
Taxing Financial Transactions

Bruno Biais (HEC)
and

Jean-Charles Rochet (University of Geneva and MIT)

April 2020

Preliminary and incomplete.

Abstract

We examine the capacity of a Financial Transaction Tax (FTT) to generate
substantial fiscal revenue without provoking too many distortions. In a model
where investors’ wealth is imperfectly observable, we show that a FTT is always
part of the optimal tax mix under one condition: it must be that richer people
are more inclined to trade on financial markets than poorer people. Under this
assumption, the financial transactions volume of an individual investor gives a
second signal (after capital income) about unobserved wealth. We show that
both signals have to be used in the optimal tax mix. If the government could
commit not to increase the total tax burden on investors, investors would even
benefit from the introduction of a FTT, if it is compensated by an appropriate
decrease in the tax on capital income. However by extending the model to
include workers, we show that even if a FTT always increases aggregate welfare
and workers’ utilities, it may be opposed by investors.
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1 Introduction

In times of crisis, governments are often tempted to introduce a Financial Trans-
action Tax (FTT) in order to increase their fiscal revenue. A famous historical
example is the UK stamp duty on share transfers. It was enacted in 1694 in
order to finance a war against France. It was supposed to stop after four years
but it is still in place as we write.
Similarly, FTTs are often envisaged after financial crises, but then with a more
”corrective” or even ”punitive” objective. For example, following the Global
Financial Crisis of 2007-09, G-20 leaders requested the IMF to study how the
financial sector could ”make a fair and substantial contribution to meeting the
costs associated with government interventions to repair it” (Claessens et al
2010, page 2). The idea was to create a Pigouvian tax that would force banks
to internalize the negative externalities they may exert on the financial system1.

And of course, following Tobin (1978), Stiglitz (1998), Summers and Sum-
mers (1998), and more recently Davila (2017), there is also a large literature
motivating the FTT as a way to limit ”excessive” speculation and stabilize
financial markets. However there does not seem to be clear evidence that a
FTT indeed reduces volatility on financial markets. Moreover, the FTT is crit-
icized by the financial industry for generating sizeable distortions: reducing
transaction volume, hindering hedging and slowing down price discovery. Most
empirical studies confirm the views of the industry.

We adopt a different viewpoint and study the justification of a FTT in a
context where financial markets are perfect but the tax system is imperfect. In
our model, the tax system is imperfect because of an unobservable heterogeneity
among investors: non financial wealth is not (fully) observable2. We also assume
that richer people are inclined to make more financial transactions than poorer
people. In this context we show that a FTT is always part of the optimal tax
mix.

We consider a government that needs to levy taxes in order to fund some
given level of public expenditures. In the basic version of the model, there is only
one good, that can be consumed or invested. The initial wealth of investors is
not observable by the government.3 Investors can liquidate part of their initial
wealth and use the proceeds to invest on financial markets, which is observable
by the government, and can therefore be taxed.

1Even though FTTs were enacted in some countries (like France or Italy) after the GFC,
the IMF report concluded that such taxes were not an appropriate instrument for financial
stability and proposed instead ”Financial Stability Contributions” and ”Financial Activities
Taxes”.

2If wealth was fully observable, an inheritance tax would be optimal. On this topic, see
Farhi-Werning(2010) and Piketty-Saez (2013).

3For example, an important part of US taxpayers wealth are private businesses, whose
revenues are difficult to assess. Zwick (2020) estimates that private businesses account for a
large fraction (around 50%) of top wealth and notes that such wealth is difficult to value. There
are often no observed transaction prices, so that valuing private business wealth requires self-
assessment, and estimation methods that can be imprecise and arbitrary. This leaves ample
room for information asymmetries between citizens and tax authorities.
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We assume, in addition, that agents’ non financial wealth is subject to liquid-
ity shocks. To model this, we assume there is a publicly observable macro-shock,
which can be positive or negative. Half the agents have positive exposure to
the aggregate shock, while the other half have negative exposure. To hedge this
exposure, agents can initially trade in a swap market, with payoffs contingent on
the publicly observable shock. Thus, investors that have a positive (resp. nega-
tive) exposure to the publicly observable shock hedge by taking a negative (resp.
positive)position in the derivative market. We study whether the optimal tax
mechanism involves a financial transactions tax, based on hedging-motivated
trades in the swap market.

In our model, agents with larger non financial wealth have larger exposure
to the shock, and are therefore inclined to take a larger position in the swap
market. Thus financial transactions offers a second signal, on top of capital
income, about the hidden variable, namely non financial wealth. We show that,
if the total fiscal burden on the financial sector is fixed, combining financial
transactions taxes and capital income taxes is less distortive than relying on
capital income taxation only. Thus, it is optimal to tax financial transactions.

Relation with the literature: A key argument in favour of financial
transaction taxes dates back to Keynes (1936). In line with Keynes (1936), To-
bin (1978) and then Stiglitz (1989) called for financial transaction taxes, argu-
ing they would curb speculation, and thus reduce excess volatility. In response
to this argument, financial institutions, as well as many economists (such as
Cochrane, 2013), claim that financial transaction taxes would on the contrary
decrease market quality, reduce liquidity and make prices less informative. Thus,
most of the debate revolves on whether financial transaction taxes increase or
decrease financial markets efficiency. Subrahmaniam (1998), Dow and Rahi
(2000) and Sorensen (2019) have contributed to the analysis of this Pigovian
aspect of financial transaction taxes. Dow and Rahi (2000) and Sorensen (2019)
offer models in which all agents have well defined preferences and make optimal
decisions, so that welfare can be analysed. The model in Dow and Rahi (2000)
involves risk averse agents trading for informational or hedging motives. As in
Subrahmaniam (1998), in response to the tax informed agents scale back their
trades, but Dow and Rahi (2000) show that this can lead to larger (after tax)
profits for informed traders than when there is no tax.4 The consequences of fi-
nancial transaction taxes have been documented empirically, e.g., Colliard and
Hoffman (2017) and Gomber et al (2015) find a decrease in market liquidity
after the introduction of the financial transaction tax in France in 2012.

