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Abstract

Artificial Intelligence (AI) is documented to have differential impacts across oc-

cupations. However, micro-level evidence is scant on how AI affects the productivity

of workers with different skill levels within occupation. We study the impact of a

demand-forecasting AI on productivity in the context of taxi drivers. We find that

the AI improves drivers’ productivity by shortening the time to search for customers

by 5% on average. Importantly, the productivity gain is concentrated on low-skilled

drivers (10%) whereas the corresponding gain on high-skilled drivers is nearly zero.

This result suggests that AI, unlike past technologies, may not accompany skill-biased

technological change.
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1 Introduction

Artificial Intelligence (AI) has a potential to drastically reshape employment (Brynjolfs-

son et al. 2018).1 However, the impact of AI on employment could be fundamentally different

from those of the past technologies including IT and robotics, which are considered to be

skill augmenting and inequality enhancing (Autor et al. 2003; Bartel et al. 2007; Acemoglue

and Restrepo 2020). Whereas past technologies have replaced manual and routine tasks, AI

will replace non-routine cognitive tasks. In fact, Webb (2020) documents that AI technology

mostly affects high-skilled occupations as an AI substitutes for tasks that require the type

of skill that high-skilled workers possess.

All the studies examining the impact of AI consider differential impact across occupations

based on the degree to which each occupation is exposed to AI (Felten et al. 2018, 2019;

Frank et al. 2019; Webb 2020; Alekseeva et al. 2020). As a result, these studies implicitly

assume that all the workers within the occupation are uniformally affected by the AI.2

However, even within occupation, there is a substantial heterogeneity of skill for the task

that can be replaced by AI. Thus, examining the impact of AI on workers with different skill

within an occupation provides a deeper understanding of AI’s complex impact on human

labor at granular level. However, such evidence from micro-level data is scant.3

To fill in the gap, we study the impact of AI on productivity across different worker skills

in the context of taxi drivers. Taxi drivers are an ideal case to answer this question for

several reasons. First, worker’s individual productivity is easily measured by the length of

time to search for customers as well as sales. This is because each driver works independently

and has considerable discretion as to how they search for customers. Our data show that

more than 80% of driver’s working time is devoted to searching for customers (and the

remaining to carrying the customers, excluding breaks). Thus, searching for customers is

among the most important task for taxi drivers, and hence the length of search time is an

important productivity measure. Second and relatedly, since productivity is well-defined,

the construction of appropriate metrics of skill is also straightforward; we can define the skill

based on the past performance that impacts the same productivity measure (i.e., length of

1Frey and Osborne (2013, 2017) predict that AI may replace 47% of current jobs in the US in 10-20 years.
2These studies are based on a task-based model of technology and labor (Acemoglue and Restrepo 2018;

Webb 2020), where each occupation consists of various tasks and automation occurs at the task level. In
this framework, the occupation in which high proportion of tasks can be replaced by AI is considered to be
highly exposed to AI. Each study differs in the way which tasks are considered to be replaced by AI.

3The only exception to our knowledge is Grennan and Michaely (2020), which study the impact of AI
on security analysts. They document that analysts are more likely to leave the profession when they cover
stocks that are more exposed to AI because data for such stocks are more abundantly available. They find
more pronounced effects on accurate analysts.
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search time). Such constructed skills precisely capture the skill level of workers unlike other

proxies for a skill such as potential experience or education, which are widely used in past

studies (e.g., Katz and Murphy 1992; Card and Lemieux 2001; Autor et al. 2008). Third,

the work environment of taxi drivers offers a clean setting to study productivity because all

drivers work in a very similar setting; the taxi drivers possess the same capital, and charge

the same prices, in the absence of the other confounding factors of productivity gain like

differential capital input, and input prices.4 Finally, operating a taxi involves various tasks

whose substitutability with AI are considerably different: ranging from driving a vehicle on

a narrow and congested city street (a difficult task for AI) to predicting the location of a

customer (an easy task for AI).

The particular AI we study is called “AI Navi”, which helps drivers search for the cus-

tomers when a taxi is empty. The AI suggests routes based on the predicted demand to

maximize the probability a taxi will catch customers given the current location. Thus, this

AI is expected to improve the productivity of drivers by reducing the time they search for

customers. This type of AI, which increases the accuracy of prediction tasks using ma-

chine learning techniques, is widely used in the real business setting (Agrawal et al. 2018,

2019). Demand forecasting as in this AI—the process of making estimations about fu-

ture customer demand—is one of many existing prediction tasks. To the extent that such

demand-forecasting skill is an important component of taxi drivers’ skill set, the impact of

AI may differ by the skill of drivers. In this paper, we test whether this AI improves worker

productivity across drivers with different skill levels.

We find that the AI improves the productivity of taxi drivers by shortening the length of

search time by 5%. Importantly, the productivity gain is all concentrated on the low-skilled

drivers: the impact on the low-skilled drivers—where skill is defined by the past driving

performance—is 10% whereas the impact on the high-skilled drivers is nearly zero. These

results indicate that AI is a substitute to worker skill at least in this context, suggesting that

AI may not always accompany skill-biased technological change. Rather, AI has a potential

to reduce the inequality among workers within the same occupation. Nonetheless, AI did

not completely eliminate the productivity gap between the high- and low-skilled drivers,

implying that there is skill component of high-skilled drivers that cannot be fully replaced

by AI at least at this stage of technology development. Our result also indicates that the

impact of AI on employment is more nuanced and complex than the simple replacement

story.

4For these reasons, behaviors of taxi drivers are widely studied in labor economics (e.g., Camerer et al.
1997; Farber 2005, 2008; Haggag et al. 2017)
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Of course, this study is a case study and our findings only speak to the case of the taxi

drivers. Nonetheless, the intersection of the skill required for the job and the capability of AI

in our case is not unique to this setting. To the extent that the core skill of the jobs involves

a prediction task, and the AI improves the accuracy of such prediction task, our results may

be applicable to such occupations as well. For example, low-skilled paralegals might be more

benefited by AI reviewing contracts for unusual clauses, and low-skilled pathologists might

be more benefited by AI detecting the potential cells with malign tumors than high-skilled

paralegals and pathologists (Webb 2020).

