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Abstract

This paper presents a model in which a firm with multiple locations strategically
chooses capacity and prices in each location to maximize efficiency. We find that the
firm provisions capacity in such a way that the probability an individual customer
will be unable to purchase the goods the customer desires is lower in locations
with greater expected demand. The firm also sets lower prices in larger locations.
Finally, we illustrate that it is more efficient to direct customers who are willing to
go to multiple locations to locations with greater expected demand.

1 Introduction

There are a wide range of settings in which a firm has multiple locations of different sizes
that sell a homogeneous good, and the firm must decide how much capacity to provision
given uncertain demand, what prices to charge, and whether to encourage customers who
are willing to go to multiple locations to go to one of the firm’s larger or smaller locations.
For example, many grocery store chains have multiple stores of different sizes that all sell
the same groceries, and many restaurant chains have multiple different-sized restaurants
that all have the same menus. In each of these settings, the chain must decide how much
capacity to provision in each of its locations to meet the uncertain customer demand as
well as how to advertise its locations to encourage customers to attend one location or
another.

Another important example of such a setting is the cloud computing market. Major
cloud providers such as Amazon Web Services, Microsoft Azure, and Google Cloud sell
homogeneous cloud services in dozens of different regions throughout the world. In each
of these regions, the cloud company provides computing capacity which can be rented
on-demand for computation. Because the computing capacity can be rented on-demand,
the cloud provider does not know what customer demand will be at any point in time, and
the cloud provider must decide how much capacity to provision while taking into account
the inherent uncertainty in customer demand. In addition, if a customer is indifferent
between using multiple regions, the cloud company can encourage the customer to use
whichever region would be most efficient.
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In each of these settings, the firm must provision capacity for its different locations
while considering both the costs of provisioning capacity and the costs of not being able
to meet customer demand if the uncertain demand exceeds capacity. How should the firm
provision capacity in the different locations? How should the firm set prices in different
locations? And if a firm can take actions that would steer customer demand towards one
location or another, should the firm try to induce new demand to go to small locations
or large locations?

This paper analyzes these questions in the context of a model in which a firm faces
a competitive market and thus seeks to provision an amount of capacity to maximize
efficiency while setting prices that result in zero expected profit. Although we couch our
model in terms of the cloud computing market, our results apply to any setting in which
a firm has multiple locations of different sizes that sell a homogeneous good.

We illustrate that when costs vary linearly with the amount of capacity provisioned,
as the number of potential customers in a region becomes larger, the firm provisions
capacity in such a way that (i) the probability the firm provisions enough capacity for
all customers stays the same and (ii) the probability any individual customer will fail to
obtain a unit of compute when the customer wants it goes down. In addition, the price
that is charged for compute also declines as a region becomes larger, consistent with
empirical evidence from Microsoft Azure.

Finally, we address the question of whether it is more efficient to direct new customers
who are willing to purchase compute in any region to a large region or a small region.
Here a firm faces a trade-off in deciding whether to direct new demand to small regions
or large regions. Small regions have larger average costs per unit demand because the
uncertainty in demand as a fraction of expected demand is larger in small regions, so it is
necessary to provision more capacity per unit of expected demand in order to maintain
a high probability of being able to meet demand in a small region. At the same time,
a small region will also benefit more from additional demand because the additional
demand will do more to help this region achieve economies of scale. We show that this
trade-off always resolves in such a way that it is more efficient to direct new demand to
large regions.

Our paper relates to several distinct strands of literature. First, there is a literature
on pricing of cloud services (Abhisheki et al. 2012; Babaioff et al. 2017; Ben-Yehuda et al.
2013; Hoy et al. 2016; Kash and Key 2016; Kash et al. 2019; Kilcioglu et al. 2017). This
literature largely focuses on questions related to comparing fixed and variable pricing
for cloud services, but does not address questions related to pricing cloud services in
different-sized regions, as we do in the present paper.

The operations research literature has also studied questions related to provisioning
capacity for multiple locations. Much of this literature analyzes the economic benefits
of risk pooling by consolidating multiple random demands into a single location. The
earliest paper in this field is Eppen (1979) which illustrates in a model with normally
distributed demands and linear costs that pooling multiple random demands leads to
lower costs and that the cost difference is increasing in the variance of the demands
but decreasing in the correlation between these demands. There are also a number of
other papers in this general area such as Benjaafar et al. (2008), Berman et al. (2011),
Bimpkins and Markakis (2016), Chen and Lin (1989), Cherikh (2000), Gerchak and He
(2003), Gerchak and Mossman (1992), and Yang and Schrage (2009) that extend Eppen’s
(1979) work in various ways.