While the literature discussed above focuses on financial transactions taxes
and their consequences for financial markets liquidity (and often finds financial
transactions taxes reduce liquidity), we take a different approach. We consider
financial transactions taxes along with other taxes, such as capital income taxes

4The effect of the tax on hedgers depend on its consequences on hedging opportunities. By
making prices less informative, the tax can actually increase the expected utility of hedgers,
because of the Hirshleifer (1971) effect. Thus, the tax can lead to a Pareto improvement.

3



and labor income tax. In this context, we ask whether the optimal taxation
scheme involves only capital and labor income tax, or also involves financial
transactions taxes.

Thus, our analysis fits in the optimal mechanism approach to taxation ini-
tiated by Mirrlees (1971) and Diamond and Mirrlees (1978). In our analysis,
the fundamental friction is asymmetric information about agents’ endowments,
and the tax scheme is designed optimally to mitigate the distortions induced by
information asymmetry.5

2 Basic model

Our basic model has three dates t = 0, 1, 2, features investors and a government,
and involves only one good, that can be consumed or invested. After analyzing
this basic model, we will enrich it by adding another category of agents, workers,
who provide a second good, labor, used in the production process.

There is a mass one continuum of heterogeneous investors. At time 0, an
investor of “type” y receives an initial endowment y of the good. These initial
endowments are distributed over some interval [ymin, ymax) with c.d.f. F and
density f . Denote by e the total endowment at time 0:

e =

∫ ymax

ymin

ydF (y).

At time 0, the consumption good can be stored for consumption at time 1 or
invested in a long term technology producing, at time 2, R > 1 units of good per
unit of investment. The storage technology is available to all investors, but the
long term technology is managed by competitive firms without initial resources.

At time 1, there is a publicly observable macro-shock, εM , which can take
the value +1 or −1 with equal probability. Half of the investors of each type y
have positive exposure to this shock, while the other half have negative expo-
sure. Thus, at time 1, the type y investors with positive exposure receive εMσ,
while those with negative exposure receive −εMσ. Since the mass of investors
with positive exposure to the shock is equal to the mass of investors with neg-
ative exposure, the aggregate exposure of the economy is 0. Thus, there is no
aggregate risk, and each individual shock can be interpreted as a pure liquidity
shock. Individual liquidity shocks are denoted ε. For simplicity we assume that
whether an agent has positive or negative exposure to the macro-shock is pub-
licly observable. By symmetry, we can assume that individual allocations only
depend on individual shocks and not on εM , which will therefore not appear
in the sequel. Finally, we assume that 0 < σ < 1 so that individual liquidity
shocks increase with, but never exceed, initial endowments.

5This is in line with Mirrlees (1971), whose approach is summarized as follows by Golosov
et al (2006): “Rather than starting with an exogenously restricted set of tax instruments,
Mirrlees’s (1971) starting point is an information friction that endogenizes the feasible set of
tax instruments.”
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This framework enables us to captures in a very simple way the two basic
functions of financial markets: channeling savings to investment opportunities
(with return R), and insuring investors against liquidity shocks (ε).

The time-t consumption of an investor of type y hit by a liquidity shock
ε is denoted by Cεt (y). All investors have the same preferences: an investor’s
expected utility at time 0 is

Eε [u1(Cε1(y)) + u2(Cε2(y))] ,

where utility functions u1 and u2 are concave increasing.
Finally, the government raises taxes at time 2 in order to finance public

expenditures G, which we take as given for the moment. In addition to the
resource constraint, the government is subject to the “safety net constraint”
that no citizen get utility level below a minimum, which we denote umin. Thus,
the safety net constraint is

Eε [u1(Cε1(y)) + u2(Cε2(y))] ≥ umin,∀y. (1)

We start by analyzing the case in which initial endowments y are publicly
observable, so that the government can use non distortionary wealth taxes T (y)
(first best). Then we turn to the case where the government cannot observe
initial endowments (second best). Finally, we study how the second best can be
implemented with markets and taxes.

3 First best

3.1 Optimal allocation

In the absence of informational constraints, Pareto optimal allocations are ob-
tained by maximizing weighted sums of utilities for arbitrary weights α(y) ≥ 0 :6

maxEy,εα(y)[u1(Cε1(y)) + u2(Cε2(y))], (2)

subject to the safety net constraint (??)7, and the resource constraint (taking
into account that aggregate investment is equal to aggregate endowment e minus
aggregate consumption Ey,ε [Cε1(y)])

Ey,ε [RCε1(y) + Cε2(y)] ≤ Re−G. (3)

Denoting by λ the multiplier associated with the resource constraint, and by
µ(y) the multiplier associated with the safety net constraint, the Lagrangian is

Ey,ε [(α(y) + µ(y))(u1(Cε1(y)) + u2(Cε2(y))− λ(RCε1(y) + Cε2(y))− µ(y)umin]

The optimal allocation is pinned down by the first order condition with
respect to Cε1(y):

(α(y) + µ(y))u′1(Cε1(y)) = λR, (4)

6We normalize weights so that Ey [α(y)] = 1.
7We rule out the Pareto optima that do not satisfy this constraint.
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and with respect to Cε2(y):

(α(y) + µ(y))u′2(Cε2(y)) = λ. (5)

They imply that consumption at times 1 and 2 does not depend on ε, and thus
can be written C1(y) and C2(y). Since there is no aggregate risk, liquidity
shocks are fully insured in the first best, so that consumption at times 1 and 2
is independent of ε.

