,u,1, ...,Gl,u,σ is at

most µa − 1/
√
nl,u,a.

Define Hl to be random variable the history of all agents in the first l − 1 levels and which
agents are chosen in the l-th level. Let hl be some realization of Hl . Notice that once we fix
Hl , n

l,u,a is also fixed.

Now consider hl to be any possible realized value of Hl . If fixing Hl = hl makes nl,u,a < Tl ,

then Pr[W
l,u,a,high
3 |Hl = hl ] = 1 If fixing Hl = hl makes nl,u,a ≥ Tl , by Berry-Esseen Theorem

and µa ∈ [1/3,2/3], we have

Pr[W
l,u,a,high
3 |Hl = hl ] ≥ (1−Φ(1/2))− 5√

Tl
> 1/4.

Similarly we also have

Pr[W l,u,a,low
3 |Hl = hl ] > 1/4

Since W
l,u,a,high
3 is independent with W l,u,3−a,low

3 when fixing Hl , we have

Pr[W
l,u,a,high
3 ∩W l,u,3−a,low

3 |Hl = hl ] > (1/4)2 = 1/16.

Now defineW l,a
3 =

⋃

u(W
l,u,a,high
3 ∩W l,u,3−a,low

3 ). Since (W
l,u,a,high
3 ∩W l,u,3−a,low

3 ) are indepen-
dent across different u’s when fixing Hl = hl , we have

Pr[W l,a
3 |Hl = hl ] ≥ 1− (1− 1/16)σ ≥ 1− 1/T 2.

Since this holds for all hl ’s, we have Pr[W l,a
3 ] ≥ 1 − 1/T 2. Finally define W3 =

⋂

l,aW
l,a
3 . By

union bound, we have
W3 ≥ 1− 2L/T 2.

• Anti-concentration of the empirical mean of arm a pulls in the first level:

For first-level groups G1,u,1, ...,G1,u,σ and arm a, imagine there is a tape of enough arm a
pulls sampled before the recommendation policy starts and these samples are revealed one

by one whenever agents in these groups pull arm a. DefineW
u,a,high
4 to be the event that first

NFDP
K,a T1σ pulls of arm a in the tape has empirical mean at least µa + 1/

√

NFDP
K,a T1σ and define

W u,a,low
4 to be the event that first NFDP

K,a T1σ pulls of arm a in the tape has empirical mean at

most µa − 1/
√

NFDP
K,a T1σ . By Berry-Esseen Theorem and µa ∈ [1/3,2/3], we have

Pr[W
u,a,high
4 ] ≥ (1−Φ(1/2))− 5

√

NFDP
K,a T1σ

> 1/4.
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The last inequality follows when T is larger than some constant. Similarly we also have

Pr[W u,a,low
4 ] > 1/4.

Since W
u,a,high
4 is independent with W u,3−a,low

4 , we have

Pr[W
u,a,high
4 ∩W u,3−a,low

4 ] = Pr[W
u,a,high
4 ] ·Pr[W u,3−a,low

4 ] > (1/4)2 = 1/16.

Now define W a
4 as

⋃

u(W
u,a,high
4 ∩W u,3−a,low

4 ). Notice that (W
u,a,high
4 ∩W u,3−a,low

4 ) are inde-
pendent across different u’s. So we have

Pr[W a
4 ] ≥ 1− (1− 1/16)σ ≥ 1− 1/T 2.

Finally we defineW4 as
⋂

aW
a
4 . By union bound,

Pr[W4] ≥ 1− 2/T 2.

By union bound, the intersection of these clean events (i.e.
⋂4

i=1Wi) happens with probability
1−O(1/T ). When this intersection does not happen, since the probability is O(1/T ), it contributes
O(1/T ) ·T =O(1) to the regret.

Nowwe assume the intersection of clean events happens and prove upper bound on the regret.
By eventW1, we know that in each first-level group, there are at least NFDP

K,a T1 −LFDPK

√

T1 log(T )
pulls of arm a. We prove in the next claim that there are enough pulls of both arms in higher levels
if µ1−µ2 is small enough. For notation convenience, we set ε0 = 1, ε1 =

1

4
√
NFDP

K,a T1σ
+ 1

4
√
NFDP

K,3−aT1σ
and

εl = 1/(4
√
Tlσ) for l ≥ 2.

