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Abstract

How can we assess whether macro-prudential regulations are having their intended

effects? If these regulations are optimal, their marginal benefit of addressing external-

ities should equal their marginal cost of distorting risk-sharing. These risk-sharing

distortions will manifest as trading opportunities that constrained intermediaries are

unable to exploit. Focusing in particular on arbitrage opportunities, I construct an

“externality-mimicking portfolio” whose returns track the externalities that would ra-

tionalize existing regulations as optimal. I conduct a revealed-preference exercise us-

ing this portfolio and test whether the recovered externalities are sensible. I find that

the signs of existing CIP violations are inconsistent with optimal macro-prudential

policy.
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Following the great financial crisis (GFC), apparent arbitrage opportunities have emerged
in financial markets. These arbitrage opportunities, such as the gap between the federal
funds rate and the interest on excess reserves (IOER) rate, or violations of covered interest
rate parity (CIP), are notable in part because they have persisted for years after the peak
of the financial crisis. Authors such as Du et al. (2018) have argued that macro-prudential
regulations put in place after the GFC have enabled these arbitrages to exist and persist.

If these arbitrages are caused by macro-prudential regulations, does that imply that
there is something wrong with the regulations? More generally, what can be learned from
the patterns of arbitrage across assets induced by regulation? Can we use these patterns to
assess whether macro-prudential regulations are having their intended effects?

In this paper I show that, under optimal policy, there is a close connection between the
externalities policy is meant to address and the arbitrages policy creates. The core idea is
simple: if a policy is optimal, its marginal costs equal its marginal benefits. The marginal
costs of macro-prudential policies manifest themselves as arbitrage opportunities. Conse-
quently, if policy is optimal, we can infer the marginal benefits (addressing externalities)
from observed arbitrage opportunities. This enables a revealed-preference exercise. First,
I calculate the externalities that would rationalize existing policy. Second, I ask whether
these revealed externalities are reasonable. If they are not reasonable– I will argue many
CIP violations have the wrong sign– then we can infer that policy is far from optimal.

There is a well-developed general theory on the use of macro-prudential policies to
address externalities (Farhi and Werning (2016)). Macro-prudential policies, such as re-
strictions on leverage or capital controls, reallocate wealth between agents across states of
nature and over time. For example, a capital control that limits borrowing from foreigners
ensures that in bad times, domestic agents have higher consumption, and foreigners have
less consumption, relative to what would have occurred in the absence of capital controls.
If there is an externality that can be addressed by reallocating consumption from foreign to
domestic agents in bad times (e.g. if the real exchange rate affects the welfare of domestic
households that do not participate in financial markets, Fanelli and Straub (2019)), then
capital controls might be an optimal policy. However, capital controls have a cost– they
distort risk-sharing and inter-temporal trade between foreign and domestic agents. A social
planner must weigh this cost against the benefits of capital controls.

Suppose that the planner implements the optimal capital controls using quantity restric-
tions, and thereby creates a wedge between the on-shore and the off-shore cost of borrow-
ing. This would appear to a financial economist as an arbitrage opportunity that agents are
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unable to exploit (due to the capital controls). If the planner’s optimal policy is to limit
borrowing by domestic agents, the on-shore rate will be higher than the off-shore rate; if
instead the optimal policy encourages borrowing, the reverse will be true. That is, the sign
of the arbitrage is determined, under optimal policies, by the direction of the externality.
Moreover, the magnitude of the arbitrage measures the size of the distortion created by the
capital controls, and hence under an optimal policy is determined by the magnitude of the
externalities being addressed. By observing the arbitrage, we can therefore infer the nature
of the externalities that would justify the capital controls that create the arbitrage.

This example illustrates the basic idea behind the exercise. Reality, of course, is more
complicated. Real-world macro-prudential policies such as leverage constraints on finan-
cial intermediaries have complicated effects, and it is not a priori obvious how they redis-
tribute wealth between agents across states of nature and over time. Consequently, it is not
clear whether or not these policies alleviate or exacerbate externalities. The framework I
develop in this paper examines the arbitrages created by macro-prudential policies to assess
whether or not these policies are having their intended effects.

I begin by outlining a general equilibrium with incomplete markets (GEI) framework
that distinguishes between two classes of agents, “households” and “intermediaries.” In this
framework, I show that optimal policy equates the marginal benefits of addressing exter-
nalities with the marginal cost of distorting risk-sharing (as in Farhi and Werning (2016)). I
then show that, under some additional assumptions about how policy is implemented, these
risk-sharing distortions will manifest themselves as arbitrage opportunities. To clarify the
underlying mechanism and provide a concrete example, I develop the example of capital
controls in a simple model, building on Fanelli and Straub (2019).

The central contribution of the paper uses the relationship between arbitrages and ex-
ternalities to construct what I call the “externality-mimicking portfolio.” The returns of
this portfolio are the projection of the externalities onto the space of returns. The portfo-
lio can also be thought of as representing the minimum difference between the household
and intermediary SDFs necessary to explain observed arbitrages (an analog of Hansen and
Richard (1987)), or as the portfolio that maximizes what I call the “Sharpe ratio due to
arbitrage” (an analog of Hansen and Jagannathan (1991)).