Our work shares some features with this previous literature in that we also consider a
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model in which a supplier must provision capacity to meet an uncertain demand, where
there is both a cost to provisioning capacity as well as a loss suffered from not having
enough capacity to meet demand. The question we ask about how one should consolidate
the demand from a new customer into the supplier’s existing locations is also of the same
flavor as the questions addressed by this risk pooling literature. However, the specific
result we present about whether it is better to direct a new customer to a large location
or a small location has not appeared in any of these previous papers.

There has been comparably little theoretical work related to the results we present
on how prices vary with the size of a firm’s location. The only theory paper we are aware
of that addresses the question of how prices vary with the size of a store is Braid (2003).
This paper considers a model of spatial competition in which large stores alternate with
small stores along an infinite roadway, and finds the opposite conclusion that larger stores
will charge larger prices in equilibrium. Our model and results thus differ significantly
from those in this previous paper.

Finally, there are some empirical papers that address questions related to capacity
provisioning and pricing in different-sized grocery stores. Several empirical papers have
found that the price of groceries tends to be smaller at larger grocery stores (e.g. Alcaly
and Klevorick 1971; Chung and Myers 1971; Kaufman 1998; Kaufman et al. 1997;
Kunreuther 1972; Liese et al. 2007). These results give a specific empirical example of
our theoretical finding that prices tend to be lower in larger locations. However, the
mechanism driving these results could be different from the mechanism identified in our
paper.

There is also evidence that larger grocery stores are less likely to run out of a particular
type of grocery than smaller grocery stores, as Connell et al. (2007), Kaufman (1998),
Kaufman et al. (1997), and Liese et al. (2007) have all found that larger grocery stores
are more likely to have certain inventory than smaller grocery stores. These results are
somewhat related to our theoretical finding that there is a lower probability that an
individual customer will be unable to obtain the inventory the customer desires if the
customer is in a larger location.

2 Model

There are a total of N potential customers in a given region, each of whom demands some
number of units of compute. Throughout we let Di denote the demand of customer i.
The demand of the customers, (D1, . . . , DN), is uncertain at the time the cloud provider
provisions capacity to meet demand, but is known to be a random draw from some
cumulative distribution function GN(D1, . . . , DN).

If a customer wants a total of d units of compute, then the customer will be allocated
no more than d units of compute. The customer then obtains a utility of kV if the
customer is allocated a total of k units of compute, and a utility of 0 if the customer is
not allocated any compute.

It costs the cloud provider a total of cQ to supply Q units of compute, where c is a
cost parameter satisfying c < V . Because the cloud provider faces a competitive market,
the cloud provider then chooses a capacity level Q to maximize efficiency, while setting
a price p that results in zero expected profit.
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2.1 Assumptions on Demand Distribution

For arbitrary distributions of demand, GN(D1, . . . , DN), it is difficult to make statements
about how the price or the probability that an individual customer will fail to obtain a unit
of compute that the customer desires will vary with N . Thus we make some simplifying
assumptions that are likely to hold in practice to assist with the analysis.

Throughout we assume that for sufficiently large values of N , the distribution of total
demand, D =

∑N
i=1 Di, is drawn from a distribution Φ(D|µ(N), σ(N)) with mean µ(N)

and standard deviation σ(N), where Φ(D|µ(N), σ(N)) = Φ(D−µ(N)
σ(N)

) for some distribution

Φ(·) with mean 0 and standard deviation 1 that is symmetric about 0 in the sense that
Φ(D) = 1−Φ(−D). We further assume that µ(N) and σ(N) are increasing functions of

N such that σ(N)
µ(N)

is decreasing in N and σ(N) is a strictly concave function of N .
This simplifying assumption will hold under many natural assumptions about cus-

tomer demand. For example, if each customer’s demand Di is an independent and identi-
cally distributed draw from a distribution G(·) with bounded support, then for sufficiently
large N , the distribution of customer demand is approximately normal with mean µN
and standard deviation σ

√
N , where µ and σ denote the mean and standard deviation

in the distribution G(·). Thus this setting would satisfy the above assumption when Φ(·)
corresponds to a standard normal distribution, µ(N) = µN , and σ(N) = σ

√
N .