Moreover, dividing (??) by (??), we have

u′1(C1(y))

u′2(C2(y))
= R. (6)

Condition (??) states that in the first best, the marginal rate of substitution
between consumption at time 1 and consumption at time 2 equals the marginal
rate of transformation, R. To complete the characterization of the first best,
note that when the safety net constraint binds, we have:

u1(C1(y)) + u2(C2(y)) = umin (7)

In this case consumption at time 1 and 2, which we denote by (Cmin
1 , Cmin

2 ), is
pinned down by (??) and (??). Using condition (??), the fact that µ(y) ≥ 0
implies

α(y) ≤ αmin ≡
λ

u′2(Cmin
2 )

,

i.e., condition (??) binds for agents with low Pareto weights. For the other
agents, for which α(y) > αmin, u′2(C2(y)) = λ

α(y) .

3.2 Implementation

As implied by the second welfare theorem, the first best allocations can be
implemented by wealth taxes T (y) (which can be interpreted as personalized
lump sum transfers, or reallocation of initial endowments) and complete finan-
cial markets. In our simple set-up, only two markets are needed at t = 0: a
market for bonds issued by firms and repaid at t = 2, and a market for swaps
contingent on the macro-shock.
An investor buying one unit of the swap contract receives p units of the good
at t = 1 if ε = −1 and pays one unit if ε = 1. Thus, p is the swap rate. Perfect
competition for funding among firms implies the equilibrium return on bonds is
R. Symmetry of liquidity shocks implies that the equilibrium swap rate must be
p = 1. We denote by S(y) the savings (number of bonds purchased) of type y
investor, and by ∆(y) the payment received from his or her swap position when
hit by a negative shock σy. By symmetry, the investor has to pay ∆(y) when
hit by a positive shock. The indirect utility function of a type y investor can
thus be written as

U(y) = max
S,∆

Eε[u1(y + εσ(y)− S(y)− ε∆(y)) + u2(RS − T (y))].
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The first order condition with respect to ∆(y) yields

Eε[−εu′1(Cε1(y))] = 0.

That is:
u′1(C+

1 (y)) = u′1(C−1 (y)). (8)

Condition (??) states that time-1 consumption is independent of ε. There is
complete insurance of liquidity shocks, as requested by condition (??). The first
order condition with respect to S(y) yields equation (??), the first best opti-
mality condition for savings and investment. Individual savings, swap positions
and taxes are deduced easily

S(y) = y − C1(y),∆(y) = σ(y), T (y) = RS(y)− C2(y). (9)

Proposition 1 Any first best allocation can be implemented by a wealth tax
T (y) and two competitive financial markets operating at t = 0, a bond market
and a swap market.

4 Second best

We now turn to the case in which the government cannot observe investors’ ini-
tial endowments y. In this case, allocations must satisfy incentive compatibility
constraints.

4.1 Incentive compatible mechanisms

By the revelation principle, we can restrict attention to direct mechanisms, map-
ping reported types ŷ into net savings after swap payoffs Sε(ŷ) = S(y) + ε∆(ŷ)
(which, along with endowments determine time-1 consumption), and time-2
consumption Cε2(y). The savings of the investors are invested in the productive
technology.

If an investor of type y reports ŷ, his or her time 1 consumption is [y +
σ(y)ε − Sε(ŷ)] and time 2 consumption is Cε2(ŷ). The indirect utility function
of investor y is

U(y) = max
ŷ

Eε[u1(y + σ(y)ε− Sε(ŷ)) + u2(Cε2(ŷ))].

The incentive compatibility condition is that truthful reporting is optimal

y ∈ arg max
ŷ

Eε[u1(y + σ(y)ε− Sε(ŷ))] + u2(Cε2(ŷ))]. (10)

By the envelope theorem, the incentive compatibility condition implies that the
derivative of the value function of the agent is

U ′(y) = Eε [(1 + σε)u′1(Cε1(y))] . (11)
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Since σ < 1, U ′(y) ≥ 0, i.e., the value function U of the agent is increasing in his
or her initial endowment y. By concavity of u1, investors’ preferences satisfy the
single crossing property with respect to initial endowments y and net savings
Sε(ŷ) in each state ε. Thus implementable functions Sε(.) are necessarily non
decreasing. The next lemma show that the converse is true.

Lemma 1: A direct mechanism satisfies the incentive compatibility con-
dition if and only if the associated indirect utility function satisfies (??) and
Sε(y) is non decreasing in y for all ε.

4.2 Optimality conditions

Second best allocations are obtained by maximizing weighted sums of investors’
utilities under the feasibility and incentive compatibility constraints. Hereafter,
we study the relaxed problem, where the incentive compatibility constraint (??)
is replaced by the weaker envelope condition (??). We will check ex-post that
the solution of the relaxed problem is such that net savings do increase in wealth,
so that the mechanism is indeed incentive compatible. The relaxed problem is:

max
Cε

1 (y),Cε
2 (y)

Eε,yα(y) [u1(Cε1(y)) + u2(Cε2(y))] ,

subject to the resource constraint (with multiplier λ)

Eε,y [RCε1(y) + Cε2(y)] ≤ eR−G, (12)

the envelope condition (with multiplier β(y))

U ′(y) = Eε [(1 + εσ)u′(Cε1(y))] , (13)

the condition defining U (with multiplier γ(y))

U(y) = Eε,y [u1(Cε1(y)) + u2(Cε2(y))] , (14)

and the safety net constraint U(y) ≥ umin.
Condition (??) implies that U is increasing. Thus the safety net constraint

reduces to
U(ymin) ≥ umin.