Using data on interest rates, foreign exchange spot and forward rates, and foreign ex-
change options, I construct an externality-mimicking portfolio. The weights in this port-
folio are entirely a function of asset prices; no estimation is required. If policy is optimal,
this portfolio’s returns track the externalities the social planner perceives when consider-
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ing transfers of wealth between the households and intermediaries in various states of the
world. When its returns are positive (negative), the planner perceives positive (negative)
externalities when transferring wealth from intermediaries to households. In “bad times,”
we would expect this portfolio to have negative returns, consistent with the idea that the
planner would like to encourage intermediaries to hold more wealth in these states.

I consider two definitions of “bad times.” First, intuitively, bad times can be defined as
times in which the intermediaries have a high marginal utility of wealth. Using this defini-
tion, I show that it is sufficient to study the expected returns of the externality-mimicking
portfolio, and test if they are positive. Second, I define “bad times” using the stress test
scenarios developed by the Federal Reserve. I argue that these tests are statements about
when the Fed would like intermediaries to have more wealth, and as a result the returns of
the externality-mimicking portfolio should be negative in the stress test scenarios.

However, I find that the expected return of the externality-mimicking portfolio is gener-
ally negative, and that its returns in the stress tests are often positive. This implies that the
externalities that would justify current regulation are positive in bad times, which appears
inconsistent with intuition and suggests that regulations are not having their desired effect.
The basic issue is that some CIP violations (e.g. AUD-USD and JPY-USD) have the wrong
sign. That is, because JPY appreciates and AUD depreciates vs. USD in bad times, optimal
policy should encourage intermediaries to be long JPY and short AUD (i.e. short the carry
trade). But the signs of the CIP violations are such that they encourage intermediaries to be
long the carry trade, taking on more macro-economic risk. I speculate that this issue arises
from an interaction between leverage constraints (which do not consider the “sign” of a
trade) and demand from customers for carry trade risk, as suggested by Du et al. (2018).

My theoretical framework builds on the GEI framework of Geanakoplos and Polemar-
chakis (1986) and Farhi and Werning (2016). My example of capital controls resembles
both Fanelli and Straub (2019) and example 5.4 of Farhi and Werning (2016). The frame-
work I develop specializes the standard GEI model in several respects. First, I assume that
there are two classes of agents, households and intermediaries, who have different degrees
of access to markets, in the spirit of Gromb and Vayanos (2002). Second, a key difference
between this paper and the work of Farhi and Werning (2016), and also the discussion of
pecuniary externalities in Dávila and Korinek (2017), is my focus on an implementation
of the constrained efficient allocation using quantity constraints, rather than agent-state- or
agent-state-good-specific taxes. Studying this implementation is both realistic, in the sense
that regulation on banks takes this form, and it enables the empirical exercise that follows.
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This paper is also related to Davila et al. (2012), in that both papers attempt to measure
how close existing policies are to constrained efficient allocations.

My empirical work considers short-term arbitrages such as the fed funds/IOER spread
(Bech and Klee, 2011) and CIP violations (Du et al., 2018), and hence this paper lies at
the intersection of the theoretical literature mentioned above and the empirical literature
on arbitrage opportunities. The central and most surprising result of the paper is, in effect,
that this intersection exists. The techniques I use to characterize the externality-mimicking
portfolio that links the theory with the data build on Hansen and Richard (1987) and Hansen
and Jagannathan (1991). There is also a significant literature that studies CIP violations
in the context of particular models (as opposed to the general GEI framework). Examples
include Amador et al. (2017); Andersen et al. (2019); Du et al. (2020); Gabaix and Maggiori
(2015); Ivashina et al. (2015). The framework I develop allows for the empirical analysis
of CIP violations within a relatively minimal theoretical structure, and hence enables more
general conclusions about the optimality or sub-optimality of policy.

Section 1 outlines the GEI framework and presents the key result connection external-
ities and arbitrage. Section 2 provides a more concrete example of the general framework,
related to capital controls. Section 3 describes the externality-mimicking portfolio. Section
4 describes the data I use in my empirical exercise, section 5 presents the main results, and
I conclude in section 6. The internet appendix contains additional details on the empirical
analysis, robustness exercises, and a formal discussion of the GEI framework.

1 Externalities and Arbitrage

In this section, I describe the connection between externalities and arbitrage under optimal
policy in a GEI framework. First, I discuss the marginal-cost vs. marginal-benefit tradeoff
facing the planner, building on the existing literature. Next, I introduce financial interme-
diation into the GEI framework, describe how the planner can implement optimal policies,
and show that implementing the optimal policies creates apparent arbitrage opportunities.

1.1 The GEI Framework and Optimal Policy

Let S1 be the set of future states, let s0 be the initial state, and let S = S1∪{s0}. Let Js be
the set of goods in each state s∈ S. The simplest interpretation of this setup is as a two-date
model with multiple goods in the second date. The model can also be interpreted as having
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more than two dates and a single consumption good at each date, in which case each j ∈ Js

corresponds to consumption at some date.1 The key assumption is that there is at least one
relative price (either between two goods or between two dates) in the future states s ∈ S1.