Claim 5.4. For any arm a and 2 ≤ l ≤ L, if µ1−µ2 ≤ εl−1, then for any u ∈ [σ], there are at least Tl pulls
of arm a in groups Gl,u,1,Gl,u,2, ...,Gl,u,σ and there are at least Tlσ(σ − 1) pulls of arm a in the l-th level
Γ-groups.

Proof. We are going to show that for each l and arm a there exists ua such that agents in groups
Gl,1,ua , ...,Gl,σ,ua and Γl,1,ua , ...,Γl,σ,ua all pull arm a. This suffices to prove the claim.

We prove the above via induction on l. We start by the base case when l = 2. For each arm a,

W4 implies there exists ua such that W
ua ,a,high
4 and W

ua ,3−a,low
4 happen. For an agent t in groups

G2,1,ua , ...,G2,σ,ua and Γ2,1,ua , ...,Γ2,σ,ua . W
ua ,a,high
4 , W

a,ua ,v
1 andW2 together imply that

µ̄ta ≥ µa +





















NFDP
K,a T1σ ·

1
√

NFDP
K,a T1σ

− LFDPK

√

T1 log(T )σ ·
√

3log(T )

LFDPK

√

T1 log(T )σ





















· 1

(NFDP
K,a T1 +LFDPK

√

T1 log(T ))σ

> µa +
1

4
√

NFDP
K,a T1σ

.

The second last inequality holds when T is larger than some constant. Similarly, we also have

µ̄t3−a < µ3−a −
1

4
√

NFDP
K,3−aT1σ

.
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Then we have

µ̄ta − µ̄t3−a > µa −µ3−a +
1

4
√

NFDP
K,a T1σ

+
1

4
√

NFDP
K,3−aT1σ

≥ −ε1 +
1

4
√

NFDP
K,a T1σ

+
1

4
√

NFDP
K,3−aT1σ

≥ 1

8
√

NFDP
K,a T1σ

+
1

8
√

NFDP
K,3−aT1σ

.

By Assumption 2.1, we have

µ̂ta − µ̂t3−a > µ̄ta − µ̄t3−a −
Cest

√

NFDP
K,a T1σ/2

− Cest
√

NFDP
K,3−aT1σ/2

>
1

8
√

NFDP
K,a T1σ

+
1

8
√

NFDP
K,3−aT1σ

− Cest
√

NFDP
K,a T1σ/2

− Cest
√

NFDP
K,3−aT1σ/2

> 0.

The last inequality holds since Cest is a small enough constant defined in Assumption 2.1. There-
fore we know agents in groups G2,1,ua , ...,G2,σ,ua and Γ2,1,ua , ...,Γ2,σ,ua all pull arm a.

Now we consider the case when l > 2 and assume the claim is true for smaller l’s. For each
arm a, W3 implies that there exists ua such that W

l−1,ua ,a,high
3 and W

l−1,ua ,3−a,low
3 happen. Recall

nl−1,ua,a is the number of arm a pulls in groups Gl−1,ua ,1, ...,Gl−1,ua ,σ . The induction hypothesis

implies that nl−1,ua ,a ≥ Tl−1. W
l−1,ua ,a,high
3 together with nl−1,ua,a ≥ Tl−1 implies that the empirical

mean of arm a pulls in group Gl−1,ua ,1, ...,Gl−1,ua ,σ is at least µa + 1/
√
nl−1,ua ,a. For any agent t in

groups Gl,1,ua , ...,Gl,σ,ua and Γl,1,ua , ...,Γl,σ,ua , it observes history of groups Gl−1,ua,1, ...,Gl−1,ua ,σ and
all groups in levels below level l − 1. Notice that the groups in the first l − 2 levels have at most
(T1L

FDP
K +T2 + · · ·+Tl−2)σ

3 ≤ Tl−1/(12log(T )) ≤ nl−1,ua,a/(12log(T )) agents. By W2, we have

µ̄ta ≥ µa +















nl−1,ua ,a · 1√
nl−1,ua,a

− (T1LFDPK +T2 + · · ·+Tl−2)σ
3 ·

√

3log(T )

(T1L
FDP
K +T2 + · · ·+Tl−2)σ3















· 1

nl−1,ua,a + (T1L
FDP
K +T2 + · · ·+Tl−2)σ3

> µa +
1

4
√
nl−1,ua,a

.