Denoting the multiplier of the safety net constraint by µ, the Lagrangian is:

L = Eε,y{(α(y) + γ(y))(u1(Cε1(y) + u2(Cε2(y))

−λ [RCε1(y) + Cε2(y)− eR+G]

+β(y)[U ′(y)− (1 + εσ)u′(Cε1(y))]

−γ(y)U(y) + µ[U(ymin)− umin]}

Maximizing L with respect to consumption and rent is a combination of a varia-
tion calculus problem (in U(y) and U ′(y)) and a pointwise optimization problem
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(in Cε1(y) and Cε2(y)). The first order conditions of the pointwise maximisation
problem with respect to Cε1(y) and to Cε2(y) are

u′1(Cε1(y)) =
λ

α(y) + γ(y)
R+

β(y)

α(y) + γ(y)
(1 + εσ)u′′1(Cε1(y)), (15)

and

u′2(Cε2(y)) =
λ

α(y) + γ(y)
, (16)

respectively. Note that C2 does not depend on ε, hence we can drop this index.
Dividing (??) by (??) yields

u′1(Cε1(y))

u′2(C2(y))
= R+

β(y)

λ
(1 + εσ)u′′1(Cε1(y)). (17)

The full characterization of second best allocations is provided in Appendix
2. In the next subsection we discuss the properties of these allocations.

4.3 Properties of the second best

First, note that the cross derivative of the Lagrangian with respect to Cε1(y)
and ε is −β(y)σu′′1(Cε1(y)). Since u1 is concave and σ > 0 , has the same sign
as β(y). Hence, C+

1 (y) > C−1 (y) if and only if β(y) > 0. We state this result in
our next proposition.

Proposition 2

1. In any second best allocation where the incentive compatibility condition
binds, investors are imperfectly insured against liquidity shocks at time 1.

2. If the multiplier β(y) of the incentive compatibility condition is positive,
the consumption of investor y at time 1 is larger after a positive shock
than after a negative shock, i.e.,

C+
1 (y) > C−1 (y). (18)

3. Time 2 consumption, however, is not exposed to the liquidity shock.

There is only one second best allocation for which incentive compatibility
conditions are nowhere binding. It is implemented by a pollt ax T = G charged
on all investors.8 We rule it out by assuming that it does not satisfy the safety
net constraint, either because G or umin are relatively high, or because ymin is
low.

8This is the only first best allocation that is incentive compatible.
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Condition (??) in Proposition 2 states that when the incentive compatibility
condition binds, insurance of liquidity shocks is imperfect, in contrast with the
first best (see (??)). The optimal trade-off between rent extraction and efficiency
implies that investors are not perfectly insured against liquidity shocks. This is
because liquidity shocks are increasing in the variable of adverse selection, as
σ > 0.

Finally, β(y) is positive when only the downward incentive compatibility
condition is binding at y , i.e., investor of type y is only attracted by the allo-
cation of the immediately poorer investor. Then, under-insurance of liquidity
shocks allows to reduce marginal rent U ′(y).

4.4 Implementation

In this subsection, we determine the tax systems that are needed to implement
second best allocations. First, note that taxing only ex post financial income
RS − ε∆ is never optimal because this violates the condition that C2 should
not depend on ε. Second, we show below that taxes should not only depend
on ex ante financial income RS but also on financial transactions ∆. Indeed,
consider a general tax function T (RS,∆). To implement a particular second
best allocation, the indirect utility function must be such that

U(y) = maxS,∆E[u1(y(1 + εσ)− S −∆ε) + u2(RS − T (RS,∆))].

The first order condition with respect to ∆ is:

∂T

∂∆
= −Eε

[
ε
u′1(Cε1(y))

u′2(C2(y))

]
= −β(y)

λ
Eε [(ε+ σ)u′′1(Cε1(y))] , (19)

which is different from 0 when β(y) 6= 0. Thus taxes must depend on financial
transactions ∆ as well as gross financial income RS.
The first order condition with respect to RS is:

∂T

∂RS
= 1− 1

R
Eε

[
u′1(Cε1(y))

u′2(C2(y))

]
= −β(y)

λR
Eε [(1 + εσ)u′′1(Cε1(y))] . (20)

This shows that, like the partial derivatives w.r.t. ∆, the partial derivative
w.r.t. RS has the same sign as β(y). Thus we have established:

Proposition 3 No second best allocation can be implemented without a FTT.
Moreover, the two marginal tax rates w.r.t. S and ∆ have the same sign as
β(y).

The intuition behind this proposition is that ∆ and S provide two different
signals on the hidden variable y. It would be sub-optimal to use only one. Note
also that, in our set-up, financial markets are complete, because investors can
trade bonds and swaps to generate all possible state-contingent payoffs. Yet,
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investors do not hedge completely their liquidity shocks, because taxes make
financial transactions costly.

When transactions volumes ∆(y) and S(y) are increasing functions of y,
which we will check ex post in all our solved examples, these two functions can
be inverted: there is a unique y that corresponds to a particular swap position
∆ and another unique y that corresponds to a particular purchase of bonds S.
In this case, any second best allocation can be implemented by a separable tax
schedule T (RS) and τ(∆). The first order conditions derived above completely
determine, on the relevant ranges, the derivatives of T and τ that are needed
to implement a particular second best allocation. The intercept T (0) + τ(0) is
determined by the budget constraint of the government.

In order to explore the optimal tax scheme further, we are going to make
additional assumptions on distributions and utility functions that imply that
optimal tax rates are constant. This will illustrate the comparative statics
properties of optimal taxes and facilitate the study of the political economy of
the FTT, the final objective of this paper.

5 An example where optimal tax rates are con-
stant

From now on, we focus on a particular specification, which we call the linear-
exponential case, where optimal tax rates are constant.

5.1 The linear-exponential case

First we assume that the utility of consumption at date 2 is linear:

u2(c) ≡ c, (21)

and we take α(y) ≡ 1. Second we assume that the distribution of y is truncated
exponential with parameter A ∈ R∗+. Thus ymax → ∞, f(y) = 1

A exp ymin−y
A ,

and
1− F (y)

f(y)
= A.