Consider the problem of a planner who cannot transfer goods between agents ex-post
(in states s ∈ S1), but can make transfers and control asset allocations in state s0. The prob-
lem of the planner is to choose asset allocations for each agent, goods prices for each state,
and initial transfers between agents, subject to market clearing, the constraint that transfers
sum to zero, and the constraints on feasible asset allocations (e.g. market incompleteness).
For a formal definition of the problem, see definition 3 in appendix section C.2

Let µ j,s be the multiplier in the constrained planner’s problem on the market clearing
constraint for good j in state s, scaled to the units of prices, and let P∗j,s be the price chosen
by the planner for good j in state s. The multiplier µ j,s can be interpreted as the additional
social cost of good j in state s above the price P∗j,s (the cost agents privately perceive).

If the prices that clear markets are also the prices that maximize social welfare (e.g. if
the classic welfare theorems apply), the ratio of the social cost P∗j,s+µ j,s to the private cost
P∗j,s will be the same for all goods j ∈ Js within each state s ∈ S.3 In this case, the agents’
and the planner’s preferences are perfectly aligned, and the solution to the constrained
planner’s problem is also a competitive equilibrium.

However, if markets are incomplete, then generically, the solution to the constrained
planner’s problem will not coincide with a competitive equilibrium (Geanakoplos and Pole-
marchakis (1986)). That is, due to the interactions of pecuniary externalities and market
incompleteness, the economy is generically constrained inefficient. If prices are rigid, or
if there are constraints on agents’ goods allocations that depend on prices, pecuniary ex-
ternalities will lead to generic constrained inefficiency regardless of whether markets are
complete or incomplete (Farhi and Werning (2016)). In these cases, the multipliers µ j,s are
non-zero, and the ratio of P∗j,s +µ j,s to P∗j,s is not the same for all goods within each state.

In what follows, I will assume the economy is constrained inefficient. To simplify the
exposition, I will focus on the incomplete markets case, but the results I derive will hold

1See Farhi and Werning (2016) for several examples along these lines.
2The restriction against the planner transferring goods between agents in the future states S1 prevents the

planner from circumventing the incompleteness of markets. The ability of the planner to transfer income in
state s0 ensures that the purpose of regulation is to correct externalities, and not to redistribute wealth. This
captures the idea that the goal of macro-prudential regulators is not to redistribute wealth ex-ante, but rather
to influence the allocation of income across future states.

3As usual, only relative prices matter. If j0 is designated as the numeraire (implying µ j0,s = 0 and P∗j0,s =
1), then the ratio of social to private cost will be the same for all goods if and only if µ j,s = 0 for all goods.
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regardless of whether the underlying source of inefficiency is incomplete markets, nominal
rigidities, prices in constraints, or some combination thereof.

To quantify these inefficiencies, I define “wedges” (following Farhi and Werning (2016)).
The wedge τr

j,s is the difference between the social/private cost ratio for the good j ∈ Js in
state s ∈ S1 and the average ratio for all goods in that state,4

π
r
s τ

r
j,s =−

P∗j,s +µ j,s

P∗j,s
+

1
|Js| ∑

j′∈Js

P∗j′,s +µ j′,s

P∗j′,s
.

The wedge τr
j,s is scaled by a full-support “reference” measure on S1, πr

s > 0. In the applica-
tions I consider, this measure is a risk-neutral measure or the physical probability measure.
The wedges τr

j,s are defined in the context of this reference measure, and if defined instead
under an alternative reference measure πr′

s would be rescaled, τr′
j,s =

πr
s

πr′
s

τr
j,s.

The wedge is positive if the social cost of a good is low relative to its price. The wedge
is also the difference between the first-order conditions of the planner and of the agents–
the latter do not account for effects of their demands on goods prices, and these pecuniary
externalities, due to market incompleteness, have welfare consequences.

The wedges can be compensated for by transferring income in state s between agents.
Let h and i be two agents in the economy. Let Xh

I, j,s be the change in h’s consumption of
good j in state s if given a marginal unit of income, holding prices constant, evaluated at
the income and prices that solve the constrained planner’s problem, and let X i

I, j,s be the
same income effect for i.5 If the wedge-weighted difference of these income effects,

∆
h,i,r
s = ∑

j∈Js

P∗j,sτ
r
j,s(X

h
I, j,s−X i

I, j,s),

is positive, transferring income from i to h in state s has a benefit, from the planner’s
perspective, because it alleviates externalities. I will call ∆

h,i,r
s the “externalities” because

they summarize this benefit.6

For goods j ∈ Js with positive wedges τr
j,s, the social cost of the good is lower than the

4This definition of wedges is essentially the same as the one employed by Farhi and Werning (2016), ad-
justed for the difference between production and endowment economies and scaled by the reference measure
πr

s . It is not necessary in what follows to define wedges for the state s0.
5That is, Xh

j,s(I
h
s ,{Pj′,s} j′∈Js) is the demand function for good j of agent h in state s, where Ih

s is the income
of agent h in state s, and Xh

I, j,s is its derivative with respect to income, evaluated at the income and prices that
solve the constrained planner’s problem.

