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Abstract

Ambiguity averse decision-makers can behave in financial portfolio
problems in ways that cannot be rationalized as subjective expected util-
ity maximization. Indeed, [Dow and da Costa Werlang, Econometrica 1992]
show that an ambiguity-averse decision-maker might abstain from trading
an asset for a wide interval of prices; something no subjective expected util-
ity maximizer can. Dow and da Costa Werlang assume that decision-makers
know the price of an asset when trading. We show that when markets oper-
ate via limit orders instead, all investment behavior of an ambiguity-averse
decision-maker is observationally equivalent to the behavior of a subjec-
tive expected utility maximizer with the same risk preferences; ambiguity
aversion has no additional explanatory power.
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1 Introduction

We show that any portfolio choice that cannot be explained by subjective ex-
pected utility maximization can also not be explained by ambiguity aversion
when decision-makers have access to limit orders. This is in sharp contrast to a
situation where decision-makers trade at given known prices, a setting first stud-
ied by Dow and da Costa Werlang (1992). In our model, a decision-maker faces
uncertainty over the joint distribution of the price of an asset at the point of pur-
chase and its final value. They can trade via limit orders that trade contingent
on prices. Our results show that every choice that cannot be explained as the be-
havior of a subjective expected utility maximizer with the same Bernoulli utility
function for some probabilistic belief must be strictly dominated by the choice of
some limit order. This implies that any ambiguity averse decision maker, whose
preferences satisfy the von Neumann Morgenstern axioms over the set of con-
stant acts and a monotonicity axiom, can only choose a limit order that could
also be chosen by a subjective expected utility maximizer with the same risk
attitudes. Ambiguity aversion has no additional explanatory power.

For the standard Bayesian paradigm, all uncertainty can be quantified by a
single probability distribution, and a rational decision-maker maximizes their
expected utility with respect to this distribution. Under the Bayesian paradigm,
both the probability distribution and the utility function to be maximized can be
derived from personal preferences, and rational decision-makers are taken to be
subjective expected utility maximizers.

The Bayesian paradigm has strong limitations as a positive theory in financial
settings. Indeed, it cannot even explain the most fundamental fact of household
finance in a frictionless portfolio model: The majority of households do not par-
ticipate in the stock market at all.> But in standard portfolio theory, subjective
expected utility maximizers participate in the stock market generically. A risk-
neutral investor buys an asset if the expected value is higher than the price,
(short) sells it if the expected value is lower than the price, and only abstains
from trading if the expected value exactly equals the price. Since expectations
are formed with respect to subjective beliefs, the latter case should rarely hap-
pen. As Arrow (1970) pointed out, a risk-averse investor behaves locally like a
risk-neutral investor and does, therefore, also trade some amount of the asset
unless the expected value exactly equals the price. Essentially, everyone should
trade, at least a little bit.

1See, for example, Haliassos and Bertaut (1995) or Campbell (2006).



A popular explanation for this nonparticipation puzzle, due to Dow and
da Costa Werlang (1992), gives up on the Bayesian paradigm and allows that not
all people lump all forms of uncertainty together into a single, all-encompassing,
probability distribution. People differentiate between calculable risk and funda-
mental unmeasurable uncertainty, and they are wary of the latter; people are
ambiguity-averse. Ellsberg (1961) came up with a series of thought experiments
in which one could clearly separate calculable probability in terms of draws
from an urn with known composition and fundamental uncertainty in terms of
an unknown urn composition. These thought experiments have been turned
into actual lab experiments that confirmed that people do not behave as if all
uncertainty was calculable risk; see, for example, the early survey by Camerer
and Weber (1992) or the recent survey by Trautmann and Van De Kuilen (2015).
Many experimental subjects are, indeed, wary of ambiguity.

Dow and da Costa Werlang (1992) show that the maxmin expected utility
model of Gilboa and Schmeidler (1989) of ambiguity aversion provides a sim-
ple explanation for why people do not participate in the stock market. In the
maxmin expected utility model, a decision-maker has a whole family of prob-
ability distributions and evaluates each action with respect to the lowest ex-
pected utility possible under any of these probability distributions. Even if a
decision-maker’s behavior is locally risk-neutral, it is not locally ambiguity neu-
tral. The different probabilities used for evaluating buying and selling an asset
drive a wedge between prices at which buying and selling, respectively, is opti-
mal. There can be a wide interval of prices at which not trading is the unique
optimal action.?

This argument has not just become the starting point for many models of
ambiguity aversion in finance,® it has also become the leading example of the
economic significance of ambiguity aversion outside laboratory settings in sur-
veys such as those by Gilboa, Postlewaite, and Schmeidler (2008) and Gilboa
and Marinacci (2013).4

2Antoniou, Harris, and Zhang (2015) provide empirical support from field data; ambiguity
predicts abstention.

3See, for example, the extensive surveys of ambiguity aversion in finance by Guidolin and
Rinaldi (2013) and Epstein and Schneider (2010).