2 Background and Data

2.1 Setting

Our setting is taxi industry in Yokohama city, which is adjacent to Tokyo. Yokohama

city has a population of 3.75 million, the second-largest in Japan next to Tokyo. With an

area of 435 km2 (about 7 times the area of Manhattan), Yokohama city is divided into 18

wards. There are 8,842 registered taxi drivers working for taxi operating firms in the city

as of December 2019. The taxi drivers registered at Yokohama areas (Yokohama city and

three other near-by cities, Kawasaki, Yokosuka, and Miura) are allowed to drop-off anywhere

outside of Yokohama area but not allowed to pick-up outside of Yokohama area.5

The same price schedule applies to most of the taxis in the city. The fare is the sum of

the fixed charge for the first 2 km (JPY740) and the variable charge after first 2 km which

is determined by the distance and time, as in other usual settings of taxi.

Taxi drivers in our data works for taxi operating companies, and they are paid by the

fixed percentage of the fares they collect (usually between 50% and 60%) with a guarantee

of baseline salary so that they will not work below minimum wage. The drivers do not incur

any cost of gas, hence they have a strong incentive to increase sales.

2.2 AI Navi

The particular AI technology we study is called “AI Navi” developed by a tech com-

pany. AI Navi is designed to help the drivers search for customers. Using machine learning

technique, AI Navi’s demand-forecasting skill is trained by the recent driving records in

Yokohama city.

5Note that online ride-hailing services, such as Uber and Grab, were not permitted in Japan during our
sample period.
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More specifically, AI Navi, when it is turned on, suggests routes to taxi drivers when the

taxi does not carry customers. The suggested routes are drawn to maximize the probability

a taxi will catch customers given the location of the taxi based on the predicted demand.

Thus, the AI is expected to improve the productivity of taxi drivers by reducing the time

they search for customers. As mentioned earlier, more than 80% (87.3% from our data

excluding breaks) of driver’s working time is devoted to searching for customers, and hence

improvement in search time is critical for drivers. Our interviews with some drivers reveal

that there are many different strategies to search for the customers, and each driver takes

his/her own strategy. Appendix Figure A1 displays the snapshot of AI Navi when it is turned

on. AI Navi shows the suggested routes with a red arrow given a taxi’s current location, and

red dots indicate the locations with potential customers.

2.3 Data

Our data is provided by the tech company that developed “AI Navi”. To gather field

data, the company provided AI Navi to 5.9% (= 522/8842) of taxi drivers working for taxi

operating firms in Yokohama city for free during December 3, 2019 to December 31, 2019.

Taxi drivers who participated in this free-trial face no reward or penalty for use or non-use of

the application. Thus, it is totally up to the discretion of taxi drivers whether to use it and

how often to use it. In addition, we have data for the period two months before the free-trial

started (i.e., October and November 2019), which we use to construct drivers’ skills based on

their productivity in this pre-period. Unfortunately, we do not have any information about

the drivers’ other characteristics such as age, gender, and tenure.

Our unit of observation is each vacant cruise, that is, a cruise during which drivers are

searching for customers. Formally, we define the vacant cruise as the time between when

vacant cruises starts (i.e., dropping-off the last customers) and when vacant cruise ends (i.e.,

finding and picking-up customers).

The original data consists of 154,444 vacant cruises in December 2019. We made the

following sample restrictions. First, because AI Navi is specifically designed to help taxi

drivers find the customers on the streets (not at taxi stands), we exclude the vacant cruises

which end at the taxi stands (N= 58,025). Second, we exclude the vacant cruises of drivers

whose pre-period data do not exist to construct our skill measures (N= 1,264). Third,

following the classification by the company, vacant cruises in which a taxi did not move for

more than 30 minutes is considered as being in a break, and thus are excluded (N= 5,111).6

6Similarly, Haggag et al. (2017) drop observations in which a driver has no customers for over 60 minutes
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Finally, we exclude the top 1%-tile (57 min) of vacant cruise time to drop outliers (N= 900).7

The final sample consists of 89,144 vacant cruises of 522 drivers.

Among 89,144 vacant cruises, the number of the vacant cruises when AI Navi is turned

on and off are 4,772 (5.4%) and 84,372 (94.6%) respectively. In terms of the number of

drivers, out of total of 522 drivers, 212 drivers (41%) used AI Navi at least once, and 310

drivers (59%) never used it during the trial period. Thus, whereas the overall utilization of

AI Navi is quite low, nearly 40% of drivers at least experimented with it. We call the sample

of all the drivers as “full” sample and the sample of drivers who used AI Navi at least once

during the trial period as “Navi users” sample throughout the paper. Generally, our results

are robust to the use of either dataset.

Appendix Figure A2 shows the distribution of vacant cruise time separately for (a) when

AI is turned on, and (b) when AI is turned off. Both the mean and median of vacant cruise

time are higher when AI is turned on than when AI is turned off; the mean(median) time

when AI is on is 15.0(11.3) minutes whereas the time when AI is off is 11.3(7.8), suggesting

that drivers are more likely to turn on AI when it is difficult to find customers. This selective

usage of AI Navi indicates that a simple comparison of the average vacant cruise time between

when AI is turned on and off is problematic because it may rather reflect the difference in

the underlying demand for the taxi rather than the effect of AI Navi. We discuss how we

address this selection issue in the next section.

3 Empirical strategy

3.1 Hazard model

Our empirical strategy is still comparing the vacant cruise time when AI Navi is turned on

and off. As mentioned earlier, however, we cannot simply compare the average vacant cruise

time between AI usage and non-usage because timing of AI Navi usage could be endogenous.

Thus, we compare the vacant cruise time between when AI Navi is turned on and off within

the same drivers by including driver FEs while controlling for rich sets of fixed effects to

account for underlying demand, namely 18 ward FEs, and 696 date-hour FEs (=29 days×24

hours/day). Our identifying assumption, thus, is that turning on (or off) the AI Navi is

quasi-random after controlling for these sets of FEs. In the next subsection, we will show

that this assumption is likely to hold.

by inferring that the driver is on a break, and is not attempting to find customers. Our results are robust
to excluding 60 minutes breaks (not shown).

7Appendix Table A1 and A2 show that our results are barely affected by the choice of the threshold.
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We estimate a hazard model to allow for a variation that AI Navi is turned on (or off)

during a vacant cruise. We assume that the duration of the vacant cruise (in minutes),

T , follows Weibull distribution. The survival function, S(t) = Pr(T > t), which is the

probability that the drivers cannot find a customer until time t, for vacant cruise s by driver

i at date-hour h in ward j is:

Sijh(t) = exp(−λijh(t) · tp)

where

λijh(t) = exp{−p(α · AI Navi usageijhs,t + driver FEi + ward FEj + date-hour FEh)}. (1)

AI Navi usage is a dummy variable that takes the value of one when AI Navi is turned on and

zero otherwise. The parameter p captures the duration dependence of the baseline hazard,

where p = 1 implies the absence of the duration dependence, p > 1 (log(p) > 0) implies

the positive duration dependence, and p < 1 (log(p) < 0) implies the negative duration

dependence.