6Farhi and Werning (2016) define an object τ i
D,s, which is closely related, πr

s ∆
h,i,r
s = τh

D,s− τ i
D,s.
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price, and it is desirable to increase demand for the good. If Xh
I, j,s > X i

I, j,s, then transferring
income from i to h will indeed increase demand for the good. Summing these effects across
goods determines the marginal benefit ∆

h,i,r
s of a transfer of income from i to h in state s.

Under optimal policy, the marginal benefit of reallocating income between i and h

across the various states s∈ S1 must be offset by a marginal cost– distortions in risk-sharing.
Absent regulation, agents will share risks by trading assets, ignoring the externalities just
described. The planner, in contrast, distorts risk-sharing to address these externalities.

Let A be the set of assets in the economy, and let Z∗a,s = Za,s({P∗j,s} j∈Js) denote the
payoff of asset a∈A in state s∈ S1, given the goods prices {P∗j,s} j∈Js that solve the planner’s
problem. Consider an asset a ∈ A that can be freely traded by both i and h in the solution
to the constrained planner’s problem (i.e. for which the exogenous portfolio constraints do
not bind). The planner is free to reallocate the asset between these agents; as a result, the
marginal benefit of such a reallocation must equal the marginal cost under optimal policies.

Reallocating the asset between h and i has a cost if it prevents those agents from equat-
ing their valuations of the asset. Let Mh,r

s be the stochastic discount factor (SDF) for h

under the reference measure r,7 given the incomes and prices that solve the constrained
planner’s problem, and let Mi

s be the same for agent i. The following proposition shows
how the planner equates the marginal benefit of reducing externalities and the marginal cost
of distorting risk-sharing.

Proposition 1. In the solution to the constrained planner’s problem, for any agents h and

i, and any asset a ∈ A, if the exogenous portfolio constraints do not bind with respect to

asset a, then

∑
s∈S1

π
r
s ∆

h,i,r
s Z∗a,s = ∑

s∈S1

π
r
s (M

i,r
s −Mh,r

s )Z∗a,s. (1)

These results holds for both the endowment economy of appendix section C and the pro-

duction economy of section 4 of Farhi and Werning (2016).

Proof. See the appendix, section E.1, or Farhi and Werning (2016).

If there is a complete market of securities that can be freely reallocated by the planner
between h and i, then the externalities ∆

h,i,r
s must exactly equal the difference of the agents’

SDFs, Mi,r
s −Mh,r

s . In this case, the externalities can be non-zero if there are other agents
who cannot trade in the complete securities market (as shown in the example of section 2

7Mh,r
s is the ratio of h’s marginal utility of income in state s ∈ S1 relative to the marginal utility of income

in state s ∈ S0, adjusted for any differences between h’s subjective probabilities and the reference measure r.
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below).8 In the incomplete markets case, the externalities ∆
h,i,r
s are equal to the difference

of the agents’ SDFs within the span of the payoff space of the assets that can be reallocated
between the agents. That is, because the planner can move these assets between the agents,
the planner must equate the marginal benefit of doing so (alleviating the externalities) with
the marginal cost (distorting risk-sharing).

1.2 Arbitrage and the Implementation of Optimal Policy

The marginal cost vs. marginal benefit tradeoff just described arises from a planning prob-
lem in which the planner allocates assets for each of the agents. Because the planner
chooses each agent’s asset allocation, asset prices do not enter the constrained planner’s
problem. In this sub-section, I will describe how the planner can implement optimal policy
using asset markets. In this implementation, there will be a single price for each asset, and
hence I will be able to discuss asset prices. Let Qa be the price of asset a ∈ A under the
planner’s implementation of optimal policies.

There is tension between assuming that each asset has a single price and the results of
Proposition 1. In the presence of externalities, Proposition 1 requires that the willingness
to pay for asset a of agent h be different from that of agent i:

∑
s∈S1

π
r
s Mh,r

s Z∗a,s 6= ∑
s∈S1

π
r
s Mi,r

s Z∗a,s.

Consequently, the agents h and i cannot both be free to trade the asset at the price Qa. To
implement optimal policy, the planner must place constraints on one or both of the agents’
ability to trade the asset.9 These constraints are what I will call macro-prudential policy;
leverage restrictions are an example.

The planner has a great deal of latitude about the form of these constraints. The agents,
when trading the asset, will consider both the asset price and the shadow cost of the con-
straints (as in, e.g., Garleanu and Pedersen (2011) or Du et al. (2020)). As long as these
prices and shadow costs are consistent with the requirements of Proposition 1, then the
resulting equilibrium will be constrained efficient. That is, the functional form of the con-

8The externalities can also be non-zero if prices are rigid or if prices enter constraints on agents’ goods
allocations, as discussed above.