Note thatA = e−ymin, which implies that parameterAmeasures unobserved
heterogeneity in wealth. Because of quasi linearity of preferences, the condition
that characterizes second best allocations simplifies to:

u′1(Cε1(y)) = R+
β(y)

λ
(1 + σε)u

′′

1 (Cε1(y)). (22)

Moreover, we show in the appendix that with a truncated exponential dis-
tribution, the multiplier of the incentive constraint is a constant:

β(y) ≡ (λ− 1)A > 0. (23)
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5.2 Optimal consumption

The above results imply that optimal time 1 consumption is independent of y
in the linear-exponential case:

Proposition 4 In the linear-exponential case, optimal time-1 consumption is
independent of y:

Cε1(y) ≡ C(λ− 1

λ
A(1 + σε)), (24)

where C(A) is defined implicitly by:

u′1(C(A)) = R+Au
′′

1 (C(A)).

The following lemma is proved in the appendix.

Lemma 5 The function C is increasing. When u1 is CRRA, it is also concave.

The fact that C is increasing confirms the property established more generally
above: consumption is higher after a positive shock than after a negative one.

5.3 When there is no FTT

To better understand the role of financial transaction taxes in our economy, con-
sider the “third best” case in which the financial transactions tax is constrained
to be 0. Then, type y faces the following problem:

max
Cε

1

Eε [u((Cε1(y)) + [y(1 + σε)− Cε1(y)]R(1− t)] .

The first order condition is

u′(Cε1(y)) = R(1− t).

So the agent has the same consumption after good and bad liquidity shocks,
in contrast with the second best. Moreover the agent’s time-1 consumption is
independent of y. We therefore omit its arguments and denote it by CTB1 .

Proposition 6 (Third best): When the FTT is constrained to be zero in the
linear-exponential case, the optimal consumption is independent of ε:

CTB1 ≡ C(λ0 − 1

λ0
A),

where λ0 is defined implicitly by the budget constraint of the government:

u1(CTB1 ) +R(e− CTB1 )−Au′1(CTB1 )− umin = G.
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5.4 Optimal tax rates

The optimal tax rates are also constant and easy to compute:

Proposition 7 In the linear-exponential case, the tax rates that implement the
second best allocation are constant:

τ ′(∆(y)) ≡ τ =
t+ − t−

2
, (25)

and

T ′(RS(y)) ≡ t =
t+ + t−

2
, (26)

where tε = t∗(λ−1
λ A(1 + σε)), and t∗(A) ≡ (1− u′1(C(A)

R ).

Without a FTT (third best), the optimal tax rate on capital income is t∗(λ0−1
λ0
A).

In the appendix, we prove the following lemma.

Lemma 8 The function t∗ is increasing. When u1 is CRRA, it is also concave.

The auxiliary function t∗(.) plays an important role in the sequel. It can be
interpreted as the tax rate t on capital income that maximizes fiscal revenue
when there is no FTT. In our model, this fiscal revenue is

u1(C1) +R(e− C1 −Au′1(C1)− umin,

where C1 is defined implicitly by u′1(C1) = R(1 − t). t∗(A) can be viewed as
the rate that corresponds to the top of the Laffer curve. It is easy to see that it
is increasing in A, which measures unobservable heterogeneity among investors.
When there is no such heterogeneity, A = 0 and t∗(0) = 0: the government can
extract maximal revenue without any distortion. When A increases, the tax
rate that maximizes fiscal revenue increases.

The formulas derived in Proposition 7 have a natural interpretation in the
light of function t∗(.). First, the FTT rate τ is positive because

t+ = t∗(
λ− 1

λ
A(1 + σ)) > t− = t∗(

λ− 1

λ
A(1− σ)).

Second, when σ = 0, there is no point in having a FTT (τ = 0) and the optimal
tax on capital income equals t0 = t∗(λ0−1

λ0
A), where λ0 is the shadow cost

of public funds in the third best allocation. When G becomes very big, this
multiplier goes to infinity, and the tax rate converges to t∗(A), the maximum
of the Laffer curve. When G is smaller, the tax rate is also smaller, because the
government trades off aggregate surplus with fiscal revenue.

5.5 The political economy of the FTT

Proposition 7 states that, in the linear-exponential case, optimal tax rates are
constant. Now, the expected utility of type y is:

U(y) = umin +

∫ y

ymin

U ′(z)dz.

13



By the envelope condition U ′(z) = Eε [(1 + σσε)u′(Cε1(z))], which is a constant.
Thus, the indirect utility of type y is affine in y and equal to

U(y) = umin + (y − ymin)Eε [(1 + σε)u′(cε1)] . (27)

Taking the expectation of (??) over y, the second-best utilitarian welfare is

φSB = umin + (e− ymin)Eε [(1 + σε)u′(Cε1)] . (28)

Similarly, in the third best case (no FTT) we have:

UTB(y) = umin + (y − ymin)R(1− t).

Integrating over all agents

φTB = umin + (e− ymin)R(1− t).

UTB(y) is affine in y, with intercept umin, and going through (e, φTB). Since
φTB < φSB , the utility level achieved by all agents (except the poorest investor
ymin) is strictly larger with financial transaction taxes than without, i.e. the
outcome with FTT Pareto dominates the outcome without FTT.

Thus we have established:

Proposition 9 In the linear-exponential case, the utility of all investors is
higher with a FTT than without.

For all investors, the loss from imperfect insurance is more than compensated
by the gain from a lower income tax. We prove a complementary result in the
appendix:

Proposition 10 When u1 is CRRA:

• The FTT reduces the shadow cost of public funds: λ < λ0.

• The tax rate on capital income is lower with a FTT: t < t0.

• Savings are higher with a FTT.

It is obvious that aggregate surplus is (strictly) higher with two instruments
rather than one. But in our model, investors are unanimous: each of them
gains from the FTT. So if the government could commit not to increase the
total tax burden on investors, they would all agree to the FTT. The opposition
of investors to the FTT may come from government’s inability to commit. If
we extend the model by introducing workers and/or endogenizing G, investors
may lose from the FTT because the government may use the opportunity of
the introduction of the FFT to increase G or reduce taxes on labor. Thus the
political acceptability of the FTT by investors may depend on their expectations
on future government decisions. To clarify this, we extend our model to labor
taxation.