This model can be interpreted as

log(vacant cruise timeijhs) = α·AI Navi usageijhs,t+driver FEi+ward FEj+date-hour FEh+εijhs

(2)

where ε follows an extreme-value distribution. Our coefficient of interest is α which corre-

sponds to percentage change in vacant cruise time. We test whether AI Navi usage reduces

the time to find a customer (α < 0).

To consider the effects of driver skill and demand condition, we construct the following

two indices: driver skill index and vacancy index. Both indices are constructed using the

vacant cruise data from October and November—a period before the trial period. The

driver skill index is constructed in the following way. First, we estimate the hazard model

of equation (1), regressing the vacant cruise time onto ward FEs, date-hour FEs, and driver

FEs. Then, we flip the sign of the estimated driver FEs so that a higher skill index reflects

more skilled drivers, and then standardize it to the mean of 0 with standard deviation of 1.

This index essentially captures each driver’s skill in searching for customers. Because our

skill measure is constructed based on the worker productivity of the same drivers using past

records, this index better reflects the actual skill of workers than commonly-used alternatives

such as tenures and education levels. Similarly, we construct a vacancy index by estimating

the same Weibull hazard model of equation (1), regressing vacant cruise time onto driver
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FEs and ward-day-hour FEs. The estimated ward-day-hour FEs—which capture the average

demand for a taxi at each ward at each day-hour (e.g., 10 pm on Wednesday at Ward 1)—is

our vacancy index. The higher vacancy index means that it takes more time to find the

customer. Thus, the higher the vacancy index, the lower the demand for a taxi at ward-day-

hour level.

3.2 Credibility of underlying assumption

Recall that our identifying assumption is that turning on (or off) the AI Navi is as good

as random within the same driver in similar demand conditions, that is, after controlling for

ward FEs, and date-hour FEs in addition to driver FEs. To assess the plausibility of this

assumption, we estimate a logistic regression, where the outcome is a dummy that takes one

when AI Navi is turned on and zero otherwise, on driver skill index, vacancy index, and

its interaction with and without the same sets of fixed effects as equation (1), namely, ward

FEs, date-hour FEs, and driver FEs.

Table 1 shows the results. Column (1) shows that without the above-mentioned set of

fixed effects, the skill index is negative (p< 0.10), indicating that low-skilled drivers are more

likely to use AI Navi. More importantly, the vacancy index is positive and highly statistically

significant (p< 0.01), suggesting that drivers are more likely to turn on AI Navi when the

demand is low (recall that vacancy index is high when the demand is low). However, once we

add ward FEs and date-hour FEs in column (2), the vacancy index is no longer statistically

significant at the conventional level nor economically large. This result suggests that once

we properly control the demand using ward FEs and date-hour FE, whether to turn on or

off AI Navi can be arguably viewed as good as random.

Column (2) of Table 1 also shows that the interaction term of skill index and vacancy

index is also not statistically significant nor economically large, which mitigates the concern

that the productivity gains by the skill shown in the next section, is simply driven by

differential timing of AI Navi usage (i.e., low-skilled drivers are more likely to turn on AI

Navi when there is large scope to shorten the search time). Columns (3) and (4) repeat

the same exercise only for the drivers who use AI Navi at least once during the trial period

(“Navi users sample”). We are reassured that we find similar patterns as the full sample in

columns (1) and (2). Finally, column (5) adds driver FEs to column (4), and the estimates

on both vacancy index itself and interaction term of skill index and vacancy index become

even smaller and reaches close to zero.

To sum, although it seems that AI Navi is more likely to be used when demand is low,
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such underlying demand condition can be well-controlled by including ward FEs and date-

time FEs. This is plausible as none of the drivers are exposed to this application before, and

thus they are likely to randomly experiment to turn it on and off especially at the beginning

of the trial period. Even if our rich controls still fail to fully capture the underlying demand

conditions, to the extent that drivers are likely to turn on AI Navi when the demand is low

(and finding customers is difficult), the bias goes against our finding that AI Navi reduces

the search time. In other words, our estimate presented in the next section may provide the

lower bound in terms of the magnitude of the impact of AI.

4 Results

4.1 Overall productivity

Table 2 reports the main result of estimating equation (1). Columns (1)-(3) report the

average gains in productivity measured by the reduction in search time. Column (1) shows

that the AI reduces the time of finding customers by 5.1% using the full sample. We show

graphically the fitness of our hazard model. Figure 1 compares the estimated survival curve

from column (1) of Table 2 (solid) and the Kaplan-Meier curve (dash). The fit is reasonably

high, suggesting that Weibull distribution well captures the underlying hazard.

Column (2) of Table 2 limits the sample only to AI Navi users and finds similar results.8

Because the utilization rate of AI Navi is low, one concern is that the vacant cruises with and

without turning on AI Navi within the same drivers could be unobservably different even

after controlling for ward and date-hour FEs. To address this issue by ensuring sufficient

overlap in characteristics between the vacant cruises with and without AI Navi usage, we

trim the sample based on propensity score. Specifically, we compute the propensity score of

turning on AI Navi from the logistic regression of AI Navi usage dummy on driver, ward,

and date-hour FEs. Column (3) limits the sample to vacant cruises whose propensity score

is between 0.1 and 0.9 (Imbens 2015).9 Although the number of observations substantially

decreases, it is reassuring that the estimate in column (3) is very similar to those in columns

8This is expected since our source of variation for identification is within drivers, and thus the drivers
who never used the AI Navi (who are included in column (1) but not in column(2)) only contribute to the
precision of ward FEs and date-hour FEs.

9Crump et al. (2009) suggest to drop the observations with the propensity score outside of the range
between 0.1 and 0.9 as a close approximation of the optimal rule, and demonstrate that the rule effectively
resolves the problems arising from the lack of the sufficient overlap in the observable characteristics for
the wide range of distributions. This method is used for the robustness check of various empirical papers
including Currie and Walker(2011) and Gibson and McKenzi (2014).