4The mechanism Dow and da Costa Werlang (1992) identified has been used in various forms
in much of finance research since. Easley and O’Hara (2009) study its impact on financial reg-
ulation. The portfolio inertia implicit in the model of Dow and da Costa Werlang also appears
in the representative agent dynamic asset pricing model of Epstein and Wang (1994). In their
model, supporting prices are robustly not unique and, therefore, equilibria locally indeterminate.
Rigotti and Shannon (2012) show, however, that equilibria in heterogeneous agent general equi-
librium models with both risk and uncertainty are generically determinate. But indeterminacy



Ambiguity aversion has also been used to explain quantitative empirical puz-
zles. In many models, subjective expected utility maximization can only explain
the size of effects if one assumes agents to be overly risk-averse. For example,
the famous equity premium puzzle of Mehra and Prescott (1985) concerns the
overly high implied risk-aversion of investors that is needed when one attributes
the historical difference between the returns of equity and Treasury bonds to
an equilibrium risk premium in a parametric general equilibrium model. Sev-
eral authors have argued that there is an additional ambiguity premium that
can be studied from market data; see for example Brenner and Izhakian (2018),
Izhakian (2020), and Collard, Mukerji, Sheppard, and Tallon (2018).

We show that observable differences between ambiguity averse decision-
makers and subjective expected utility maximizers break down completely
when decision-makers can trade with common financial instruments. Dow and
da Costa Werlang (1992) assume that decision-makers only trade at a given
known price. If, in contrast, decision-makers can set price contingent orders—
limit orders— before prices materialize, then for every behavior that can occur
in standard models of ambiguity aversion, there exists a Bayesian probabilistic
belief at which their choice maximizes subjective expected utility for the same
Bernoulli utility function. Ambiguity aversion is not identifiable, and the ambi-
guity premium must be zero.

A wide variety of models of ambiguity aversion has been used in finance, and
we make our argument robust to the choice of the underlying decision-theoretic
model. Our argument applies to all those models of ambiguity aversion formu-
lated in the framework of Anscombe and Aumann (1963), which combines both
uncertainty and calculable risk, that satisfy a weak monotonicity requirement,
and that apply expected utility theory to choice problems that only involve cal-
culable risk. The weak monotonicity requirement is simply that no choice can
be dominated by another single deterministic choice in each state of nature. The
models of ambiguity aversion we allow for include, among others, the maxmin
expected utility model of Gilboa and Schmeidler (1989), the Choquet expected
utility model of Schmeidler (1989), the smooth ambiguity model of Klibanoff,
Marinacci, and Mukerji (2005), the variational and multiplier preference mod-

els of Maccheroni, Marinacci, and Rustichini (2006) and Hansen and Sargent

is robust if preferences are incomplete as in the model of Bewley (2002), as shown by Rigotti
and Shannon (2005), or if there is uncertainty in the price system as well, as shown by Beissner
and Riedel (2019). Billot, Mukerji, and Tallon (2020) provide a survey of these models and of
how they relate. Mukerji and Tallon (2001) obtain endogenous market incompleteness from
ambiguity aversion.



(2001), confidence function preferences of Chateauneuf and Faro (2009), un-
certainty aversion preferences of Cerreia-Vioglio, Maccheroni, Marinacci, and
Montrucchio (2011), and the incomplete preference model of Bewley (2002).°

To make our argument robust to the choice of the decision-theoretic model,
we make use of a dual characterization of subjective expected utility maximiza-
tion. In all the models listed above, choices that can be explained by the model
but not by subjective expected utility maximization must be strictly dominated
by randomized choices, but not by deterministic choices. We can explain the
logic of the last statement with a variant of one of the thought experiments of
Ellsberg (1961): Consider two urns, each containing a hundred balls. One urn
is unambiguous and is known to contain 49 white balls and 51 black balls. The
other, ambiguous, urn is filled with 100 balls that are each white or black, but
the composition is not known. A decision-maker has to choose between the fol-
lowing bets: In bet one, the decision-maker wins a prize if a ball drawn from the
ambiguous urn is black. In bet two, the decision-maker wins the same prize if a
ball drawn from the ambiguous urn is white. Finally, in bet three, the decision-
maker wins the same prize if a ball drawn from the unambiguous urn is white. A
decision-maker choosing bet three must be ambiguity-averse, for their winning
chance is only 49/100, while for any probabilistic belief about the composition
of the ambiguous urn, either bet one or two (or both) must have a winning
chance of at least 1/2.

Note that none of the three bets dominates another in pairwise comparisons
for every composition of the ambiguous urn. But as Raiffa (1961) pointed out,
a lottery that chooses bets one and two with probability 1/2 each has a higher
winning chance (of 1/2) than bet three independently of the composition of the
ambiguous urn. Only those two bets that can be chosen by a subjective expected
utility maximizer for some probabilistic belief over the urn composition are not
dominated by a randomized bet.

As Kuzmics (2017) pointed out, this is true in general. A lemma of Pearce
(1984) states that in a finite two-player game in normal form, a strategy is not
dominated by any mixed strategy if and only if it is a best reply to a mixed
strategy of the opponent. Related results can be traced back all the way to the
complete class theorem of Wald (1947) in statistical decision theory. The lemma
of Pearce, when translated to a decision problem in the setting of Anscombe and

>QOur argument does not apply to some more behaviorally flavored models of ambiguity aver-
sion such as those of Seo (2009), Saito (2015), and Ke and Zhang (2020), that violate the weak
monotonicity condition. Such models have not been used in finance and lack normative appeal.