9The planner could also use agent-specific taxes on asset holdings, so that the post-tax asset price faced
by the agents is different even if the pre-tax price is the same. The FDIC fees charged to US banks are an
example along these lines. I focus on quantity constraints because these appear more common in practice.
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straints does not matter, as long as the constraints generate the appropriate shadow costs.
In particular, the constraints could be a function of both asset prices and portfolio choices
(like a capital requirement), but this is not required.10

If these macro-prudential policies treat otherwise identical assets differently, they will
create apparent arbitrage opportunities. Let us suppose that the assets a and a′ have iden-
tical payoffs (Z∗a,s = Z∗a′,s), but are treated differently in the planner’s implementation of
optimal policy. Specifically, assume that agent h is unconstrained and i is constrained with
respect to trade in a, and that the reverse is true for a′. In this case,

∑
s∈S1

π
r
s (M

i,r
s −Mh,r

s )Z∗a,s = Qa′−Qa = ∑
s∈S1

π
r
s ∆

h,i,r
s Z∗a,s,

meaning that the law of one price will not hold.
I will argue that assuming one agent prices the asset a while another agent prices the

asset a′ is both realistic and, after imposing additional structure on the GEI framework,
without loss of generality. Let us now interpret the asset a as an asset that is readily traded,
and interpret the asset a′ as a replicating portfolio of assets traded only by experts (e.g.
derivatives). Let us assume that the agent h is a “household,” defined as an agent whose is
able to trade the asset a but cannot trade the asset a′. Let i be an “intermediary,” defined
as an agent who is able to trade all assets. If the planner implements optimal policy by
regulating the trades of the intermediary in the asset a (e.g. using leverage constraints),
then the household’s SDF will price the asset a, the intermediary’s SDF will price the asset
a′, and an apparent arbitrage opportunity will exist under optimal policy. That is, arbitrage
arises due to the household’s inability to trade derivatives and the regulatory constraints
facing intermediaries, as suggested by e.g. Du et al. (2018).

To formalize this interpretation and to show that it is without loss of generality for the
planner to implement optimal policy by regulating intermediaries’ trades in non-derivative
assets, I incorporate a some elements of financial intermediation (along the lines of, e.g.,
Gromb and Vayanos (2002)) into the GEI framework. Specifically, I will assume that all
of the agents in the model are either households, drawn from the set H , or intermediaries,
drawn from the set I . Intermediaries and households differ in two ways. First, intermedi-
aries can trade certain assets (the set AI ⊂ A) that households cannot, as discussed above.
Second, households cannot trade directly with each other, only via intermediaries.11

10For a formal definition of these portfolio constraints, see the appendix, Section §C.
11Formally, A \AI is the union of a set of disjoint sets {Ah}h∈H , each containing assets tradable by the
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I will call an asset a ∈ A \AI “arbitrage-able” if there exists a portfolio of assets in AI

that replicate its payoff, regardless of the goods prices that occur in equilibrium. That is,
for any arbitrage-able asset, there exists portfolio weights wa′(a) such that, for all states
s ∈ S1 and all price levels {Pj,s},

Za,s({Pj,s}) = ∑
a′∈AI

wa′(a)Za′,s({Pj,s}).

Let A∗ denote the set of arbitrage-able securities.
Given this financial intermediation structure, proposition 2 below shows it is without

loss of generality for the planner to implement optimal policy via portfolio constraints on
intermediaries only. Because households must trade through intermediaries, by regulating
the trade of intermediaries with each household and with each other, the planner can dictate
the asset allocation for all agents.12

If the planner implements optimal policy without regulating the trades of households
directly, then the household’s SDF will price the assets a∈A\AI . That is, for any a∈A\AI ,
there exists an h ∈H such that

Qa = ∑
s∈S1

π
r
s Mh,r

s Z∗a,s. (2)

In contrast, because the planner will need to regulate asset markets, the intermediaries’
SDF will not price the assets a ∈ A\AI .

The situation is different for the intermediary-only assets. Proposition 2 shows that it
is without loss of generality for the planner to have at least one intermediary that is uncon-
strained with respect to trade in the intermediary-only assets. Let us call this intermediary
i∗ ∈I . This intermediary prices the intermediary-only assets a′ ∈ AI ,

Qa′ = ∑
s∈S1

π
r
s Mi∗,r

s Z∗a′,s. (3)

Now consider an arbitrage-able security a, which is in Ah for some h ∈ H. Applying
(2) to this asset and (3) to its replicating portfolio illustrates the relationship between the

household h and the intermediaries (but not other households). Note that multiple households can trade “the
same” asset in the sense of payoffs; this formalism is simply a way of preventing households from trading
directly with each other.

12This point also illustrates the limits of the GEI framework I adopt. The model does not allow for either
private information or hidden trade, both of which would limit the set of implementable allocations.
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arbitrage on asset a and the externalities.

Proposition 2. The planner can implement the solution to the constrained planning prob-

lem using portfolio constraints on intermediaries only, and without constraining the trades

of at least one intermediary, i∗ ∈I , in the intermediary-only assets AI .

In this implementation, for any arbitrage-able asset a∈A∗ that is tradable by household

h, if the exogenous portfolio constraints do not bind for a or its replicating portfolio, then

−Qa + ∑
a′∈AI

wa′(a)Qa′︸ ︷︷ ︸
arbitrage violation

= ∑
s∈S1

π
r
s ∆

h,i∗,r
s Z∗a,s︸ ︷︷ ︸

expected externality-weighted payoffs

. (4)

Proof. See the appendix, section E.2.