9



(1) and (2).10 The estimates of log(p) are all positive, indicating that the hazard rate is

increasing with respect to the vacant time.

4.2 Productivity gain by skills

Columns (4)-(6) of Table 2 report the productivity improvement by the skill level, and

show that productivity gains are concentrated on the low-skilled drivers. Specifically, we

divide the sample into half by median of skill index into high- and low-skilled drivers.11

Column (4) shows that whereas the AI reduces the search time by as much as 10% for the

low-skilled drivers, the corresponding gain for the high-skilled drivers is essentially zero.12

As a result, the AI narrows the productivity gap between high- and low-skilled drivers by

about 30%.13 Nonetheless, AI did not completely eliminate the productivity gap, implying

that there is unobserved skill component of high-skilled drivers that cannot be fully replaced

by AI. We find similar results in columns (5) and (6), where the former limits the sample

only to AI Navi users, and the latter further limits the sample only to vacant cruises with

propensity scores ranging between 0.1 and 0.9. Appendix Table A3 further divides the driver

skill into a quartile, and finds that the productivity gains are concentrated in the first and

second quartiles, which echos the previous findings.

One remaining concern could be that even though the AI Navi would have also benefited

the high-skilled drivers, they simply did not follow the navigation routes suggested by the

AI. Since AI Navi assists a prediction task only but not a decision task, it is up to drivers

whether to follow the AI’s prediction.14 High-skilled drivers may trust less in AI because

they may have high self-confidence on their own judgements and/or they may be also more

likely to spot imperfections of AI.

To test this possibility, we also control for the “Navi compliance rate”, which is the

fraction of navigation routes AI suggested that drivers did follow, calculated for each vacant

10Appendix Table A1 and A2 report the results of a) without dropping the top 1% outliers, and b) changing
the cut threshold from 1% to 3%. Our estimates are not sensitive to these changes.

11The fraction of low-skilled drivers are similar among the Navi-users (48%= 101/211) and Non Navi-users
(52%= 160/310).

12The differences between low- and high-skilled drivers are statistically significant at the conventional level
in all columns (4)-(6).

13The estimate on the low-skilled drivers (0.098 from column (2) of Table 2) is divided by the sum of the
average driver FEs for high- and low-skilled drivers (0.089 + 0.244). When we use median instead of mean,
the gap is narrowed by 37%.

14Agarwal et al. (2018, 2019) consider a decision task distinct from a prediction task, where a prediction is
an input to a decision task. In this framework, AI saves time and improves accuracy in generating predictions,
which allows more nuanced decisions through the reduction of uncertainty in prediction.
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cruise.15 Appendix Table A4 presents the results. Odd-numbered columns replicate the

results of Table 2 for ease of comparisons. Even-numbered columns add the interaction of AI

Navi usage dummy and Navi compliance rate to adjacent odd-numbered columns. Whereas

the interaction term is negative as expected (i.e., higher compliance reduces the search time),

our coefficient of interest (“Navi usage × low-skilled”) is hardly changed. Therefore, it is

unlikely that the differential impact by skill level is driven by the compliance rate.

We also investigate whether the impact of AI evolves over time. Whereas our trial period

is limited to one month in December, we nonetheless split the month into the first and

second two weeks. Table 3 shows the results using the Navi users sample. First, column

(1) shows that the AI’s positive impact is immediate and observed already in the first two

weeks (labeled “Navi usage”). This result is reassuring because drivers are more likely to

randomly experiment to turn it on and off especially at the beginning of the trial period,

mitigating the concern that the timing of switching on AI Navi could be endogenous to local

demand. Second, there is some improvement in the last two weeks since the estimate on

“Navi usage × 3rd/4th weeks”, which captures the additional improvement to the first two

weeks, is negative. But the magnitude is small and not statistically significant. Since this

interaction term is likely to capture the combined effects of the selection (of drivers who

still use the AI Navi in the last two weeks), and potential learning by doing, we limit our

sample to drivers who use the AI Navi at least once in the 4th week to partially account

for the selection issue. Column (2) shows that the interaction term is negative but still far

from statistically significant, suggesting that learning is probably limited. An alternative

interpretation is that the positive impact of AI observed in the first two weeks does not fade

away in the second two weeks.

The rest of Table 3 repeats the same exercise for the low- and high-skilled drivers, sep-

arately. As for the low-skilled drivers in columns (3)-(4), we see an immediate AI’s impact

in the first two weeks but also do not see much learning in the last two weeks. As for the

high-skilled drivers in columns (5)-(6), we do not observe any effects in the first two weeks.

Whereas we see a modest effect in the last two weeks, the estimate is far from statistically

significant. In sum, we do not observe much learning in this setting.16

Robustness. Finally, Appendix Table A5 instead reports the estimates of the Cox

15The average compliance rate is 53.4%. The compliance rate is in fact slightly higher for low-skilled
drivers (56.2%) than high-skilled drivers (49.9%). This rate is calculated by the tech company based on their
definition.

16Whereas we fully control the differential demand by including ward and date-hour FEs, there could be
still some unobserved difference in demand between the first and second half of December, the latter of which
includes the holiday season.
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Proportional hazard model to allow for non-parametric baseline hazard. To make them

comparable to the estimates of Weibull hazard model, Appendix Table A6 convert the esti-

mates in Table 2 to hazard ratios. Note here that the estimates greater than one mean that

the probability of picking up a customer increases as the corresponding variable increases

while the estimates less than one means that the probability decreases. Comparing Appendix

Tables A5 and A6, the estimates from two models are almost identical.

4.3 Another productivity measure

Thus far, we use the length of search time as a measure of productivity, and find that

this AI boosts the productivity on this dimension for low-skilled drivers. However, another

natural candidate of productivity measure is the sales. Whereas the reduction in search

time leads to the increase in the number of rides, the fare per ride might decrease if the

AI directs to the locations with customers with short rides. This might happen because AI

Navi is designed to maximize the probability of catching the customers, and is not designed

to increase the fares or sales.

We have data on fare per ride. Appendix Figure A3 shows the distribution of fare per

ride separately for rides of customers who are found (a) when AI Navi is turned on, and

(b) when AI Navi is turned off. Because of missing data in fares, the sample size is roughly

three-fourth of the sample used in the analysis for search time in Table 2.17 Both the mean

and median of fare per ride are slightly lower for rides of customers found when AI Navi is

turned on (N= 3,624) than when AI is turned off (N= 30,417); the mean(median) fare of

the former is JPY1,524(1,100) whereas that of latter is JPY1,656(1,130). Note that JPY100

is roughly 1USD.