Aumann (1963) with finitely many states, says that every decision that does not
maximize subjective expected utility with respect to some probabilistic belief
over the states of nature must be strictly dominated by a randomized choice.
The models of ambiguity aversion listed above do not allow for choices that
are dominated by deterministic, nonrandomized choices. So the only choices
that can be explained by ambiguity aversion and not by subjective expected
utility maximization are those that are strictly dominated by randomized choices
but not by nonrandomized choices. We show that in our setting, there are no
such choices. We first illustrate this claim in a simple example that abstracts
from various features of our general model, such as general risk aversion or
informative prices, but allows for a very simple argument.

For the general model, we need to adapt our arguments slightly since we are
working in an infinite-dimensional setting. Spaces of limit orders are infinite-
dimensional function spaces, and the state space is allowed to be infinite. Nev-
ertheless, we show in Proposition 1, using a generalization of Pearce’s lemma
due to Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2016), that a limit
order is not dominated by a randomly chosen limit order if and only if it maxi-
mizes subjective expected utility with respect to some probabilistic belief. While
Proposition 1 corresponds to a universal decision theoretic principle, Proposition
2, our main technical result, makes crucial use of our finance setting. It states
that a limit order that is strictly dominated by a randomly chosen limit order,
a mixed limit order in our language, must already be strictly dominated by a
single (deterministic) limit order. Therefore, as we state in the main Theorem 1,
everything that can be explained by ambiguity aversion could be explained by
subjective expected utility maximization with the same Bernoulli utility function
as well. We show what our results means for the problem of market participa-
tion, as studied by Dow and da Costa Werlang (1992), in Proposition 3.

For many models of ambiguity aversion, an even stronger conclusion holds
than the one given in Theorem 1. Proposition 4 shows that behavior that can be
explained by ambiguity aversion based on a model with a set of probabilitiy dis-
tributions to model beliefs can be explained as maximizing expected utility with
respect to a probabilistic belief in the closed convex hull of the underlying set
of probability distributions. Our argument does, therefore, not rely on decision
makers having extreme probabilistic beliefs. Proposition 5 shows that the limit
orders in our arguments can be implemented by realistic market portfolios.

Here is the structure of the rest of this paper: Section 2 provides a simple



example that shows the dramatic difference limit orders can make. Section 3
presents the environment we use and our main results. Section 4 shows what
our main results imply for market participation. Section 5 discusses the scope of
our results, the modeling choices we make, and how one can generalize some
results. Section 6 collects all proofs, except for the proof of Theorem 1 which is
a direct consequence of Propositions 1 and 2.

2 Motivating Example

We illustrate our central point in terms of the leading example of Dow and
da Costa Werlang (1992). There is one asset whose future value can be ei-
ther —1 or 1. A risk-neutral decision-maker is faced with a price of p and asked
to buy or (short) sell at most one unit of the asset. The net amount the decision-
maker can buy must, therefore, lie in the interval [—1, 1]. If the decision-maker
maximizes subjective expected utility with respect to some probabilistic belief 3
on the value being 1, buying one unit is uniquely optimal if p < 3 — (1 — 3),
selling one unit is uniquely optimal if p > 3 — (1 —3), and everything is optimal,
including not trading at all, if p = — (1 — B).

Suppose now that the decision-maker behaves according to the maxmin ex-
pected utility model of Gilboa and Schmeidler (1989) and that the two be-
liefs By < Pn form the extreme points of their set of beliefs. Now buy-
ing one unit is optimal if p < B, — (1 — B,), selling one unit is optimal if
P = Prn—(1—pn), and not trading is uniquely optimal when p lies in the interval
(B1— (1 —B1), Brn — (1 — Bn)). Ambiguity aversion explains why the decision-
maker completely refrains from trading. This is the core of the argument of Dow
and da Costa Werlang (1992). Implicitly, the decision-maker knows the price of
the asset when trading, and we can only observe whether trade happens at the
realized price.

We now consider a situation in which the decision-maker trades via (gener-
alized) limit orders before prices realize. Such a decision-maker must have a
model of how prices relate to final values. For the sake of this example, and
only for the sake of this example, we follow Dow and da Costa Werlang (1992)
and assume that prices do not tell us anything about the future value of the
asset. Prices are distributed according to a distribution that has full support
and no mass points. Finding the optimal choice for a subjective expected util-
ity maximizer is straightforward. Their chosen limit order must maximize the



conditional expected utility given the price for almost every price. So they must
choose a limit order that buys one unit if p <  — (1 — ) and sells one unit if
p > B — (1 —B), for almost every p. The limit order simply carries out what the
decision-maker would have done if they knew the price of the asset.