The third last inequality holds when T larger than some constant. Similarly, we also have

µ̄t3−a < µ3−a −
1

4
√
nl−1,ua,3−a

.
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Then we have

µ̄ta − µ̄t3−a > µa −µ3−a +
1

4
√
nl−1,ua ,a

+
1

4
√
nl−1,ua ,3−a

≥ −εl−1 +
1

4
√
nl−1,ua,a

+
1

4
√
nl−1,ua,3−a

≥ 1

8
√
nl−1,ua,a

+
1

8
√
nl−1,ua ,3−a

.

The last inequality holds because nl−1,ua,a and nl−1,ua ,3−a are at most Tl−1σ . By Assumption 2.1, we
have

µ̂ta − µ̂t3−a > µ̄ta − µ̄t3−a −
Cest√
nl−1,ua,a

− Cest√
nl−1,ua ,3−a

>
1

8
√
nl−1,ua,a

+
1

8
√
nl−1,ua,3−a

− Cest√
nl−1,ua ,a

− Cest√
nl−1,ua,3−a

> 0.

The last inequality holds since Cest is a small enough constant defined in Assumption 2.1. There-
fore agents in groups Gl,1,ua , ...,Gl,σ,ua and Γl,1,ua , ...,Γl,σ,ua all pull arm a.

Claim 5.5. For any 2 ≤ l ≤ L, if εl−1σ ≤ µ1−µ2 < εl−2σ , there are no pulls of arm 2 in groups with level
l, ...,L.

Proof. We argue in 2 cases εl−1
√
σ ≤ µ1 − µ2 ≤ εl−2 for l ≥ 2 and εl−2 ≤ µ1 − µ2 ≤ εl−2

√
σ for l > 2.

Since our recommendation policy’s first level is slightly different from other levels, we need to
argue case εl−1

√
σ ≤ µ1 −µ2 ≤ εl−2 for l = 2 and case εl−2 ≤ µ1 −µ2 ≤ εl−2

√
σ for l = 3 separately.

• εl−1σ ≤ µ1 −µ2 ≤ εl−2 for l = 2(i.e. ε1σ ≤ µ1 −µ2 ≤ ε0): We know agents in level at least 2 will
observe at least NFDP

K,a T1/2 pulls of arm a for a ∈ {1,2}. ByW2, for any agent in level at least 2,
we have

|µ̄ta −µa| ≤
√

3log(T )

σNFDP
K,a T1/2

.

By Assumption 2.1, we have

µ̂t1 − µ̂t2 ≥ µ̄t1 − µ̄t2 −
Cest

√

σNFDP
K,1 T1/2

− Cest
√

σNFDP
K,2 T1/2

≥ µ1 −µ2 −
√

3log(T )

σNFDP
K,1 T1/2

−
√

3log(T )

σNFDP
K,2 T1/2

− Cest
√

σNFDP
K,1 T1/2

− Cest
√

σNFDP
K,2 T1/2

≥
√
σ

4
√

NFDP
K,1 T1

+

√
σ

4
√

NFDP
K,2 T1

−
√

3log(T )

σNFDP
K,1 T1/2

−
√

3log(T )

σNFDP
K,2 T1/2

− Cest
√

σNFDP
K,1 T1/2

− Cest
√

σNFDP
K,2 T1/2

> 0.
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Therefore agents in level at least 2 will all pull arm 1.

• εl−1σ ≤ µ1 −µ2 ≤ εl−2 for l > 2: By claim 5.4, for any agent t in level at least l, that agent will
observe at least Tl−1 arm a pulls. By W2, we have

|µ̄ta −µa| ≤

√

3log(T )

Tl−1
.

By Assumption 2.1, we have

µ̂t1 − µ̂t2 ≥ µ̄t1 − µ̄t2 −
2Cest√
Tl−1

≥ µ1 −µ2 − 2

√

3log(T )

Tl−1
− 2Cest√

Tl−1

≥
√

σ

16Tl−1
− 2

√

3log(T )

Tl−1
− 2Cest√

Tl−1

> 0.

Therefore agents in level at least l will all pull arm 1.

• εl−2 < µ1 −µ2 < εl−2σ for l = 3 (i.e. ε1 < µ1 − µ2 < ε1σ): By Claim 5.4, for any agent t in level
at least 3, that agent will observe at least T1N

FDP
K,a σ

2/2 arm a pulls (just from the first level).
By W2, we have

|µ̄ta −µa| ≤
√

3log(T )

σ2NFDP
K,a T1/2

.