This equation demonstrates the tight connection under optimal policy between arbitrage
and the externalities the planner attempts to correct. To correct pecuniary externalities, the
planner must distort risk-sharing. Under the assumed structure of financial intermediation,
the planner can implement the optimal risk-sharing distortions by regulating intermediaries.
In this implementation, certain assets will be priced by households (because households are
not directly regulated) while others will be priced by intermediaries (because these assets
are not tradable by households). For the subset of assets that are arbitrage-able (tradable
by households with an intermediary-only replicating portfolio), this implementation of op-
timal policy will lead to an apparent arbitrage opportunity.

Strikingly, arbitrage is a generic feature of constrained efficient allocations (if the plan-
ner implements the constrained efficient allocation in the manner described by Proposition
2).13 The absence of arbitrage is not a sign of efficiency, but rather a sign of inefficiency

in the presence of incomplete markets. More specifically, an arbitrage-able asset should be
cheap relative to its replicating portfolio if its payoffs occur mainly in states in which the
planner would like to transfer wealth from intermediaries to households.

The implementation described by Proposition 2, if interpreted literally, incorporates a
strong assumption: that there exists an intermediary who is completely unconstrained with
respect trade in the replicating portfolio. I view this assumption as an approximation to
the observation that, in practice, intermediaries’ trades in derivatives are far less regulated
than their trades in other products. I will discuss these practicalities in more detail when

13Generically, externalities are non-zero and will lie in the span of the arbitrage-able asset’s payoff space.
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describing my empirical exercise. First, however, I provide a concrete example to further
illustrate the connection between externalities and arbitrage.

2 An Example of Externalities as Arbitrage

This section describes a modified version of Fanelli and Straub (2019) (see also example
5.4 of Farhi and Werning (2016)) to further illustrate the meaning of Proposition 2. In
this example, a planner limits foreign-currency lending by intermediaries (i.e. uses capital
controls) to stabilize the real exchange rate. This creates a CIP violation, and the size and
direction of this CIP violation is determined by the externalities as in (4).

This example connects to the empirical exercise that follows in that it illustrates how
CIP violations can arise from optimal macro-prudential policy. However, this example fo-
cuses on capital controls, and hence is more naturally interpreted as concerning developing
economies, whereas my empirical application focuses on developed markets and bank reg-
ulation. I present this example, rather than a model of bank regulation, because I believe
this example more transparently illustrates the principles behind the exercise.

There are two types of domestic households, Ricardians and non-participants (H =

{r,n}). In each state, there are two goods, tradable and non-tradable, Js = {T,NT}. Both
households have log utility preferences over a Cobb-Douglas aggregate of tradables and
non-tradables, with share parameter α on tradables.

The future state can be either good (g) or bad (b), S1 = {g,b}. Non-participants are
endowed with non-tradables YNT and tradables Y n

T,s, with Y n
T,g >Y n

T,b. Ricardian households
are endowed only with tradables Y r

T . Only Y n
T,s varies across the states; otherwise, the states

are identical. Foreign intermediaries are risk-neutral, consume tradables only, and have
a large endowment of tradables in all states. The discount factor for both households is
β < 1, and the discount factor for intermediaries is one.

The tradables price is stable in the foreign currency, and the domestic monetary au-
thority stabilizes the domestic price index. The exchange rate is therefore es = (

PNT,s
PT,s

)1−α ,
and I will use the tradable good as the numeraire (PT,s = 1). Ricardians can trade both
a foreign-currency risk-free bond a f c, with Za f c,s(PNT,s) = 1, and a domestic risk-free
bond adc, with Zadc,s(PNT,s) = (PNT,s)

1−α . Intermediaries can trade both of these bonds,
an intermediary-only foreign currency risk-free bond aI , and a currency forward aF at
exchange rate F , ZaF ,s(PNT,s) = (PNT,s)

1−α −F . The bonds a f c and adc are both arbitrage-
able: ZaI ,s(·)= Za f c,s(·) and F×ZaI ,s(·)+ZaF ,s(·)= Zadc,s(·). Non-participants cannot trade
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any assets.
The planner’s problem is to maximize a weighted sum of household utility, subject

to a participation constraint for the foreign intermediaries. Because there is a complete
market traded between intermediaries and Ricardians, the participation constraint of the
intermediaries creates a unified budget constraint for the Ricardians.

Let π
p
s be the physical measure,14 with π

p
s0 = 1, let Ts0 be the transfer in s0 to non-

participants, and let λ p and λ r be strictly positive Pareto weights. The planner solves

max
{Ir

s≥0,In
s≥0}s∈S,{PNT,s≥0}s∈S,Ts0

∑
h∈{r,n}

λ
h
∑
s∈S

π
p
s V h

s (I
h
s ,PNT,s),

subject to non-tradable market clearing, YNT = ∑
h∈{r,p}

Xh
NT,s(I

h
s ,PNT,s),∀s ∈ S,

the non-participants budget constraints, In
s = PNT,sYNT +Y n

T,s +1{s = s0}Ts0,∀s ∈ S,

and the Ricardian budget constraint, Ir
s0
+π

p
g Ir

g +π
p
b Ir

b ≤ 2Y r
T −Ts0.