Table 4 reports the results of OLS regression on fare per ride. Specifically, we regress fare

per ride on the same sets of fixed effects included in equation (1), namely, driver, ward, and

date-hour FEs. Note that we include driver FEs, and thus the comparison is again within

the same driver. Here, we limit the sample to AI Navi users.18

Column (1) of Table 4 shows that the rides of customers found when AI is turned on

are slightly cheaper than the rides of customers found when AI is turned off. However, the

magnitude (JPY46) is tiny compared to the average fare of JPY1500-1600 per ride. Column

(2) takes the log as the outcome, and shows that the difference is around 2%. Columns (3)

and (4) report the differential effect by the skill level. We find that the reduction in fare per

ride is concentrated on the low-skilled drivers. Columns (3) and (4) show that for low-skilled

17Appendix Table A7 verifies that our main results reported in Table 2 hold in this limited sample as well.
18Appendix Table A8 reports the results of using the full sample, and finds very similar results.
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drivers the fare per ride is reduced by JPY57 or 3.9%. Interestingly, the estimates on the

logged outcome are always more precise than the outcome in levels, indicating that most of

the reduction in fares comes from the increases in short-rides. We do not see any effect on

the high-skilled drivers. These results suggest that AI seems to direct the low-skilled drivers

to the locations with low-hanging fruits. This happens probably because this AI is designed

to find customers and not to maximize sales as mentioned earlier. However, even for the

low-skilled drivers, the magnitude of reduction in fare is rather small (3.9%) which does not

offset the reduction in search time (10.6% from column (5) of Table 2).

5 Discussion and Conclusion

We investigate the impact of AI on worker productivity in the context of taxi drivers.

The AI in our setting increases the accuracy of predicting consumer demand, and navigates

the taxi drivers to the location with high demand. We find that the AI improves the worker

productivity measured by the length of search time whereas all the gains are concentrated

on the low-skilled drivers. This result suggests that the AI is a substitute to worker skill,

and that AI may not always enhance skill-biased technological change. Rather, to the extent

that productivity is reflected by wages, AI has a potential to reduce the wage inequality

across workers at least within the same occupation. Our result shows that the impact of AI

on employment is more nuanced and complex than the simple replacement story.

Our findings are consistent with Webb (2020) in that skilled workers are more exposed

to AI than unskilled workers; the key difference is that we show that the same prediction

applies to workers with differential skills within a single occupation where Webb (2020)

shows it across occupations. In addition, Webb (2020) argue that AI will reduce 90:10

wage inequality under the assumption that the historical patterns of long-run substitution

by robots and software will also apply to AI. Using actual field data, we show that AI indeed

narrows productivity gap between high- and low-skilled workers at least in our setting.

Our result that AI adoption makes driver’s demand-forecasting skill less important and

obsolete have some implications for the hiring strategy of taxi operation company; the skills

that cannot be automated by AI such as social skill (Deming and Kahn 2018) may become

more important in hiring. Indeed, Acemoglu et al. (2020) document that establishments

exposed to AI substantially changed the task contents of job openings, suggesting that the

penetration of AI induced the reorganization of worker skill compositions.

This study faces several limitations. First, whereas we show that low-skilled drivers are

benefited from AI, one puzzle is that the utilization rate of AI is low even among the low-
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skilled drivers (5.9%).19 One possibility is that the productivity gain of 10%, which translates

into the reduction of search time by 1.5 min, is not large enough to make them recognize the

improvement, especially because those low-skilled drivers may be inexperienced. Relatedly,

more than half of the drivers—who are given the opportunity to use the application for

free—never even bother to use it. In fact, 51.6% of these never-users are low-skilled drivers

who would have benefited if they had used it.20 While this is beyond the scope of this study

to identify the reasons for aversion, drivers might feel competitive pressure from AI which

might replace their core skill of demand forecasting.21 Second, we can speak little about

the general equilibrium effect; what if all the drivers in the area adopt this AI technology.

One concern is that taxi drivers in the area compete for the same customers, and end up

engaging in business stealing if the market size stays constant. However, the consumers

are benefited from the shorter time of finding a taxi. To the extent that this improved

convenience stimulates the further demand for a taxi, the market could expand and the

social welfare might improve.

Finally, one might wonder if our finding can be generalized beyond the case of taxi

drivers. Although taxi drivers as an occupation might be completely displaced once self-

driving cars with demand-forecasting AI is achieved, such drastic transformation may take

time because information required for driving task such as the road environment is much

less regularized than information required for demand-forecasting task such as passengers’

location. As Autor (2015) points out, automating a task is much more costly under non-

regularized environment than regularized environment, and the cost is likely to exceed the

wage saving.22 As a result, the partial automation of tasks within an occupation (like this

taxi case) is likely to persist. Therefore, our finding might be applicable to other occupations

in which the core skill involves a prediction task. Agarwal et al. (2019) classify such type

of AI usage as “augmenting labor on decision tasks” where the automation of prediction

through AI can improve decision-making by humans and consequently the productivity of

19The corresponding figure for the high-skilled drivers is 4.8%.
20Note that since we construct the skill index using the full sample, we can classify non-users into high-

and low-skilled drivers.
21This may not be so-called algorithm aversion, that is, even when an algorithm consistently beats human

judgment, people prefer to go with their own judgement (Dietvorst et al. 2015; 2016). Never-users have
not seen that the AI does better than their own judgement. One possible reason is that the average age of
drivers is high. Although we do not have information on driver characteristics at the individual level, the
average age of taxi drivers at Yokohama area from the official statistics is 61.2 as of December 2019, and
thus using modern application could be a challenge for a large fraction of them. In addition, information
sharing among drivers seems rare according to our interviews with taxi drivers.