In addition, this simplifying assumption also encompasses cases in which there can
be systematic shocks to demand (e.g. a common component that impacts each of the

customer demands D1, . . . , DN), so
σ(N)
µ(N)

remains bounded away from zero, even in the
limit as N → ∞. Thus this assumption is one that we could expect to hold in many
practical settings.

3 Results

3.1 How Price and Service Quality Vary with Region Size

This section addresses the question of how the prices and the probability that a customer
will fail to obtain a unit of compute that the customer wants will vary with N . We begin
with the following preliminary lemma:

Lemma 1 For sufficiently large values of N , the cloud provider sets a level of capacity
Q = µ(N) + Φ−1(1− c

V
)σ(N).

Proof. Let r(Q) denote the probability that there will not be enough capacity to meet
demand for all customers at a given level of capacity Q. In this case, the marginal value
of an additional unit of capacity to customers is r(Q)V , so in order to set the efficiency-
maximizing level of capacity, the cloud provider needs to choose Q in such a way that
r(Q)V = c, meaning we would have r(Q) = c

V
.

Since the distribution of total demand, D =
∑N

i=1 Di, is drawn from the distribution

Φ(D|µ(N), σ(N)) = Φ(D−µ(N)
σ(N)

) for sufficiently large values of N , in order to ensure that

the probability there will not be enough capacity to meet demand is r(Q), the cloud
provider should set a level of capacity Q = µ(N)+Φ−1(1− r(Q))σ(N). This implies that
to set the efficiency-maximizing level of capacity, the cloud provider should set a level of
capacity Q = µ(N) + Φ−1(1− r(Q))σ(N) = µ(N) + Φ−1(1− c

V
)σ(N). �
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The result in Lemma 1 implies that the cloud provider should provision an amount of
capacity Q such that the probability there will not be enough capacity to meet demand
is r(Q) = c

V
regardless of the size of the region N . With this preliminary result in place,

we now illustrate how the probability that an individual customer will fail to obtain a
unit of compute that the customer wants will vary with the size of the region N :

Theorem 1 For sufficiently large values of N , the expected fraction of demand that will
be unfilled by the available capacity is decreasing in N .

Proof. For sufficiently large N , the distribution of total demand, D =
∑N

i=1 Di, is

drawn from the distribution Φ(D|µ(N), σ(N)) = Φ(D−µ(N)
σ(N)

). Furthermore, we know from

Lemma 1 that the cloud provider sets a level of capacity Q = µ(N) + Φ−1(1− c
V
)σ(N).

If the cloud provider sets this level of capacity, then the expected fraction of de-

mand that will be unfilled by the available capacity is
∫∞
Φ−1(1− c

V
)

(z−Φ−1(1− c
V
))σ(N)

µ(N)+zσ(N)
dΦ(z) =∫∞

Φ−1(1− c
V
)

z−Φ−1(1− c
V
)

(µ(N)/σ(N))+z
dΦ(z). Since σ(N)

µ(N)
is decreasing in N , it follows that µ(N)

σ(N)
is in-

creasing in N and
∫∞
Φ−1(1− c

V
)

z−Φ−1(1− c
V
)

(µ(N)/σ(N))+z
dΦ(z) is decreasing in N . Thus the expected

fraction of demand that will be unfilled by the available capacity is decreasing in N . �
Theorem 1 indicates that, even though the probability there will not be enough ca-

pacity to meet demand is the same in different-sized regions, the probability that an
individual customer will fail to obtain a unit of compute that the customer wants will
be lower in larger regions. The intuition for this result is that as N becomes larger,
the amount of uncertainty in demand as a fraction of expected total demand declines.
Thus if demand exceeds supply, the expected difference between demand and supply as
a fraction of total demand declines. This implies that the probability that an individual
customer will fail to obtain a unit of compute that the customer wants will be lower in
larger regions.