The functional forms in this example yield simple expressions for the indirect utility
and demand functions. The demand function is Xh

NT,s(I
h
s ,PNT,s) = (1−α)

Ih
s

PNT,s
, and

V h
s (I

h
s ,PNT,s) =

β [ln(Ih
s )− ln(P1−α

NT,s )+(1−α) ln(1−α)] s ∈ {g,b},

ln(Ih
s )− ln(P1−α

NT,s )+(1−α) ln(1−α) s = s0.

The market-clearing condition highlights the pecuniary externality present in the model.
If the Ricardian households sell a bond, reallocating income from the states in S1 to the state
s0, this will increase the price of the non-tradable good in s0 and reducing the price in the
states {g,b}. These price changes have an effect on welfare because the poor households
face incomplete (in this case, non-existent) markets. Specifically, the additional social cost
of the non-tradable good, µNT,s, is determined by the planner’s first-order condition with
respect to PNT,s, and can be written for s ∈ S1 as

µNT,s

P∗NT,s
= β

In
s0

λ n π
p
s (

λ n +λ r

In
s + Ir

s
− λ n

In
s
),

where λ n

In
s0

µNT,s is the multiplier on the goods market clearing constraint. In states in which

the income share of non-participants, In
s

In
s +Ir

s
, is lower than the relative welfare weight λ n

λ n+λ r ,

14Because intermediaries are risk-neutral, this is also the intermediaries’ risk-neutral measure.
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the planner would like to increase non-participant incomes. Because non-participants are
net sellers of non-tradables, it is desirable in this case to increase PNT,s and the social cost
of non-tradables is less than the private cost (µNT,s < 0). Note that I have ignored tradable
goods market clearing (Walras’ law), and without loss of generality µT,s = 0.

The wedges are π
p
s τ

p
NT,s =−π

p
s τ

p
T,s =−

1
2

µNT,s
P∗NT,s

, and the externalities simplify to

∆
r,i,p
s =−(1−α)

µNT,s

P∗NT,sπ
p
s
= (1−α)β

In
s0

In
s
(1− λ n +λ r

λ n
In
s

In
s + Ir

s
).

Let us now consider the first-order conditions of the planner’s problem with respect to
Ricardian households’ income and with respect to the transfer Ts0 . We have, for s ∈ {g,b},

βπ
p
s

λ r

Ir
s
−(1−α)

µNT,s

P∗NT,s

λ n

In
s0

= π
p
s

λ r

Ir
s0

−π
p
s (1−α)

µNT,s0

P∗NT,s0

λ n

In
s0

= π
p
s

λ n

In
s0

−π
p
s (1−α)

µNT,s0

P∗NT,s0

λ n

In
s0

.

The transfer ensures that the goods market at date zero is efficient (a little algebra shows
that µNT,s0 = 0). Combining these equations produces the complete markets analog of (1),

π
p
s (M

i,p
s −Mr,p

s ) = π
p
s ∆

r,i,p
s , (5)

where Mi,p
s = 1 and Mr,p

s = β
Ir
s0
Ir
s

are the SDFs of the intermediaries and Ricardians, respec-
tively. Summing this equation weighted by the payoffs Za,s(P∗NT,s) gives a version of (1) for
log-utility households and risk-neutral intermediaries.

We can see from these equations that the externalities must be non-zero in the solu-
tion to the planner’s problem (and hence that competitive equilibria are inefficient). If the
externalities were zero, the income shares

In
g

In
g+Ir

g
and In

b
In
b+Ir

b
would both equal λ n

λ n+λ r , by (5)
the Ricardian incomes would be equal, Ir

g = Ir
b, and therefore the non-participant incomes

would be equal, In
g = In

b . Market clearing in non-tradables requires that if incomes are
identical across {g,b}, so are prices. But if the non-tradable price is the same in g and b,
non-participant income cannot be equal in those states by the assumption that Y n

T,g > Y n
T,b,

and therefore the externalities must be non-zero.
More specifically, in the solution to the planner’s problem, the non-tradable price will

be lower in b than in g. Consequently, the domestic bond has a lower return in b than in g.
In the absence of regulation, in the competitive equilibrium of this example the Ricardians
will borrow from intermediaries using the foreign currency bond (because β < 1 and the
Ricardians have no income risk). The planner, to increase the price of non-tradables in
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state b relative to state g, would instead prefer that Ricardians borrow from intermediaries
using the domestic bond, thereby increasing Ricardian income in b relative to g. A macro-
prudential regulation limiting the quantity of foreign-currency lending by intermediaries is
one way of implementing this outcome. Depending on parameters, the planner might also
limit the total amount of lending by intermediaries.