22In addition, removing completely human operations involves substantial risks, because the cost of failure
(such as injuries or deaths) can be very high (Agarwal et al. 2019).
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labor. For example, paralegals—affected by legal tech AI that helps them review contracts

to identify unusual clause, and pathologists—affected by diagnostic imaging AI that detects

malign tumors, are likely candidates. Whether our finding can be generalized to other

settings is an interesting avenue for future research.
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Figures and tables

Figure 1: Model Prediction vs. Kaplan-Meier Curve

Notes: The figures compares the estimated survival curve from column (1) of Table 2 (solid) and the
Kaplan-Meier curve (dash).
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Table 1: Logistic Regression for AI Navi Usage

(1) (2) (3) (4) (5)
Full Full Navi users Navi users Navi users

skill index -0.209* -0.248* -0.281** -0.281***
(0.125) (0.127) (0.110) (0.109)

vacancy index 0.198*** -0.046 0.185*** -0.055 0.018
(0.031) (0.039) (0.032) (0.037) (0.040)

skill index × vacancy index 0.031 0.024 0.021 -0.000 0.010
(0.029) (0.040) (0.033) (0.038) (0.037)

driver FE X
ward FE X X X
date-hour FE X X X
N 88,864 83,355 46,046 43,476 43,476
N of drivers 522 520 212 212 212
Log-likelihood -18,442 -16,547 -15,111 -13,383 -8,247

Notes: The outcome is an AI Navi usage, which is a dummy that takes one when AI Navi is turned on.
Standard errors clustered on drivers are reported in parentheses. The higher skill index indicates more
skilled drivers. The higher vacancy index indicates less demand for taxi at ward-day-hour level. “Full” in
columns (1)-(2) is the sample of all drivers, and “Navi users” in columns (3)-(5) is the sample of drivers
who used AI Navi at least once during the trial period. ***, ** and * denote 10%, 5% and 1% significance
level respectively.
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Table 2: Weibull Hazard Regression

(1) (2) (3) (4) (5) (6)
Full Navi users Navi users Full Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
Navi usage -0.051*** -0.056*** -0.062***

(0.018) (0.018) (0.021)

Navi usage × low-skilled -0.098*** -0.107*** -0.096***
(0.024) (0.023) (0.029)

Navi usage × high-skilled -0.008 -0.000 -0.022
(0.025) (0.026) (0.032)

log(p) 0.151*** 0.141*** 0.197*** 0.151*** 0.141*** 0.198***
(0.004) (0.005) (0.008) (0.004) (0.005) (0.008)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 89,144 46,208 10,076 89,144 46,208 10,076
N of drivers 522 212 161 522 212 161
Log-likelihood -125,536 -65,533 -13,811 -125,532 -65,527 -13,809

Notes: High- and low-skilled are a dummy for drivers whose skill index is above median and below median,
respectively. “Full” in columns (1) and (4) is the sample of all drivers, and “Navi users” in columns (2) and
(5) is the sample of drivers who used AI Navi at least once during the trial period. Columns (3) and (6)
further limit the “Navi users” to vacant cruises whose propensity score (PS) is between 0.1 and 0.9. PS is
computed by predicting the probability after logistic regression of AI Navi usage dummy on driver, ward,
and date-hour FEs. Standard errors clustered on drivers are reported in parentheses. ***, ** and * denote
10%, 5% and 1% significance level respectively.
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Table 3: Weibull Hazard Regression: Evolution of AI’s Impact

(1) (2) (3) (4) (5) (6)
Navi users 4th week Navi users Navi users 4th week Navi users Navi users 4th week Navi users

- - low-skilled low-skilled high-skilled high-skilled
Navi usage -0.046** -0.066** -0.095*** -0.107*** 0.003 -0.024

(0.022) (0.029) (0.028) (0.040) (0.031) (0.041)

Navi usage × 3rd/4th weeks -0.028 -0.020 -0.011 -0.022 -0.045 -0.045
(0.027) (0.035) (0.034) (0.045) (0.043) (0.059)

log(p) 0.141*** 0.145*** 0.163*** 0.178*** 0.141*** 0.170***
(0.005) (0.008) (0.008) (0.010) (0.007) (0.012)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 46,208 17,990 22,549 9,021 23,659 8,969
N of drivers 212 82 106 42 106 40
Log-likelihood -65,532 -25,397 -31,587 -12,492 -33,512 -12,464

Notes: “Navi users” sample is used. High- and low-skilled are drivers whose skill index is above median and
below median, respectively. “Navi usage” captures the impact of AI in the first two weeks, and “Navi usage
× 3rd/4th weeks” captures the additional impact of AI in the last two weeks. Columns (2), (4) and (6)
limit the sample to drivers who use the AI Navi at least once in the 4th week. Standard errors clustered on
drivers are reported in parentheses. ***, ** and * denote 10%, 5% and 1% significance level respectively.
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Table 4: OLS Regression on Fare per Ride

(1) (2) (3) (4) (5) (6)
Navi users Navi users Navi users Navi users Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
fare log(fare) fare log(fare) fare log(fare)

Navi usage -46.019 -0.022*
(32.150) (0.011)

Navi usage × low-skilled -57.424 -0.039*** -47.225 -0.036**
(41.307) (0.013) (44.002) (0.014)

Navi usage × high-skilled -33.117 -0.001 -78.381 -0.016
(48.120) (0.018) (56.107) (0.019)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 34,043 34,043 34,043 34,043 8,155 8,155
N of drivers 157 157 157 157 125 125
adj. R2 0.083 0.104 0.083 0.104 0.076 0.094

Notes: “Navi users” sample is used. The outcome is level or log of fare per ride in JPY. JPY100 is roughly
1USD. High- and low-skilled are a dummy for drivers whose skill index is above median and below median,
respectively. Columns (5) and (6) further limits the sample to vacant cruises whose propensity score (PS)
is between 0.1 and 0.9. PS is computed by predicting the probability after logistic regression of AI Navi
usage dummy on driver, ward, and date-hour FEs. Standard errors clustered on drivers are reported in
parentheses. The higher skill index indicates more skilled drivers. ***, ** and * denote 10%, 5% and 1%
significance level respectively.
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Figure A1: Snapshot of AI Navi

Notes: The figure displays the snapshot of AI Navi when it is turned on. AI Navi shows the suggested
routes in green with a red arrow given a taxi’s current location, and red dots indicate the locations with
potential customers. c© Zenrin c© Mapbox
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Figure A2: Histogram of Vacant Cruise Time: AI is Turned On/Off

(a) AI is turned on (b) AI is turned off

Note: These histograms show the distribution of vacant cruise time in the sample period (a) when AI is
turned on and (b) when AI is turned off separately. The mean(median) time (a) when AI is turned on is
15.0(11.3) minutes whereas (b) when AI is turned off is 11.3(7.8). Number of observations for (a) and (b)
are 4,772 and 84,372.