14



6 Extending the analysis to labor taxation

6.1 The complete model with labor

For simplicity, we still focus on the linear-exponential model for investors. In
addition to capital, we consider another input: labor, supplied by a mass-one
population of workers. We use the extensive model of Choné-Laroque (2011):
each worker can supply ` ∈ [0, 1] units of labor at time 1, yielding `w units of
consumption good at time 2. Workers differ in terms of their disutility from
labor, which is denoted by x and is distributed on [0, xmax], with density h and
c.d.f. H. The utility of worker of type x is

V (x) = c(x)− x`(x),

where c(x) is the worker’s time 2 consumption. Because workers’ preferences
are linear, the only relevant Pareto function is utilitarian welfare:

W = ExV (x) + EyU(y). (29)

6.2 First best

In the first best, x and y are observable, and W is maximized, subject to the
safety net constraint

U(y), V (x) ≥ umin,∀x and ∀y, (30)

and the feasibility constraint

Ey,εC
ε
2(y) + Exc(x) +G ≤ wEx`(x) +R(e− Ey,εCε1(y)), (31)

where the left-hand-side is the aggregate consumption at time 2, while the right-
hand-side is the aggregate output at time 2. The optimality conditions are that
risk-sharing and production be efficient, i.e.,

Cε1(y) ≡ u′−1
1 (R) ≡ CFB

as in the basic model, and
`(x) = 1(x ≤ w).

The shadow cost of public funds is λ = 1. The utilities of the agents are

U(y) = u1(CFB) +R(y − CFB)− TI(y)

V (x) = (w − x)1(x ≤ w)− Tw(x).

Taxes are set to implement the desired surplus sharing rule, under the safety
net constraint and the government budget constraint

EyTy(y) + ExTw(x) ≥ G.

The program has a solution if and only if

u1(CFB) +R(e− CFB) +

∫
(w − x)1 (x ≤ w) dH(x)− 2umin ≥ G.
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6.3 Second best

In the second best, the optimal mechanism maximizes utilitarian welfare, (??),
subject to the safety net constraint (??), the feasibility constraint (??) and
the incentive compatibility conditions, which, under the usual monotonicity
conditions, boil down to the envelope conditions:

U ′(y) = Eε [(1 + σyε)u′1(Cε1(y))] , (32)

and
V ′(x) = −`(x). (33)

Relying on the linear-exponential specification, we obtain the following lemma:

Lemma 11 In the linear- exponential case with investors and workers, the op-
timal mechanism solves

maxEε [(1 + σε)u′1(Cε1)A] + Ex

[
`(x)

H(x)

h(x)

]
,

subject to the feasibility constraint

Eε [u1 (Cε1) +R(e− Cε1)− (1 + σε)Au′1(Cε1)]+Ex

[(
w − x− H(x)

h(x)

)
`(x)

]
≥ G+2umin.

The lemma implies that the Lagrangian is separable and writes as

L = LI + Lw,

where

LI = λEy,ε [u1 (Cε1(y)) +R(e− Cε1(y))] + (1− λ)Eε,y [(1 + σε)u′1(Cε1(y))A] ,

and

Lw = λEx [(w − x) `(x)] + (1− λ)Ex

[
`(x)

H(x)

h(x)

]
.

Thus, the only link between the problem concerning investors and the problem
concerning workers is the shadow cost of public funds λ. Consequently, for a
given value of λ, investors’ time-1 consumption is independent of y, but impacted
by ε, so that c+1 > c−1 .

In LI the first term is the surplus associated with investors

φI(c
ε
1) = Ey,ε [u1 (Cε1(y)) +R(e− Cε1)] ,

while the second term is the corresponding rent

RI(cε1) = Eε,y [(1 + σyε)Au′1(cε1(y))] .
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Similarly, in Lw the first term is the surplus associated with workers

φw = Ex [(w − x) `(x)] ,

while the second term is the corresponding rent

Rw = Ex

[
`(x)

H(x)

h(x)

]
.

Because Lw is linear in `(x) ∈ [0, 1], the optimal individual labor supply is
either 0 or 1. Moreover, the implementability condition implies `(x) must be
decreasing. Hence, we can state our next lemma:

Lemma 12 The optimal mechanism involves a threshold value of the disutility
from work, x∗, such that

`(x) = 1x≤x∗ .

The lemma implies that the Lagrangian writes as

Lw = λ

∫ x∗

0

(w − x) dH(x) + (1− λ)

∫ x∗

0

H(x)dx = λφw(x∗) + (1− λ)Rw(x∗).

Thus, the optimal mechanism is characterized by three variables x∗, C+
1 and

C−1 , corresponding, in the implementation, to three (constant marginal) tax
rates: on capital income tI , on financial transaction τ , and on labor income tw.
This analysis yields our next lemma:

Lemma 13 With investors and workers, in the linear-exponential case, the
three policy variables : optimal consumption c+1 and c−1 , optimal labor supply
x∗ are determined by the shadow cost of public funds λ:

λ− 1

λ
=

(w − x∗)h(x∗)

H(x∗)
=

u
′

1(Cε1)−R
(1 + σε)Au”

1(Cε1)
,

where λ is determined by the budget constraint of the government:

FRI(λ) + FRW (λ) = G,

where FRI(λ) and FRW (λ) correspond to the fiscal revenues from investors and
workers when the shadow cost of public funds is λ.

We can now analyze the impact of the FTT in the complete model with labor.

Proposition 14 When the FTT is introduced:

• Overall welfare increases.

• The shadow cost of public funds decreases.

17



• The fiscal burden on investors increases.

• All workers benefit.

• Investors benefit if and only if the slope of FRW is not too big.