It is also worth noting that the probability an individual customer will fail to obtain
a unit of compute that the customer wants may be much lower than the probability that
there will not be enough capacity to meet demand. In order for a customer to fail to
obtain a unit of compute that the customer wants, it is necessary for there to not be
enough capacity to meet demand. But even if there is not enough capacity to fulfill all
customer requests, it may be that there is enough capacity to fulfill the vast majority of
customer requests. Thus the probability an individual customer will fail to obtain a unit
of compute that the customer wants may be much lower than the probability that there
will not be enough capacity to meet demand.

We are also able to present results on how the price for compute varies with the size
of the region:

Theorem 2 For sufficiently large values of N , the price set for a unit of compute is
decreasing in N .

Proof. Since the cloud provider sets a price that will result in zero expected profit, the
cloud provider sets a price p so that pE[min{D,Q}] = cQ, where D =

∑N
i=1 Di denotes

the uncertain realization of total demand and Q denotes the cloud provider’s capacity
choice. Thus the price for a unit of capacity is decreasing in N if and only if Q

E[min{D,Q}]
is decreasing in N , which is equivalent to E[min{D

Q
, 1}] being increasing in N . We thus

seek to prove that E[min{D
Q
, 1}] is increasing in N .

5



We know that for sufficiently large N , the distribution of total demand is drawn from
the distribution Φ(D|µ(N), σ(N)) = Φ(D−µ(N)

σ(N)
). In addition, we know from Lemma 1

that the cloud provider sets a level of capacity Q = µ(N)+Φ−1(1− c
V
)σ(N). Thus under

these circumstances, E[min{D
Q
, 1}] =

∫∞
−∞

µ(N)+min{z,Φ−1(1− c
V
)}σ(N)

µ(N)+Φ−1(1− c
V
)σ(N)

dΦ(z).

Since Φ(·) is symmetric about 0, we know that
∫∞
−∞min{z,Φ−1(1− c

V
)} dΦ(z) = −K

for some constantK > 0 that is independent ofN . ThusE[min{D
Q
, 1}] = µ(N)−Kσ(N)

µ(N)+Φ−1(1− c
V
)σ(N)

=
µ(N)/σ(N)−K

µ(N)/σ(N)+Φ−1(1− c
V
)
for some constant K > 0. Since σ(N)

µ(N)
is decreasing in N , it follows

that µ(N)
σ(N)

is increasing in N and E[min{D
Q
, 1}] = µ(N)/σ(N)−K

µ(N)/σ(N)+Φ−1(1− c
V
)
is increasing in N .

Thus the price set for a unit of compute is decreasing in N . �
Since the cloud provider sets prices to achieve zero expected profit, the cloud provider

will set prices in a region to reflect average costs. In larger regions, the amount of
uncertainty as a fraction of expected total demand is lower, so the excess capacity needed
(as a fraction of expected demand) to maintain a high probability of being able to meet
all customer requests is also lower. Because of this, the expected fraction of capacity that
will go unused is smaller in larger regions, and average expected costs are also smaller in
larger regions. Thus the cloud provider can set lower prices in larger regions while still
maintaining a non-negative profit margin. This explains the result in Theorem 2.

Theorem 2 was proven under the assumption that the cloud provider will set prices to
achieve zero expected profit in each region, but analogs of this result will also hold under
other plausible assumptions about how the cloud provider sets prices. As long as prices
are chosen in such a way that prices will be correlated with average costs in a region,
prices will tend to be lower in larger regions.

3.2 Selecting Regions for Customers

In this section we address the question of where a cloud provider should place customers
that can be placed in any region. There are some customers that may have the flexibility
to use any region, and when a cloud provider encounters such customers, the cloud
provider must decide whether to encourage the customer to use a large region or a small
region.

What is the most efficient way to direct demand from customers who can use any
region? To answer this question, it is necessary to understand how adding demand to a
region affects both the incremental capacity costs as well as the incremental number of
deployment failures (i.e. the expected amount of demand that the cloud provider would
fail to meet) in the region.