The situation for a decision-maker in the maxmin expected utility model is
different. Consider the limit order that buys one unit for prices below p, =
1 — (1 — 1), sells one unit for prices above py, = B, — (1 — 1), and does not
trade at prices in between. The resulting limit order is not optimal and, actually,
strictly dominated by a simple threshold limit order that prescribes selling above
a given price p,, and buying below this price. To see this, take p,, to be the
unique point between p; and py, such that the probability of prices being in the
intervals [pi, pm] and [pm,prnl is the same; in other words, p,, is the median
price conditional on the price falling in the interval [py, py].

buy sell
A ~ A
Pm
P1 Pn
—_— ~—
buy sell

Any payoff difference between the two limit orders comes from how they behave
in the interval [p,, pn]. The original limit order generates an expected payoff of
zero on this interval under both beliefs. The new threshold limit order does,
conditional on the price being in the interval [p, pn], buy with probability 1,/2
at the comparatively low prices between p; and p,, and sell with probability
1/2 at the comparatively high price between p,, and py. This leads to an ad-
ditional positive expected payoff that is independent of the beliefs; the original
limit order is strictly dominated. To see this more explicitly, consider the possi-
bility that the decision-maker can randomize, analogously to the Raiffa (1961)
hedge in the Ellsberg (1961) examples, and buy and sell with probability 1/2
each for each price in [py, pn]. The expected surplus would still be zero in the
interval independent of the prior. But the threshold limit order we constructed
also buys and sells with probability 1/2 in the interval but buys when prices are
low and sells when prices are high. This generates an additional expected payoff
and does not require any randomization. It can actually be shown as a straight-
forward corollary of our main results below that every limit order that is not a

8



threshold limit order is strictly dominated in the simple setting of this example.
Since a threshold limit order could be chosen by a subjective expected utility
maximizer whose probabilistic belief over final values has an expectation that
coincides with the threshold, ambiguity aversion has no additional explanatory

power.

It is tempting to explain the difference limit orders make by peculiarities
of the example: Prices are uninformative; the decision-maker faces fundamen-
tal uncertainty about final values, but somehow not about prices arising in be-
tween; the decision-maker is risk-neutral. None of that matters. As we show in
the next section in a setting in which the decision-maker faces ambiguity about
the joint distribution of prices and final values, every choice of a limit order that
cannot be rationalized as maximizing expected utility with respect to some prob-
abilistic belief must be strictly dominated by a single, deterministic limit order.
None of the standard theories of ambiguity aversion allows for choices that are
dominated by deterministic choices, so they are unable to explain anything that
cannot already be explained by subjective expected utility maximization. The
price of the increased generality is that our proof is not constructive.

3 Environment and Main Result

The decision-maker faces uncertainty over which probabilistic model best de-
scribes the relationship between the price of an asset and its final value. We
think of these as possible objectively correct models; all residual uncertainty
conditional on the true model is objective, quantifiable risk. We follow Keynes
(1937) here, who considered only those matters fundamentally uncertain for
which “there is no scientific basis on which to form any calculable probability
whatever.” Uncertainty within scientific models is taken to be objective uncer-
tainty.

There is a compact metrizable space Y of models and for each model a joint
density over prices and final values. This family of densities can be represented
by a single nonnegative measurable function h: R x R x Y — R continuous in Y
such that

th(p,x,y) dpdx=1

forally €Y.
The decision-maker’s ultimate payoff from any net-gains from investing is



given by a continuous Bernoulli utility function u: R — R.

Remark 1. We have assumed that the Bernoulli utility function is defined on the
whole real line. This rules out certain Bernoulli utility functions such as logarith-
mic ones, and requires the Bernoulli utility function to be unbounded if it should
be increasing and weakly concave. One could easily change the framework to
have Bernoulli utility functions on domains that are bounded below. Later, the
decision-maker is allowed to short-sell and, therefore, able to make large losses.
If we want to have Bernoulli utility functions on a restricted domain, we would
need an assumption that guarantees that final wealth levels stay in the domain
of the Bernoulli utility function for all losses that can occur.

The net amount the decision-maker is allowed to invest is restricted to lie in
an interval [b, t] with b < 0 < t. The bounds represent short-selling and debt
constraints, respectively. To guarantee that expected utilities are defined and
finite, we assume that there is an integrable function d : R x R — R satisfying

u(tx — tp)h(p,x,y) + [u(bx — bp)h(p,x,y) < d(p,x)

for all (p,x) € R*? and ally €Y.

Remark 2. This is a joint assumption on the Bernoulli utility function and the
possible joint distributions over prices and payoffs. For bounded u, it holds
automatically. If u is increasing and weakly concave, then the less concave the
Bernoulli utility function is, the more restrictive is the assumption on the joint
distribution over prices and payoffs. For the extreme case of a risk-neutral agent,
it amounts to a uniform integrability condition on net-gains. Even then, the
condition is fairly weak and mainly requires that the tails of all distributions
vanish sufficiently fast in a uniform way. For example, h could be the density of a
bivariate normal distribution or bivariate t-distribution with degrees of freedom
2 + € (with € > 0 arbitrarily small), and Y a compact set of pairs of means
and invertible covariance matrices.® A possible choice of the bounding function
d for all these cases would be a scaled-up joint density of two independent t-
distributions with degrees of freedom strictly between 1 and 1 + €.

In contrast to Dow and da Costa Werlang (1992), we assume that the
decision-maker acts before prices are known and chooses a limit order. A limit

5These examples include, therefore, bivariate distributions with existing means and vari-
ances. Such distributions need not have a kurtosis, and, thus, include bivariate distributions
with heavy tails.
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order is a measurable function from R into the set A = [b,t]. More precisely,
limit orders are taken to be equivalence classes of measurable functions from
R to A with two such functions being equivalent if they agree outside a set of
Lebesgue measure zero. We denote the set of limit orders by L and endow it
with the topology of convergence in measure’ and its corresponding Borel o-
algebra. We embed L in the space of mixed limit orders A(L), the space of Borel
probability measures on L by identifying the deterministic limit | order with the
Dirac point mass 6; concentrated on 1. A deterministic limit order is a mixed limit
order of the form 9.