By Assumption 2.1, we have

µ̂t1 − µ̂t2 ≥ µ̄t1 − µ̄t2 −
Cest

√

σ2NFDP
K,1 T1/2

− Cest
√

σ2NFDP
K,2 T1/2

≥ µ1 −µ2 −
√

3log(T )

σ2NFDP
K,1 T1/2

−
√

3log(T )

σ2NFDP
K,2 T1/2

− Cest
√

σ2NFDP
K,1 T1/2

− Cest
√

σ2NFDP
K,2 T1/2

≥ 1

4
√

σNFDP
K,1 T1

+
1

4
√

σNFDP
K,2 T1

−
√

3log(T )

σ2NFDP
K,1 T1/2

−
√

3log(T )

σ2NFDP
K,2 T1/2

− Cest
√

σ2NFDP
K,1 T1/2

− Cest
√

σ2NFDP
K,2 T1/2

> 0.

Therefore agents in level at least 3 will all pull arm 1.
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• εl−2 < µ1 − µ2 < εl−2σ for l > 3: Since µ1 − µ2 < εl−2σ < εl−3, by Claim 5.4, for any agent t in
level at least l, that agent will observe at least Tl−2σ

2 arm a pulls (just from level l − 2). By
W2, we have

|µ̄ta −µa| ≤

√

3log(T )

σ2Tl−2
.

By Assumption 2.1, we have

µ̂t1 − µ̂t2 ≥ µ̄t1 − µ̄t2 −
2Cest

√

σ2Tl−2

≥ µ1 −µ2 − 2

√

3log(T )

σ2Tl−2
− 2Cest
√

σ2Tl−2

≥ 1

4
√
σTl−2

− 2

√

3log(T )

Tl−1
− 2Cest√

Tl−1

> 0.

Therefore agents in level at least l will all pull arm 1.

Now we set the group sizes Tl ’s as following. For l < L,

Tl = T
2L−1+2L−2+···+2L−l
2L−1+2L−2+···+1 /σ3.

and
TL = (T −T1 · LFDPK ·σ2 − (T2 + · · ·+Tl−1)σ

3)/σ3

We restrict L to be at most log(ln(T )/ log(σ4)) so that Tl /Tl−1 ≥ T 1/2L ≥ σ4 for l = 2, ...,L − 1. TL is a
little bit different because we want total number of agents to be T .

By Claim 5.5, we know that the regret conditioned the intersection of clean events is at most

max
(

T1L
FDP
K σ2,max

l≥2
εl−1σ(T1L

FDP
K σ2 +T2σ

3 + · · ·+Tlσ
3)
)

≤max
(

T1L
FDP
K σ2,max

l≥2
2εl−1Tlσ

4
)

=O
(

T 2L−1/(2L−1) log2(T )
)

.

Now we are going to change the parameters of the L-level recommendation policy a little
bit and prove the below corollary. We will keep σ the same (i.e. σ = 210 log(T )). We are going
to change L and T1, ...,TL. We set L = log(T )/ log(σ4), Tl = (σ4)l for l = 1, ...,L − 1 and TL = (T −
T1L

FDP
K σ2 −σ3∑L−1

l=2 Tl )/σ
3.

Corollary 5.6. With the proper setting of L and T1, ...,TL described above, the L-level recommendation
policy gets regretO(min(1/∆,T 1/2)polylog(T )). Here ∆ = |µ1−µ2| and the L-level recommendation pol-
icy does not need to know ∆. Moreover, agent t observes a subhistory of size at least Ω(⌊t/ polylog(T )⌋).
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Proof. Notice that in the proof of Theorem 5.3, by the end of Claim 5.5, the only constraint we
need about Tl ’s is that Tl /Tl−1 ≥ σ4 for l = 2, ...,L − 1 and T1 ≥ σ4. And our new settings of Tl ’s still
satisfy this constraint. So we can reuse the proof of Theorem 5.3 till the end of Claim 5.5.

Recall in the proof of Theorem 5.3, εl = Θ(1/
√
Tlσ) for l ∈ [L − 1] and ε0 = 1. Consider two

cases:

• ∆ < εL−1σ . In this case, notice that even always picking the sub-optimal arm gives ex-
pected regret at most T (µ1 − µ2) = T∆ = O(T 1/2polylog(T )). On the other hand, T 1/2 =
O(polylog(T )/∆). Therefore, the regret is O(min(1/∆,T 1/2)polylog(T )).