To address this question, we let C(N) denote the capacity cost that is incurred in a
region with N customers and F (N) denote the expected number of deployment failures in
a region with N customers. We then analyze how the incremental capacity cost, C(N +
1)−C(N), and the incremental expected number of deployment failures F (N+1)−F (N),
vary with the size of the region N . First we address this question for capacity costs:

Theorem 3 Suppose the incremental increase in expected total demand when adding
another customer to a region, µ(N+1)−µ(N), is independent of N . Then the incremental
capacity cost resulting from adding another customer to a region, C(N + 1) − C(N), is
decreasing in N for sufficiently large values of N .
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Proof. We know from Lemma 1 that for sufficiently large values of N , the cloud provider
sets a level of capacity Q = µ(N) + Φ−1(1 − c

V
)σ(N). Thus C(N) = c[µ(N) + Φ−1(1 −

c
V
)σ(N)] gives the capacity cost that is incurred in a region with N customers.
The above result in turn implies that C(N+1)−C(N) = c[µ(N+1)−µ(N)+Φ−1(1−

c
V
)(σ(N + 1)− σ(N))]. Since µ(N + 1)− µ(N) is independent of N , it then follows that

C(N + 1) − C(N) is decreasing in N if and only if σ(N + 1) − σ(N) is decreasing in
N . And since σ(N) is a strictly concave function of N , we know that σ(N + 1)− σ(N)
is indeed decreasing in N . Thus the incremental capacity cost resulting from adding
another customer to a region, C(N + 1)− C(N), is decreasing in N . �

The result in Theorem 3 implies that when there is a customer that has the flexibility
to use any region, a cloud provider will incur a smaller incremental capacity cost if this
customer is assigned to a larger region, as long as this customer would not change its
expected demand as a result of being placed in the larger region. This result follows from
the concavity of σ(N). Because σ(N) is concave in N , adding an additional customer
to a larger region will do less to increase the amount of uncertainty in demand than
adding this customer to a smaller region, and will thus also result in smaller incremental
capacity costs in order to maintain the same probability of being able to meet all customer
requests.

While adding an additional customer to a larger region results in smaller incremental
capacity costs, it is worth noting that the percentage difference in incremental capacity
costs between different-sized regions is likely to be small. Suppose, for example, that
each customer’s demand Di is an independent and identically distributed draw from
some cumulative distribution function G(·) with mean µ and standard deviation σ. In
this case, we have µ(N) = µN and σ(N) = σ

√
N , so µ(N + 1) − µ(N) = µ and

σ(N +1)− σ(N) = σ
2
√
N
+O( 1

N
) for sufficiently large N . Since we have seen in the proof

of Theorem 3 that C(N+1)−C(N) = c[µ(N+1)−µ(N)+Φ−1(1− c
V
)(σ(N+1)−σ(N))],

it then follows that C(N + 1)− C(N) = c[µ+ Φ−1(1− c
V
)( σ

2
√
N
+O( 1

N
))].

For large values of N , this expression for C(N + 1) − C(N) will be within a few
percent of cµ, so the difference between the values of C(N + 1)−C(N) in two different-
sized regions will be at most a few percent. Thus the percentage difference in incremental
capacity costs between different-sized regions would be small in this case.

Similarly, if there can be systematic shocks to demand, such as a common component
that impacts each of the customer demands D1, . . . , DN , in addition to these idiosyncratic
demand differences between different customers, then we might have σ(N) = αN +σ

√
N

for some positive constants α and σ in addition to µ(N) = µN . In this case, we would
have C(N + 1) − C(N) = c[µ(N + 1) − µ(N) + Φ−1(1 − c

V
)(σ(N + 1) − σ(N))] =

c[µ+Φ−1(1− c
V
)(α+ σ

2
√
N
+O( 1

N
))]. Similar reasoning would then imply that the percentage

difference in incremental capacity costs between two different-sized regions is likely to be
no more than a few percent.

Next we address the question of how the size of the region where we place excess
demand impacts the expected number of deployment failures:

Theorem 4 Let F (N) denote the expected number of deployment failures that are in-
curred in a region with N customers. Then the incremental expected number of deploy-
ment failures resulting from adding another customer to a region, F (N + 1) − F (N), is
decreasing in N for sufficiently large values of N .

Proof. We know that for sufficiently large N , the distribution of total demand, D =∑N
i=1 Di, is drawn from the distribution Φ(D|µ(N), σ(N)) = Φ(D−µ(N)

σ(N)
). In addition,
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we know from Lemma 1 that the cloud provider would set a level of capacity Q =
µ(N) + Φ−1(1 − c

V
)σ(N). Thus under these circumstances, the expected number of

deployment failures would be F (N) =
∫∞
Φ−1(1− c

V
)
(z − Φ−1(1− c

V
))σ(N) dΦ(z).