Remark 3. We generally allow our decision-maker to choose mixed limit orders,
but, as we see below, one can interpret them as purely ancillary mathematical
constructs used in proofs.® Our main result, Theorem 1, does not refer to any
mixed limit orders.

There is a payoff function v : Rx A xR — R given by v(p, a,x) = u(a(x—p)).
The expected payoff from p € A(L) if the true model is y is

Vi y) = | [ [ b tp) 90 poy) dp dx du

We say that u' € A(L) strictly dominates 1 € A(L) if V(u',y) > V(u,y) for
all y € Y. A mixed limit order that is not strictly dominated by another mixed
limit order is undominated. A mixed limit order that is not strictly dominated
by a nonrandomized limit order is deterministically undominated. The follow-
ing proposition gives a version of the familiar characterization of undominated
choices from statistical decision theory and game theory.

Proposition 1. A mixed limit order u is undominated if and only if there exists a
probability distribution B € A(Y) such that u maximizes [ V(-,y) dB(y).

We are now ready for our central technical result.

Proposition 2. A mixed limit order is undominated if and only if it is determinis-
tically undominated.

’Essentially, we use the topology of convergence in probability for any probability measure
mutually absolutely continuous with respect to Lebesgue measure. The resulting topology does
not depend on the specific choice of the probability measure and is separable and completely
metrizable.

8We, thus, allow for randomization over “acts.” Though the original setting of Anscombe
and Aumann (1963) explicitly allowed for randomization over acts, the commonly employed
simplification due to Fishburn (1970) does not. It is the latter setting that has become the basis
for most axiomatic treatments of ambiguity aversion.

11



The strategy of the proof of Proposition 2 is as follows: Suppose a mixed
limit order p is dominated by a mixed limit order p’. Instead of choosing a de-
terministic limit order at random, as p’ does, one could imagine randomizing
conditionally on the price by “behavioral limit orders” that randomize over A.
That this makes no difference follows from results in Balder (1981) or Ghous-
soub (1982). They are versions of the result of Kuhn (1953) that mixed and
behavioral strategies induce the same distributions over plays in extensive form
games of perfect recall, or, even closer, the result of Wald and Wolfowitz (1951)
on the equivalence of these two forms of randomizing in statistical decision the-
ory. There is a natural topology on the resulting “behavioral limit orders” under
which payoffs are continuous and in which deterministic limit orders are dense.
This corresponds to the denseness of controls in Warga (1972) or the denseness
of pure strategies in Milgrom and Weber (1985). By this denseness, one can
find a deterministic limit order that still dominates u. A deterministic limit or-
der that closely approximates a nontrivial (non-deterministic) behavioral limit
order must oscillate strongly.

In the remainder of this section we express the key consequence of Proposi-
tions 1 and 2 in purely decision theoretic terms. The decision problem of choos-
ing a limit order can be naturally embedded within the usual Anscombe-Aumann
framework. The state space is the set Y and the set of outcomes, the possible
financial gains, is the set R. Each limit order 1 induces an Anscombe-Aumann
act, fy : Y — A(R), defined by

ng df (y)(r) = j Jga(p)(x—p))h(p,x,w dp dx,

for each bounded measurable function g : R — R. That this defines f(y) follows
from Dudley (2002, Theorem 4.5.2.).

Let £ be the set of all acts that are induced by some | € L. We call a set of
(measurable) acts F rich if it includes £ as well as all constant acts with values
of the form f,(y) forsomel e Landy €Y.

Let = denote a (not necessarily complete or transitive) preference relation
on F. We say that = is compatible with the Bernoulli utility function u if the
restriction of = to the set of constant acts in F can be represented by the ex-
pectation of u with respect to (the values of) these constant acts. That > is
compatible with a Bernoulli utility function essentially amounts to F being large
enough to include the convex hull of its constant acts, and for the von Neumann

12



Morgenstern axioms to hold on the set of constant acts in .7

For any act f € F and any state y € Y let f¥ denote the constant act that
satisfies f¥(y’) = f(y) for all y’ € Y. We say that the preference relation > (with
strict part ) is monotone if f = g whenever fY > gV for every statey € Y.

With this in place we can state our main result.

Theorem 1. Let > be a monotone (not necessarily complete or transitive) pref-
erence relation on a rich set of acts F that is compatible with the Bernoulli util-
ity function u, and let 1 be a =-maximal element in the set of limit orders.
Then there exists a probability distribution 3 € A(Y) such that 1 maximizes

J Julm) dfi(y)(m) dB(y).

Proof. Since - is monotone and compatible with u, the limit order | must be de-
terministically undominated. By Proposition 2, 1 is undominated. By Proposition
1, there exists f € A(Y) such that | maximizes

jvu,y) dp(y) = | "jv(p,up),x)h(x,p,y) dp dx dB(y)
- pJu(l(P)(x—P))h(x,p,y) dp dx dB(y)

rr

= | [u(m) dfi(y)(m) dB(y).