• ∆ ≥ εL−1σ . In this case, we can find l ∈ {2, ...,L} such that εl−1σ ≤ ∆ < εl−2σ . By Claim 5.5, we
can upper bound the regret by

∆ · (T1LFDPK σ2 +T2σ
3 + · · ·Tl−1σ3)

=O(∆Tl−1σ
3)

=O(∆Tl−2σ
7)

=O(∆ · 1

ε2l−2
·σ6)

=O(∆ · 1
∆2
·σ8)

=O(polylog(T )/∆).

We also have 1/∆ ≤ 1/(εL−1σ) =O(T 1/2). Therefore, the regret isO(min(1/∆,T 1/2) polylog(T )).

Finally we discuss about the subhistory sizes. We know that agents in level l observes the
history of all agents below level l − 2 (including level l − 2). It is easy to check that the ratio
between the number of agents below level l and the number of agents below level l −2 is bounded
by O(polylog(T )). Therefore our statement about the subhistory sizes holds.

Here we discuss about how to extend Theorem 5.3 and Corollary 5.6 to the case when K is a
constant larger than 2. As the proof is very similar to the proofs of Theorem 5.3 and Corollary
5.6, we only provide a proof sketch of what changes to make.

Theorem 5.7. Theorem 5.3 and Corollary 5.6 can be extended to the case when K is constant larger
than 2. In the extension of Corollary 5.6, ∆ is defined as the difference between means of the best and
the second best arm.

Proof Sketch. We still wlog assume arm 1 has the highest mean (i.e. µ1 ≥ µa,∀a ∈ A. We first
extend the clean events (i.e. W1,W2,W3,W4) in Theorem 5.3 to the case when K is larger than

2. W1 and W2 extend naturally: we still set W1 =
⋂

a,sW
a,s
1 and W2 =

⋂

t,a,τ1,τ2
W

t,a,τ1,τ2
2 . The

difference is that now a is taken over K arms instead of 2 arms. For W3, we change the definition

W l,a
3 =

⋃

u

(

W
l,u,a,high
3 ∩

(

⋂

a′,aW
l,u,a′ ,low
3

)

)

and W3 =
⋂

l,aW
l,a
3 . We extend W4 in a similar way:

define W a
4 as

⋃

u

(

W
u,a,high
4 ∩

(

⋂

a′,aW
u,a′ ,low
4

)

)

and W4 =
⋂

aW
a
4 . Since K is a constant, it’s easy to

check that the same proof technique shows that the intersection of these clean events happen with
probability 1 −O(1/T ). So the case when some clean event does not happen contributes O(1) to
the regret.
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Now we proceed to extend Claim 5.4 and Claim 5.5. The statement of Claim 5.4 should be
changed to “For any arm a and 2 ≤ l ≤ L, if µ1 − µa ≤ εl−1, then for any u ∈ [σ], there are at least
Tl pulls of arm a in groups Gl,u,1,Gl,u,2, ...,Gl,u,σ and there are at least Tlσ(σ − 1) pulls of arm a in
the l-th level Γ-groups”. The statement of Claim 5.5 should be changed to “For any 2 ≤ l ≤ L, if
εl−1σ ≤ µ1 −µa < εl−2σ , there are no pulls of arm a in groups with level l, ...,L.”

The proof of Claim 5.5 can be easily changed to prove the new version by changing “arm 2” to
“arm a”. The proof of Claim 5.4 needs some additional argument. In the proof of Claim 5.4, we
show that µ̂ta − µ̂3−a > 0 for agent t in the chosen groups. When extending to more than 2 arms, we
need to show µ̂ta − µ̂ta′ > 0 for all arm a′ , a. The proof of Claim 5.4 goes through if µ1 − µa′ ≤ εl−2
since then there will be enough arm a′ pulls in level l − 1. We need some additional argument for
the case when µ1 −µa′ > εl−2. Since µ1 −µa′ > εl−2 > εl−1σ , we can use the same proof of Claim 5.5
(which rely on Claim 5.4 but for smaller l’s) to show that there are no arm a′ pulls in level l and
therefore µ̂ta − µ̂ta′ > 0.

Finally we proceed to bound the regret conditioned on the intersection of clean events hap-
pens. The proofs of Theorem 5.3 and Corollary 5.6 bound it by consider the regret from pulling
the suboptimal arm (i.e. arm 2). When extending to more than 2 arms, we can do the exactly same
argument for all arms except arm 1. This will blow up the regret by a factor of (K − 1) which is a
constant.
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