The above result in turn implies that F (N + 1) − F (N) =
∫∞
Φ−1(1− c

V
)
(z − Φ−1(1 −

c
V
))(σ(N + 1) − σ(N)) dΦ(z). Since σ(N) is a strictly concave function of N , it follows

that σ(N+1)−σ(N) is decreasing in N , and thus that this expression for F (N+1)−F (N)
is decreasing in N . �

The result in Theorem 4 further implies that when there is a customer that has the
flexibility to use any region, a cloud provider will incur fewer incremental deployment
failures if this customer is assigned to a larger region. By combining this result with the
result in Theorem 3, it follows that it is more efficient to place excess demand in larger
regions than in smaller regions.

Unlike the case of incremental capacity costs considered in Theorem 3, the percent-
age difference in the incremental expected number of deployment failures resulting from
adding a customer to a different-sized region may be substantial. In the proof of Theorem
4, we note that F (N) =

∫∞
Φ−1(1− c

V
)
(z − Φ−1(1 − c

V
))σ(N) dΦ(z), so F (N + 1) − F (N)

is proportional to σ(N + 1) − σ(N). Thus the ratio between the incremental expected
number of deployment failures resulting from adding another customer to a region with
N customers and the incremental expected number of deployment failures resulting from
adding another customer to a region with 2N customers is σ(N+1)−σ(N)

σ(2N+1)−σ(2N)
.

Now we have seen previously that if each customer’s demand Di is an independent
and identically distributed draw from some cumulative distribution function G(·) with
standard deviation σ, then σ(N +1)−σ(N) = σ

2
√
N
+O( 1

N
) for sufficiently large N . Thus

in this particular case, the ratio σ(N+1)−σ(N)
σ(2N+1)−σ(2N)

≈ 2σ
√
2N

2σ
√
N

=
√
2, which implies that adding

another customer to a region with N customers instead of 2N customers results in
√
2

times as many incremental deployment failures, or roughly 40% more incremental deploy-
ment failures. Thus adding a new customer to a larger region can result in significantly
better quality of service than adding this customer to a smaller region.

3.3 Provisioning Capacity to Decrease Stockout Probabilities

Suppose circumstances adjust in such a way that a cloud provider wants to provision
more capacity to decrease the probability of a stockout (i.e. the probability there will
not be enough capacity to meet all customer demand) in a region. This might happen if,
for example, customers place more value V on being able to obtain compute when they
want it. It could also arise if the cost c for providing a unit of compute declines. Since
we have seen in the proof of Lemma 1 that the cloud provider should choose a level of
capacity Q in a given region in such a way that the probability of a stockout in the data
center, r(Q), satisfies r(Q) = c

V
, it follows that if either c declines or V increases, the

optimal amount of capacity Q to provision in a region will increase as well.
How would the incremental amount of capacity that a cloud provider provisions in

order to target a lower probability of a stockout vary with the size of the region? We
address this question in the following theorem:

Theorem 5 The amount of additional capacity a cloud provider would have to provision
in a region in order to decrease the probability of a stockout from r to some r′ < r is (i)
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increasing in the number of customers in the region N and (ii) decreasing on a percentage
basis in the number of customers in the region N .

Proof. We know that for sufficiently large N , the distribution of total demand, D =∑N
i=1 Di, is drawn from the distribution Φ(D|µ(N), σ(N)) = Φ(D−µ(N)

σ(N)
). A consequence

of this is that if a cloud provider wishes to ensure that the probability of a stockout in
a region is r, then it is necessary to provision a total of Q = µ(N) + Φ−1(1 − r)σ(N)
capacity in the region. Thus if a cloud provider wants to provision enough additional
capacity in the region to decrease the probability of a stockout from r to some r′ < r,
then the cloud provider would provision an additional (Φ−1(1 − r′) − Φ−1(1 − r))σ(N)
capacity in the region. Since this expression is increasing in N , it follows that the amount
of additional capacity a cloud provider would have to provision in a region in order to
decrease the probability of a stockout from r to some r′ < r is increasing in N .