]

Theorem 1 is our central result. It shows that every choice of a limit order
of an ambiguity-averse decision-maker might as well be explained as the deci-
sion of a subjective expected utility maximizer with the same Bernoulli utility
function for a suitably chosen probabilistic belief.

4 Consequences for Market Participation

We show now what our results imply for market participation. A risk-averse
subjective expected utility maximizer chooses, in general, a limit order that ab-
stains from trading at a price p only if the subjective expected utility maximizer

°In fact, we need an additional continuity assumption since we need u to be continuous and
integrable for all relevant distributions. This can be a subtle issue, since finane applications
usually require unbounded Bernoulli utility functions. The appropriate continuity notion should
be compatible with the allowed probability distributions; see Dillenberger and Vijay Krishna
(2014) for an elegant approach.
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believes that, on average, and over the models considered, the expected pay-
off conditional on the price equals the price. This is slightly more general than
saying that each model (each distribution induced by some y € Y) satisfies
the efficient market hypothesis at that price. At the heart of the argument is a
generalization of the result of Arrow (1970) that a risk-averse expected utility
maximizer behaves locally as if they were risk-neutral. This requires that the
expected payoff of a risk-neutral decision-maker is well-defined, and we make
an assumption to that effect.

For each B € A(Y), we let Bp be the marginal with respect to the first coor-
dinate of the probability measure on R x R x Y with density h under A ® A ® 3
with A being Lebesgue measure. In order for the following definition to make
sense, we assume that the function x sup,cy x — plh(x, p,y) is integrable for
almost all p. We call

Mg = {p € R‘ ”xh(p,x,y) dx dB(y) =P}

the martingale part of 3. The martingale part of 3 is the set of prices that equal
the expected conditional value under this joint belief induced by f3.

Proposition 3. Let u be increasing, continuously differentiable at the origin, and
assume that the function x — sup,,cy [x — plh(x, p,y) is integrable for almost all
p. Let u be an undominated mixed limit order. Then there exists p € A(Y) such
that Bp(171(0) \ Mg) = 0 for palmost all 1.

The assumption that u is continuosly differentiable is satisfied for all but
countably many income levels (recall that v is defined on net-gains) if the
decision-maker is risk-averse; see Rockafellar (1970, Theorem 25.3.).

To understand Proposition 3, note that each belief § on Y induces a joint
belief over prices, final values, and models. Proposition 3 says then that for
each undominated mixed limit order, there is a belief  such that almost all
deterministic limit orders, that the mixed limit order randomizes over, abstain
from trading, if at all, only at prices in M.

5 Discussion

As stated before, Theorem 1 shows that every choice of a limit order of an
ambiguity-averse decision-maker might as well be explained as the decision of
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a subjective expected utility maximizer with the same Bernoulli utility function
for a suitably chosen probabilistic belief.

Many models of ambiguity aversion represent uncertainty by a set IT of prob-
ability distributions over the states of nature. For such models, one can ask
whether our rationalizing probabilistic belief may need to be more extreme than
every member of 1. It does not. For sets of probability distributions to be in-
terpretable as a collection of reasonable beliefs, it should be the case that a
decision-maker will prefer one act over another whenever the former gives a
higher expected utility with respect to every probability distribution in T1. Such
a decision maker’s preferences can be interpreted as a completion of the unanim-
ity ordering of Bewley (2002). It, therefore, suffices to show that rationalizing
probabilistic beliefs can be chosen to be no more extreme than every member
of the set of probability distributions when preferences respect the unanimity
ordering. We do so in the next proposition, which shows that behavior can then
be rationalized as maximizing expected utility with respect to some belief in the
closed convex hull of TT.

Proposition 4. Assume that TT C A(Y) is nonempty and weak*-closed. Let 1 be
a deterministic limit order and assume that there is no deterministic limit order
V such that [V(V,y) dB(y) > [V(L,y) dB(y) for all B € TI. Then there exists
a probability measure 3 on Y in the weak*-closed convex hull of T1 such that 1
maximizes [ V(-,y) dB(y).

If the set of probability distributions on Y is already closed and convex, as
it usually is in the corresponding representation results, the rationalizing belief
can be chosen out of the set of probability distributions itself.

At the heart of Proposition 4 is a generalization of Proposition 1 that holds
outside our setting and that might be of independent interest: If IT is nonempty
and compact and a mixed act p is maximal under the unanimity ordering, then
there exists a probabilistic belief 3 on Y in the closed convex hull of TT such that
u maximizes expected utility with respect to 3. To prove this, one simply applies
a suitable version of the lemma of Pearce (1984) to a model in which the set
of states of nature is replaced by I1. If one interprets elements of TT as states
this way, being undominated is equivalent to being maximal in the unanimity
order. So for a maximal mixed act, there exists a probabilistic belief over IT that
rationalizes the choice of . This probabilistic belief over members of TT averages
out to the desired probabilistic belief 3 on Y in the closed convex hull of TT. To
finish the proof of Proposition 4, one combines this generalization of Proposition
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1 with arguments similar to those in the proof of Proposition 2.