The intuition behind the proposition, which is proven in the appendix, is simple:
the FTT boosts FRI , the fiscal revenue collected from investors, therefore it
reduces the shadow cost of public funds, and the fiscal burden on workers, who
all benefit. However, the impact on investors is twofold: it increases their total
fiscal burden but improves the tax mix. Whether they gain or lose depends on
which effect is bigger in absolute value.

18



7 The case where wealth is partially observable

This section considers an extension of the linear-exponential model in which
total wealth is now (y0 + y), where y0 is observable, and where the distribu-
tion of non observable wealth y conditionally on y0 is truncated exponential
with parameter A(y0). We assume that A(.) is increasing, implying a positive
correlation between the two types of wealth.

The second best problem is semi-separable: the allocation that maximizes
utilitarian welfare under incentive compatibility, feasibility and safety net con-
straints satisfies the previous formulas, only that they are now parametrized by
y0. Like before, consumptions at date 1 do not depend on y:

Cε1(y0, y) ≡ Cε1(y0) = C( λ

λ− 1
A(y0)(1 + σε)).

This means that optimal taxes on income and financial transactions are still
linear but their rates t(y0) and τ(y0) are increasing in y0. Optimal consumption
at date 2 is

C2(y0, y) = U(y0, y)− Eεu1(Cε1(y0)),

where

U(y0, y) = U(y0, ymin) + (y − ymin)Eε[(1 + σε)u′1(Cε1(y0))].

The only link between investors with different y0s is the shadow cost of public
funds λ, which appears in the formulas above and is implicitly determined by
the feasibility constraint:

E[RCε1(y0) + C2(y0, y)] ≤ Re−G.

It is clear that the informational rent of investors is minimized by taking
U(y0, ymin) as small as possible, that is:

U(y0, ymin) ≡ umin,

which relaxes the feasibility constraint while satisfying the safety net constraint.
This implies that a wealth (or inheritance) tax) T0(y0) is needed for im-

plementing this allocation. Indeed, all investors of type (y0, ymin should have
the same utility level, but the taxes they pay on financial income and finan-
cial transactions increase with y0. The inheritance tax T0 compensates for this
difference in tax burdens:

T0(y0) = MaxES,∆[u1(y0 +y(1+σε)−S−ε∆)+RS(1−t(y0))−τ(y0)∆]−umin.

BRUNO: THE WEALTH TAX COULD ALTERNATIVELY BE PAID AT
T=1. POSITIVE CORRELATION PREVENTS THIS TAX TO BE COM-
PLETELY EXTORTIVE.
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8 Conclusion

The taxation of financial markets can be improved: introducing a FTT could
allow to increase fiscal revenue without creating more distortions. If the gov-
ernment could commit not to increase the total tax burden on investors, they
would all benefit from a FTT, if compensated by a proper decrease in the cap-
ital income tax. However if the government uses the FTT to increase the tax
burden on investors, they may resist to it.
Our paper neglects an important aspect of the discussion about the FTT, namely
the role of financial intermediaries. First, these intermediaries are likely to be
opposed to the tax, because they collect fees that increase with the volume of
financial transactions. Second, if the FTT is implemented, they can allow in-
vestors to escape the tax. These questions deserve further thoughts.
Finally, we stress the fact that in our model, a FTT is useful not because fi-
nancial markets are imperfect but because the tax system is imperfect. This
changes the traditional perspective on the FTT.
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Appendix 1: Proofs of Lemma 1 and Proposition 2

Proof of Lemma 1: Define

U(y, ŷ) = Eε
[
u(CSB1 (ŷ, ε) + (y + σyε)− (ŷ + σŷε)) + C2(ŷ)

]
.

We need to show that, if (??) holds and Ṡε(y) > 0, then the incentive compat-
ibility condition holds, i.e., U(y, ŷ) ≤ U(y, y),∀(y, ŷ). To do so, we proceed in
two steps.

1) First, we prove that, if Ṡε(y) > 0, then

∂2U(y, y)

∂y∂ŷ
> 0. (34)

To do so, note that

∂U(y, ŷ)

∂y
= Eε

[
(1 + σε)U ′(CSB1 (ŷ, ε) + (y + σ(y)ε)− (ŷ + σŷε))

]
,

and correspondingly

∂2U(y, ŷ)

∂y∂ŷ
= Eε

[
(1 + σε)U

′′
(CSB1 (ŷ, ε) + (y + σ(y)ε)− (ŷ + σ(ŷ)ε))(ĊSB1 (ŷ, ε)− (1 + σ̇(ŷ)ε))

]
.

(35)
Now

SSB(y, ε) = (y + σ(y)ε)− cSB(y, ε).

So
ṠSB(y, ε) = (1 + σ̇(y)ε)− ċSB(y, ε).

Therefore if ṠSB(y, ε) > 0, ∀y, then ċSB(y, ε)− (1 + σ̇(y)ε) < 0, ∀y. Thus, the
cross-derivative in (??) is positive, i.e., (??) holds.

2) The second step of the proof relies on (??), which states that ∂U(y,ŷ)
∂ŷ is

increasing, and the envelope condition which states that ∂U
∂ŷ |ŷ=y = 0. Together

they imply that, for ŷ < y, ∂U
∂ŷ < 0, while for ŷ > y, ∂U

∂ŷ > 0. Thus, in the

(ŷ, U(y, ŷ)) space, the U(y, ŷ) function is increasing for ŷ < y and decreasing
for ŷ > y. Therefore it reaches its maximum at ŷ = y, that is U(y, ŷ) ≤
U(y, y),∀(y, ŷ).