Figure A3: Histogram of Fare per Ride: AI is Turned On/Off

(a) AI is turned on (b) AI is turned off

Note: These histograms show the distribution of fare per ride (in JPY) in the sample period for customers
who are find (a) when AI is turned on and (b) when AI is turned off separately. JPY100 is roughly 1USD.
The mean(median) fare per ride (a) when AI is turned on is JPY1,524(1,100) whereas (b) when AI is turned
off is JPY1,656(1,130). Number of observations for (a) and (b) are 3,624 and 30,417.
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Table A1: Weibull Hazard Regression: Without Dropping the Top 1% Outliers

(1) (2) (3) (4) (5) (6)
Full Navi users Navi users Full Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
Navi usage -0.058*** -0.062*** -0.068***

(0.019) (0.020) (0.024)

Navi usage × low-skilled -0.085*** -0.092*** -0.087***
(0.027) (0.027) (0.033)

Navi usage × high-skilled -0.030 -0.030 -0.047
(0.027) (0.028) (0.034)

log(p) 0.118*** 0.110*** 0.165*** 0.118*** 0.110*** 0.165***
(0.004) (0.005) (0.008) (0.004) (0.005) (0.008)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 90,044 47,027 10,305 90,044 47,027 10,305
N of drivers 522 214 164 522 214 164
Log-likelihood -129,051 -67,801 -14,391 -129,050 -67,800 -14,390

Notes: We did not drop the top 1% outliers. High- and low-skilled are a dummy for drivers whose skill
index is above median and below median, respectively. “Full” in columns (1) and (4) is the sample of all
drivers, and “Navi users” in columns (2) and (5) is the sample of drivers who used AI Navi at least once
during the trial period. Columns (3) and (6) further limit the “Navi users” to vacant cruises whose
propensity score (PS) is between 0.1 and 0.9. PS is computed by predicting the probability after logistic
regression of AI Navi usage dummy on driver, ward, and date-hour FEs. Standard errors clustered on
drivers are reported in parentheses. ***, ** and * denote 10%, 5% and 1% significance level respectively.
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Table A2: Weibull Hazard Regression: Dropping the Top 3% Outliers

(1) (2) (3) (4) (5) (6)
Full Navi users Navi users Full Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
Navi usage -0.036** -0.040** -0.048**

(0.017) (0.017) (0.020)

Navi usage × low-skilled -0.093*** -0.089*** -0.081***
(0.022) (0.023) (0.030)

Navi usage × high-skilled 0.020 0.013 -0.010
(0.023) (0.023) (0.026)

log(p) 0.190*** 0.178*** 0.238*** 0.190*** 0.178*** 0.238***
(0.005) (0.005) (0.009) (0.005) (0.005) (0.009)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 87,343 44,601 9,745 87,343 44,601 9,745
N of drivers 522 209 159 522 209 159
Log-likelihood -120,167 -61,910 -13,043 -120,160 -61,905 -13,041

Notes: We dropped the top 3% outliers. High- and low-skilled are a dummy for drivers whose skill index is
above median and below median, respectively. “Full” in columns (1) and (4) is the sample of all drivers,
and “Navi users” in columns (2) and (5) is the sample of drivers who used AI Navi at least once during the
trial period. Columns (3) and (6) further limit the “Navi users” to vacant cruises whose propensity score
(PS) is between 0.1 and 0.9. PS is computed by predicting the probability after logistic regression of AI
Navi usage dummy on driver, ward, and date-hour FEs. Standard errors clustered on drivers are reported
in parentheses. ***, ** and * denote 10%, 5% and 1% significance level respectively.
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Table A3: Weibull Hazard Regression: Skill Index Quartiles

(1) (2) (3)
Full Navi users Navi users

0.1 ≤ PS ≤ 0.9
Navi usage × skill index 1st quartile -0.090*** -0.105*** -0.091***

(0.027) (0.026) (0.035)

Navi usage × skill index 2nd quartile -0.105*** -0.109*** -0.100**
(0.036) (0.034) (0.046)

Navi usage × skill index 3rd quartile -0.028 -0.012 -0.040
(0.030) (0.034) (0.047)

Navi usage × skill index 4th quartile 0.024 0.015 -0.002
(0.040) (0.038) (0.038)

log(p) 0.151*** 0.141*** 0.197***
(0.004) (0.005) (0.008)

driver FE X X X
ward FE X X X
date-hour FE X X X
N 89,144 46,208 10,076
N of drivers 522 212 161
Log-likelihood -125,531 -65,527 -13,809

Notes: We divide drivers into quartile by the distribution of skill index. High- and low-skilled are a dummy
for drivers whose skill index is above median and below median, respectively. “Full” in column (1) is the
sample of all drivers, and “Navi users” in column (2) is the sample of drivers who used AI Navi at least
once during the trial period. Column (3) further limits the “Navi users” to vacant cruises whose propensity
score (PS) is between 0.1 and 0.9. PS is computed by predicting the probability after logistic regression of
AI Navi usage dummy on driver, ward, and date-hour FEs. Standard errors clustered on drivers are
reported in parentheses. ***, ** and * denote 10%, 5% and 1% significance level respectively.
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Table A4: Weibull Hazard Regression: Controlling for Navi Compliance Rate

(1) (2) (3) (4) (5) (6)
Full Full Navi users Navi users Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
Navi usage × low-skilled -0.098*** -0.100*** -0.107*** -0.108*** -0.096*** -0.094***

(0.024) (0.025) (0.023) (0.023) (0.029) (0.029)

Navi usage × high-skilled -0.008 -0.013 0.000 -0.004 -0.022 -0.023
(0.025) (0.025) (0.026) (0.026) (0.032) (0.032)

Navi usage × Navi compliance rate -0.066 -0.055 -0.081
(0.046) (0.046) (0.049)

log(p) 0.151*** 0.151*** 0.141*** 0.141*** 0.198*** 0.199***
(0.004) (0.004) (0.005) (0.005) (0.008) (0.008)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 89,144 89,144 46,208 46,208 10,076 10,076
N of drivers 522 522 212 212 161 161
Log-likelihood -125,532 -125,531 -65,527 -65,526 -13,809 -13,808