In our model, all choice objects are limit orders. Not using limit orders is not
an option, and one might worry that our results are only relevant for decision-
makers who actually trade using limit orders. This is not the case. Suppose
a decision-maker does not use a limit order and instead waits until prices are
known and trades then at given prices. No matter how the decision-maker be-
haves in this dynamic setting, the resulting strategy will be equivalent to a limit
order in the model. If this equivalent limit order is dominated, the decision-
maker could do better by using an actual limit order, to begin with. A decision-
maker who can reflect on their own behavior and waits in order to trade must,
therefore, behave like a subjective expected utility maximizer. What matters is
the option to use limit orders, not the actual use of limit orders.

One might also worry that the dominating deterministic limit orders shown
to exist in Proposition 2 might be complicated measurable functions that do not
correspond to anything that could be implemented in real financial markets.
This is not the case. Market participants have access to so-called stop-loss limit
orders that buy a fixed (possibly negative) amount for all prices within some
interval. Positive linear combinations of such stop-loss limit orders represent,
therefore, portfolios that are economically feasible. Each such portfolio cor-
responds to a linear combination of indicator functions of intervals. Negative
weights represent stop-loss limit orders that (short) sell. We, therefore, define a
simple limit order to be a linear combination of indicator functions of intervals.
These are essentially step-functions, and standard arguments for approximating
general measurable functions by step functions guarantee that we can find for
each dominating deterministic limit order a dominating simple limit order.

Proposition 5. A mixed limit order is deterministically undominated if and only if
it is not dominated by a simple limit order.

Finally, the formalism we use deserves some discussion. For the proof of
Lemma 1, we need expected payoffs to be jointly continuous in mixed limit or-
ders and beliefs over Y. Without some restriction on the dependence between
the distributions of prices and payoffs, this is generally not possible. The ap-
proach we have taken is inspired by the existence results for Bayesian games
of Milgrom and Weber (1985) and, in particular, Balder (1988), whose frame-
work and results we rely on. That the joint distribution of prices and payoffs is

16



absolutely continuous with respect to a product measure corresponds to a dif-
fuseness condition on types in Bayesian games. Stinchcombe (2011) discusses
discontinuities that can arise without such an assumption. Given the mathemati-
cal machinery; it is straightforward to modify the setting so that Bernoulli utility
functions are defined only for positive wealth levels, so that state-dependent
payoffs are allowed for, or so that the decision-maker can choose more than one
asset.

In general, there are problems with randomizing over measurable functions
as Aumann (1961) showed.!® The problem Aumann identifies is that the point-
wise evaluation of measurable functions is, in general, not a jointly measurable
mapping, no matter the o-algebra one puts on the space of measurable functions.
But limit orders are really equivalence classes of measurable functions that are
not evaluated pointwise but by integration. The problems Aumann (1961) raises
do, therefore, not affect our arguments.

6 Proofs

In what follows, we replace the product Lebesgue measure A ® A on R x R by
the product of two probability measures 7t ® & that are both mutually absolutely
continuous with respect to A. As we will see, all we really need is that 7t is
atomless; no further property of Lebesgue measure is being used. The change of
the underlying measures will not affect the validity of our assumptions. Let 1,
be a nonnegative Radon-Nikodym derivative of A with respect to 7t and r¢ be a
nonnegative Radon-Nikodym derivative of A with respectto &. Let d’ : RxR — R
be given by d’(p,x) = d(p, x)r-(p)rs(x) and let h' : R x R x Y — R be given by
h'(p,x,y) = h(p,x,y)rx(p)re(x). Then, by Fubini’s theorem,

demnodpdxzjlunxJdA@Auxx):jrApyLﬂmxhzu)dax)mﬂp)

= [ratpimeprap,x) dns £ = [ drno eip.x),

so d’ is m @ &-integrable. Also, one can show by a similar argument that
Jh(p,x,y) dn®&(p,x) = [h(p,x,y) dAA®A(p, x) for all y € Y. Finally, by multi-
plying both sides the original uniform integrability inequality by r,(p)rs(x), we

10A simpler proof of Aumann’s main result has been given by Rao (1971). For a textbook
treatment of Rao’s proof, see Dudley (2014, Section 5.2).
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obtain
[u(tp — tx)[h'(p, x, y) + [u(bx — bp)[h/(p,x,y) < d’(p,x)

for all (p,x) € R? and all y € Y. So we can assume without loss of generality
that our assumptions hold for the product of two probability measures.

Proof of Proposition 1. Let A (R x A) be the space of Borel probability measures
on R x A with R-marginal . For B C R x A, let 15 : R x A — {0, 1} be the
corresponding indicator function. We define ¢ : A(L) — Ax(R x A) by

$u(B) = ng(p,up)) dn(p) du(1)

for each Borel set B C R x A. It follows from Balder (1981, Theorem 7.1) or the
results in Ghoussoub (1982, Section I) that ¢ is a surjection. Moreover,

Vi y) = | [vie, 1p) 0,6 y) dne E(p, x) du(l)

J J

_ [ J v(p, Up), X)h(p, x,y) dn(p) du(l) d(x)

= | [v(p, &, x)h(p,x,y) dd.(p, a) d&(x),

J J

so we can study undominated mixed limit orders in terms of A, (R x A). We
can identify A, (R x A) with a convex and compact subset of a locally convex
Hausdorff topological vector space as in Balder (1988) by endowing A, (R x
A) with the narrow topology on Young measures. It follows from the Scorza-
Dragoni Theorem, see, for example, Denkowski, Migorski, and Papageorgiou
(2003, Theorem 2.5.19), that this topology coincides with the usual topology of
weak convergence of measures.