Now since a cloud provider would provision a total of Q = µ(N) + Φ−1(1 − r)σ(N)
capacity in the region if the cloud provider wishes to ensure that the probability of a
stockout is r, the fractional increase in capacity in this region if a cloud provider wishes

to reduce the probability of a stockout from r to r′ would be (Φ−1(1−r′)−Φ−1(1−r))σ(N)
µ(N)+Φ−1(1−r)σ(N)

=
Φ−1(1−r′)−Φ−1(1−r)
µ(N)/σ(N)+Φ−1(1−r)

. Since σ(N)
µ(N)

is decreasing in N , it follows that µ(N)
σ(N)

is increasing in

N , and Φ−1(1−r′)−Φ−1(1−r)
µ(N)/σ(N)+Φ−1(1−r)

is decreasing in N . Thus the amount of additional capacity a
cloud provider would have to provision in a region in order to decrease the probability of
a stockout from r to some r′ < r is decreasing on a percentage basis in N . �

The result in Theorem 5 indicates that if a cloud provider wants to decrease the
probability of a stockout in each of its regions, then the absolute difference in the total
amount of capacity provisioned in large regions and small regions will increase, but the
percentage difference will decline.

4 Empirical Results

This section presents empirical results that quantify the magnitude of one of our theo-
retical results identified in the previous section. We use data from Microsoft Azure to
illustrate the extent to which price varies with the size of the region.

Throughout this section we use data from the wide variety of virtual machines (VMs)
that a customer can purchase. Even within a given region, a customer has the flexibility to
deploy different types of VMs that meet a customer’s needs. For example, Azure currently
offers virtual machines that are general purpose (such as Dv3), compute optimized (such
as Fsv2), and memory optimized (such as Ev3), as well as many others.

Because Azure offers such a wide range of different types of VMs, not all VMs can run
on the same hardware. This means that the total amount of supply that is available for
one type of VM in a region may differ from the total amount of supply that is available
for another type of VM in a region. In addition, the total demand for one type of VM in
a region may differ from the total demand for another type of VM in the same region.

Due to the above considerations, in defining the size of a region, we use definitions
that capture the fact that a region may be bigger for one type of VM than for another. In
particular, we define the total supply for a particular type of VM in a region as the total
number of physical cores in the region that could be used to host this type of VM. We
also define the total demand for a particular type of VM in a region as the total number
of physical cores that customers demanded for that type of VM at a point in time.
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When addressing the question of how the price for a unit of compute varies with
the size of the region, we then use a definition of region size that is particular to the
type of VM in question. Throughout we find that the supply-based and demand-based
measures of region size are nearly perfectly correlated, so we just report the results using
the supply-based measure of region size. The results for the demand-based measure of
region size are nearly identical.

For each general purpose, compute optimized, and memory optimized VM that was
available for purchase to a US customer as of March 2020 (46 regions in total), we noted
the price, total supply, and total demand for this type of VM in each region. We then
analyzed the degree of correlation between the price and total supply that could be used
to host this type of VM across the various regions.

The results of this analysis revealed significant negative correlation between the price
and the size of the region. For each of the types of VMs in question, we estimated a
correlation coefficient between price and region size that fell somewhere between −0.27
and −0.48, with an average correlation coefficient of −0.39. In addition, for each of these
types of VMs, we also estimated a correlation coefficient between price and the log of
the region size that fell somewhere between −0.33 and −0.43, again with an average
correlation coefficient of −0.39. Finally, the average prices for these types of VMs was
consistently 10− 20% higher in the smallest 1

3
of regions than in the largest 1

3
of regions.

These results thus reveal that there is significant negative correlation between price and
region size in practice, consistent with the theoretical predictions in Theorem 2.

5 Conclusion

Although there are many practical settings in which a firm with multiple locations must
strategically provision capacity and set prices in different-sized locations, there has been
little work that addresses the question of the most efficient way for a firm to achieve
these objectives. This paper has analyzed this question and shown that a firm should
provision capacity in such a way that it is less likely that an individual customer will
be unable to purchase the goods the customer desires in a region with greater expected
demand. The firm should also set lower prices in its locations with greater capacity and
expected demand. Finally, the firm should steer customers who are willing to purchase
from multiple locations to its larger locations.

While the results in this paper can be applied to many settings in which a firm provi-
sions capacity for multiple locations, they are especially relevant for the cloud computing
market, where major cloud providers typically supply cloud services in dozens of different
regions throughout the world. Our theoretical finding on how prices vary with the size
of a region is consistent with practice at Microsoft Azure, as prices tend to be 10− 20%
higher in Azure’s smallest regions than in its largest regions.
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