Notes: “Navi compliance rate” is the fraction of routes AI suggested that drivers did follow, calculated for
each vacant cruise. Odd-numbered columns replicate the results of Table 2 for the ease of comparison.
Even-numbered columns add the interaction of AI Navi usage dummy and Navi compliance rate to
odd-numbered columns. High- and low-skilled are a dummy for drivers whose skill index is above median
and below median, respectively. “Full” in columns (1) and (2) is the sample of all drivers, and “Navi users”
in columns (3) and (4) is the sample of drivers who used AI Navi at least once during the trial period.
Columns (5) and (6) further limit the “Navi users” to vacant cruises whose propensity score (PS) is
between 0.1 and 0.9. PS is computed by predicting the probability after logistic regression of AI Navi usage
dummy on driver, ward, and date-hour FEs. Standard errors clustered on drivers are reported in
parentheses. ***, ** and * denote 10%, 5% and 1% significance level respectively.
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Table A5: Cox Proportional Hazard Regression

(1) (2) (3) (4) (5) (6)
Full Navi users Navi users Full Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
Navi usage 1.065*** 1.070*** 1.076***

(0.022) (0.022) (0.027)

Navi usage × low-skilled 1.121*** 1.130*** 1.116***
(0.031) (0.029) (0.040)

Navi usage × high-skilled 1.016 1.007 1.031
(0.029) (0.030) (0.039)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 89,144 46,208 10,076 89,144 46,208 10,076
N of drivers 522 212 161 522 212 161
Log-likelihood -923,129 -448,085 -81,983 -923,126 -448,080 -81,981

Notes: Cox Proportional hazard regression is estimated. The estimates here indicate hazard ratios, and the
estimates greater than one mean that the probability of picking up a customer increases as the
corresponding variable increases while the estimates less than one mean that the probability decreases.
High- and low-skilled are a dummy for drivers whose skill index is above median and below median,
respectively. “Full” in columns (1) and (4) is the sample of all drivers, and “Navi users” in (2) and (5) is
the sample of drivers who used AI Navi at least once during the trial period. Columns (3) and (6) further
limit the “Navi users” to vacant cruises whose propensity score (PS) is between 0.1 and 0.9. PS is
computed by predicting the probability after logistic regression of AI Navi usage dummy on driver, ward,
and date-hour FEs. Standard errors clustered on drivers are reported in parentheses. ***, ** and * denote
10%, 5% and 1% significance level respectively.
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Table A6: Weibull Hazard Regression: Hazard Ratio

(1) (2) (3) (4) (5) (6)
Full Navi users Navi users Full Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
Navi usage 1.061*** 1.066*** 1.078***

(0.022) (0.022) (0.028)

Navi usage × low-skilled 1.121*** 1.131*** 1.124***
(0.031) (0.029) (0.039)

Navi usage × high-skilled 1.009 1.000 1.028
(0.029) (0.030) (0.040)

log(p) 0.151*** 0.141*** 0.197*** 0.151*** 0.141*** 0.198***
(0.004) (0.005) (0.008) (0.004) (0.005) (0.008)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 89,144 46,208 10,076 89,144 46,208 10,076
N of drivers 522 212 161 522 212 161
Log-likelihood -125,536 -65,533 -13,811 -125,532 -65,527 -13,809

Notes: This table converts the results from Table 2 into hazard ratio so that they are comparable to the
estimates from Cox Proportional hazard regression reported in A5. Since the estimates here indicate
hazard ratios, the estimates greater than one mean that the probability of picking up a customer increases
as the corresponding variable increases while the estimates less than one mean that the probability
decreases. High- and low-skilled are a dummy for drivers whose skill index is above median and below
median, respectively. “Full” in columns (1) and (4) is the sample of all drivers, and “Navi users” in (2) and
(5) is the sample of drivers who used AI Navi at least once during the trial period. Columns (3) and (6)
further limit the “Navi users” to vacant cruises whose propensity score (PS) is between 0.1 and 0.9. PS is
computed by predicting the probability after logistic regression of AI Navi usage dummy on driver, ward,
and date-hour FEs. Standard errors clustered on drivers are reported in parentheses. ***, ** and * denote
10%, 5% and 1% significance level respectively.

30



Table A7: Weibull Hazard Regression: Fare Data Existing Sample

(1) (2) (3) (4) (5) (6)
Full Navi users Navi users Full Navi users Navi users

0.1 ≤ PS ≤ 0.9 0.1 ≤ PS ≤ 0.9
Navi usage -0.065*** -0.062*** -0.068***

(0.021) (0.021) (0.024)

Navi usage × low-skilled -0.106*** -0.111*** -0.097***
(0.028) (0.027) (0.034)

Navi usage × high-skilled -0.028 -0.006 -0.032
(0.029) (0.030) (0.035)

log(p) 0.154*** 0.146*** 0.212*** 0.154*** 0.146*** 0.213***
(0.005) (0.006) (0.009) (0.005) (0.006) (0.010)

driver FE X X X X X X
ward FE X X X X X X
date-hour FE X X X X X X
N 70,171 34,043 8,155 70,171 34,043 8,155
N of drivers 420 157 125 420 157 125
Log-likelihood -98,439 -48,060 -11,058 -98,436 -48,055 -11,057

Notes: The sample is limited to vacant cruises with fare data available. High- and low-skilled are a dummy
for drivers whose skill index is above median and below median, respectively. “Full” in columns (1) and (4)
is the sample of all drivers, and “Navi users” in columns (2) and (5) is the sample of drivers who used AI
Navi at least once during the trial period. Columns (3) and (6) further limit the “Navi users” to vacant
cruises whose propensity score (PS) is between 0.1 and 0.9. PS is computed by predicting the probability
after logistic regression of AI Navi usage dummy on driver, ward, and date-hour FEs. Standard errors
clustered on drivers are reported in parentheses. ***, ** and * denote 10%, 5% and 1% significance level
respectively.
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Table A8: OLS Regression on Fare per Ride: Full Sample

(1) (2) (3) (4)
Full Full Full Full
fare log(fare) fare log(fare)

Navi usage -44.841 -0.021*
(29.953) (0.011)

Navi usage × low-skilled -57.212 -0.040***
(38.023) (0.013)

Navi usage × high-skilled -30.802 0.000
(46.702) (0.018)

driver FE X X X X
ward FE X X X X
date-hour FE X X X X
N 70,171 70,171 70,171 70,171
N of drivers 420 420 420 420
adj. R2 0.091 0.118 0.091 0.118

Notes: “Full sample” is used. The outcome is level or log of fare per ride in JPY. JPY100 is roughly 1USD.
High- and low-skilled are a dummy for drivers whose skill index is above median and below median,
respectively. Standard errors clustered on drivers are reported in parentheses. The higher skill index
indicates more skilled drivers. ***, ** and * denote 10%, 5% and 1% significance level respectively.
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