We can then, abusing notation a bit, treat V as a continuous function V :
Ar(R x A) x Y — R. We can also identify Y homeomorphically with a closed
subset of the weak*-compact set A(Y) via the embedding y — 6,. We then
extend V to a bilinear function V* : A (R x A) x A(Y) — R via integration.
The function V* is continuous by Balder (1988, Theorem 2.5). By Phelps (2001,
Proposition 1.2), A(Y) is, under the embedding, the closed convex hull of Y. So
by Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2016, Lemma 1), an
element T of A (R x A) is undominated if and only if T € argmax V*(-, ) for
some 3 € A(Y). O

Proof of Proposition 2. One direction is trivial. For the other direction, assume
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that p’ strictly dominates u. By the Berge maximum theorem, the function
K — miny V(k,y) — V(u,y) is continuous. By assumption, it achieves a strictly
positive value at u’. To finish the proof, we make use of the fact that the set
of deterministic limit orders, embedded via the function 1 — ¢5,, is dense in
Ar(R x A) when 7t is nonatomic. This denseness is familiar from the optimal
control literature, the classic reference being Warga (1972, Theorem IV.2.6;
6). By this denseness, there exists a deterministic limit order 1 such that
miny V(L,y) — V(t,y) > 0. Then p is dominated by the deterministic limit
order 1. ]

Proof of Proposition 3. Let u be undominated. By Proposition 1, there exists 3 €
A(Y) such that p is a maximizer of [ V(-,y) dfB(y). For this to be possible, u
almost all 1 must be maximizers of [ V(-,y) dB(y). Such 1l must, by a standard
argument, prescribe a conditional best response at 3p-almost every price p, so
that

l(p) € argmaxjjv(p, -,x)h(x,p,y) d&(x) dB(y).

Our general integrability condition implies that the function (x,y)
v(p, a,x)h(x,p,y) is integrable for all a. Together with the assumptions that
X > sup,ey Ix — plh(x, p,y) is integrable for almost all p and that u is continu-
ously differentiable at the origin, this implies that for all a in a neighborhood of
the origin, the function (x,y) — u’(a)(x—p)h(x, p,y) is dominated by the func-
tion (x,y) — C|x — plh(x, p,y) for C large enough. This dominating function is
clearly integrable. Therefore, the function (x,y) — u’(a)(x—p)h(x, p,y) is inte-
grable. Klenke (2014, Theorem 6.28) guarantees then that we can differentiate
the integral by differentiating under the integral, so

oo | [¥19.0.0m05 b, y) de0) dBly) = | | w0 x — )i, pyy) del) dBLy)

Since u is strictly increasing and weakly concave, u/(0) > 0. If [[x -
h(p,x,y) d&(x) dB(y) > p, it is therefore strictly optimal to invest a strictly
positive amount and if [ [ x - h(p,x,y) d&(x) dB(y) < p, it is strictly optimal
to invest a strictly negative amount. In particular, investing O is only optimal if
J[x-hip,x,y) d&(x) dB(y) =p. O

Proof of Proposition 4. Let V* : A (Rx A)xA(Y) — R be the bilinear continuous
function introduced in the proof of Proposition 1. An argument parallel to the
proof of Proposition 2 shows that there being no deterministic limit order 1 such
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that [V(l,y) dB(y) > [ V(L,y) dB(y) for all B € TT implies that there is no
w e Ar(R x A) such that V*(u, ) > V*(1, ) for all p € TI. Applying Battigalli,
Cerreia-Vioglio, Maccheroni, and Marinacci (2016, Lemma 1) to the restriction
V*: Ar(R x A) x TT — R, we obtain a probability measure 3 on Y in the closed
convex hull of TT such that 1 maximizes V*(-, ) = [ V(,,y) dR(y). H

Proof of Proposition 5. As one sees from the proof of Proposition 2, it suffices to
prove that the family of simple limit orders is dense in the space of limit orders
in the topology of convergence in measure. We can metrize the topology of
convergence in measure by the Ky Fan metric « given by «(l,1’) = inf{e > O |
n(|[l-1| > €) < €}; see Dudley (2002, Theorem 9.2.2.). By a standard argument,
one can approximate each limit order arbitrarily well by a simple function f =
> "1 Aila, with the A; disjoint. Since each A; can be approximated from below
by compact sets by Ulam’s theorem, Dudley (2002, Theorem 7.1.4.), one can
approximate f arbitrarily well by a simple function f' = Y ™, A;1 A; with each A}
a compact subset of A;. The function ' is continuous on the compact set [ J;"; A/
and has, by the Tietze extension theorem, Dudley (2002, Theorem 2.6.4.), a
continuous extension to all of R whose range is contained in the convex hull of
the range of f’. This way, one can approximate each limit order arbitrarily well
by a continuous function. Clearly, one can approximate a continuous function
arbitrarily well uniformly by a step function and thus a simple limit order on a
compact set whose complement has arbitrarily small measure. The form of the
Ky-Fan metric shows that this gives us the desired approximation. O
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