QED

Proof of Proposition 2: Note that

∂2ϕ(c,R,A)

∂c∂A
= −u

′′

1 (c) > 0,

which implies
∂C
∂A

> 0.
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Moreover, since u
′′′

1 > 0, if A > 0 then ϕ is concave in c. Hence,

C(R,A) = c ⇐⇒ u
′

1(c) = R+Au
′′

1 (c). (36)

Combining (??) and (??) yields Proposition 2.
QED
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Appendix 2: Characterization of the Second Best

Optimality conditions: For the variation calculus problem, there are two
optimality conditions. The Euler equation:

d

dy

(
∂L
∂U̇

)
=
∂L
∂U

, (37)

and the transversality condition:

∂L
∂U̇
|ymax

= 0. (38)

For the pointwise optimization problem, we assume (and will check later) that

α(y) + γ(y) > 0. Since u2 is concave, L is concave in cε2(y). Since u
′′

1 < 0 < u
′′′

1 ,
L is concave in cε1(y). Hence the solution is characterised by the first order
conditions with respect to cε1(y) and to cε2(y).

Variation calculus problem: Inspecting the Lagrangian, we see that

∂L
∂U̇

= β(y)f(y), (39)

and
∂L
∂U

= −γ(y)f(y). (40)

Integrating the Euler equation (??) we have[
∂L
∂U̇

]ymax

y

=

∫ ymax

y

∂L
∂U(s)

ds.

Because of the transversality condition (??) this is

∂L
∂U̇(y)

= −
∫ ymax

y

∂L
∂U(s)

ds. (41)

Substituting (??) and (??) into (??), we have

β(y)f(y) =

∫ ymax

y

γ(s)f(s)ds. (42)

Combining the optimality conditions of the pointwise maximisa-
tion and variation calculus problems: (??) implies cε2(y) is a function of y
(and does not depend on ε). Denote that function by c2(y). (??) can be written
as

α(y) + γ(y) =
λ

u′2(c2(y))
.
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That is

γ(y) =
λ

u′2(c2(y))
− α(y). (43)

Substituting, (??) rewrites as

β(y)f(y) =

∫ ymax

y

(
λ

u′2(c2(s))
− α(s)

)
f(s)ds.

Finding the solution: The above analysis implies we can write the first
order condition with respect to cε1(y) as

cε1(y) = C(Ru′2(c2(y)), u′2(c2(y))
β(y)

λ
(1 + εσ̇(y))). (44)

This gives cε1(y) as a function of c2(y) and β(y). To solve for c2(y) we differen-
tiate (??)

U(y) = Eε,y [u1(cε1(y))] + u2(c2(y)),

and equate it to (??)

U̇(y) = Eε [(1 + εσ̇(y))u′(cε1(y))] .

This gives a first-order differential equation that c2(y) has to satisfy.

u′2(c2(y))c′2(y) = Eε [(1 + εσ̇(y)− cε′1 (y))u′(cε1(y))] . (45)

To explicitly write the differential equation, the terms cε′1 (y) and u′(cε1(y)) on the
right hand side of should be expressed as function of c2(y) using (??). The first
order differential equation determines c2(y) up to a constant that is determined
by the resource constraint

eR−G = Eε,y

[
RC(Ru′2(c2(y)), u′2(c2(y))

β(y)

λ
(1 + εσ̇(y))) + c2(y)

]
.
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Appendix 3: Proofs of Propositions 6 and 7 and
Lemma 2

Proof of Proposition 5: When u2′ = 1, σ̇ = 1, and α(y) = 1, (??)
simplifies to

γ(y) = λ− 1

while (??) simplifies to

β(y)f(y) = (λ− 1)

∫ ymax

y

γ(s)f(s)ds = (λ− 1) (1− F (y)) ,

which yields

β(y) = (λ− 1)
1− F (y)

f(y)
> 0.

QED

Proof of Proposition 6: Substituting u′′1 = −1 and (??) into (??) we
obtain the marginal financial transaction tax

τ ′(∆(y)) =
λ− 1

λ

1− F (y)

f(y)
.

Similarly, (??) yields the marginal tax on capital income

T ′(RS(y)) =
λ− 1

λR

1− F (y)

f(y)
.

By definition
U(y) = Eε [u1(cε1(y)) + c2(y)] .

The resource constraint at time 2 is

Ey [c2(y)] +G = REε,y [y − cε1(y)] .

Substituting this constraint into the definition of U

U(y) = Eε [u1(cε1(y)) +R (y − cε1(y))−G] .

Now

U(y) = umin +

∫ y

ymin

U̇(z)d(z).

Equating the two and taking expectations

Eεy

[
u1(cε1(y)) +R (y − cε1(y))−

∫ y

ymin

U̇(z)d(z)

]
= umin +G.
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After some manipulations, one obtains

Eε,y

[
u1(cε1(y)) +R(e− cε1(y))− 1− F (y)

f(y)
(1 + σε)u′1(cε1(y))

]
= umin +G,

which yields (??).
QED

Proof of Lemma 2: In the quasi linear case, time 2 consumption can be
written as

Ey,εc
ε
2(y) = U(y)− u1Ey,εu1 (cε1(y)) , c(x) = V (x) + x`(x).

So the feasibility constraint, (??), rewrites

Ey,ε [U(y)− u1 (cε1(y)) +Rcε1(y)] + Ex [V (x)− (w − x)`(x)] ≤ Re−G. (46)

Now

EyU(y) = −
∫ ymax

ymin

U(y)d(1− F (y)) (47)

= − [U(y)(1− F (y))]
ymax

ymin
+

∫ ymax

ymin

U̇(y)(1− F (y))dy

= umin + Eε,y [(1 + σyε)u′1(cε1(y))A] .

where the second equality stems from substituting (??), while the last equality
stems from the binding safety net constraint at ymin and the the exponential
distribution assumption. Similarly,

ExV (x) =

∫ xmax

xmin

V (x)dH(x) (48)

= [V (x)H(x)]
xmax

xmin
−
∫ xmax

xmin

V̇ (x)H(x)

= umin +

∫ xmax

xmin

`(x)H(x)

= umin + Ex

[
`(x)

H(x)

h(x)

]
,

where the second equality stems from substituting (??), while the last equality
stems from the binding safety net constraint at ymin. Substituting (??) and
(??) in (??) and (??), we obtain Lemma 2.

QED
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