When the planner implements optimal policies as described in proposition 2, the exter-
nalities ∆

r,i,p
s will manifest as arbitrages. The Ricardians will price the foreign-currency and

domestic-currency bonds a f c and adc. The foreign intermediaries will price the intermediary-
only (i.e. offshore) foreign-currency risk-free bond aI and the currency forward aF . The
resulting arbitrages are

QaI −Qa f c = π
p
g ∆

r,i,p
g +π

p
b ∆

r,i,p
b , (6)

F×QaI +QaF −Qadc = π
p
g ∆

r,i,p
g (P∗NT,g)

1−α +π
p
b ∆

r,i,p
b (P∗NT,b)

1−α . (7)

The first of these arbitrages is a difference between the price intermediaries use when bor-
rowing or lending with each other and the price they use when borrowing or lending to the
Ricardian households. The second is a CIP violation that involves the domestic currency
bonds (the asset Ricardians can trade) and a replicating portfolio only intermediaries can
trade (the currency forward and the intermediary-only bond). These two arbitrages closely
resemble the arbitrages I study in the empirical exercise that follows.

3 The Externality-Mimicking Portfolio

Let us now adopt the perspective of a financial economist who observes asset prices, and
wants to know what externalities would justify the patterns of arbitrage in those asset prices.
Suppose the financial economist observes prices for a set of arbitrage-able assets A∗ trad-
able by some household h, along with the prices of the corresponding replicating portfolios
of intermediary-only assets (e.g. derivatives). Further suppose that the financial economist
believes these arbitrages are caused by regulation, and not by other frictions that are ex-
ogenous from the perspective of regulators.15 In the context of the preceding example,
A∗ = {a f c,adc} (the foreign and domestic currency bonds), and h is a Ricardian household.

Suppose regulatory policy is optimal. In the example of the previous section, equations

15Plausible real-world examples include the post-GFC CIP violations documented by Du et al. (2018) and
the difference between the federal funds rate and the IOER rate documented by Bech and Klee (2011).
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(6) and (7) will hold, and more generally proposition 2 will apply. In this section, I show
how these equations can be “inverted” to recover externalities from asset prices. When the
assets in A∗ form a complete market (i.e. in the example of the previous section), we can
perfectly recover the externalities from asset prices. When A∗ does not form a complete
market, we will instead recover the projection of the externalities on to the space of returns.
In both cases, we will recover the (projected) externalities by constructing a portfolio, the
“externality-mimicking portfolio,” whose returns track the externalities.

For simplicity, I use the space of returns, Ra,s =
Z∗a,s
Qa

, as opposed to the space of pay-
offs, and therefore assume that every arbitrage-able asset and its replicating portfolio have
strictly positive prices.16 The return of an arbitrage-able asset a ∈ A∗, Ra,s, and the return
of its replicating portfolio, RI

a,s, are linked by the relationship RI
a,s = (1−χa)Ra,s, where

χa =
−Qa +∑a′∈AI wa′(a)Qa′

∑a′∈AI wa′(a)Qa′
(8)

is a scale-free measure of arbitrage. Intuitively, when the asset is cheaper than its replicating
portfolio, its returns are higher. Using this notation, we can rewrite (6) and (7) from the
example in the previous section as[

χa f c

χadc

]
=

[
π

p
g RI

a f c,g π
p
b RI

a f c,b

π
p
g RI

adc,g π
p
b RI

adc,b

]
·

[
∆

r,i,p
g

∆
r,i,p
b

]
.

Now consider the portfolio of replicating portfolios (in this example, a portfolio of the
currency forward and intermediary-only bond, expressed as portfolio weights on the repli-
cating portfolios of the bonds traded by Ricardian households) defined by

[
θ ∗a f c

θ ∗adc

]
=

([
RI

a f c,g RI
adc,g

RI
a f c,b RI

adc,b

])−1

·

([
π

p
g RI

a f c,g π
p
b RI

a f c,b

π
p
g RI

adc,g π
p
b RI

adc,b

])−1

︸ ︷︷ ︸
inverse second moment matrix of RI

a,s

·

[
χa f c

χadc

]
.

By construction, this portfolio has returns that are equal to the externalities in each state,[
∆

r,i,p
g

∆
r,i,p
b

]
=

[
RI

a f c,g RI
adc,g

RI
a f c,b RI

adc,b

]
·

[
θ ∗a f c

θ ∗adc

]
.

16This is without loss of generality if there is a risk-free arbitrage-able security, as one could always add
some amount of the risk-free security to another other security to ensure that its price is positive, while still
ensuring that a replicating portfolio exists.
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This portfolio, which is externality-mimicking portfolio in the context of the capital con-
trols example, is the projection of the externalities onto space of returns. In this example,
which features complete markets, the portfolio’s returns are the unique set of externalities
that would justify the observed pattern of arbitrage. More generally, in the incomplete
markets case, the externality-mimicking portfolio’s returns are a (not unique) set of exter-
nalities that would justify the observed pattern of arbitrage.

These results are analogous to (and build on) the results of Hansen and Richard (1987),
who study the projection of an SDF onto the space of returns. Those authors also show
that their projection is equivalent to minimizing the variance of an SDF, subject to the
constraint that the SDF price a set of assets.17 Hansen and Jagannathan (1991) then show
that the portfolio whose returns are the projection of the SDF is also the portfolio with
the maximum available Sharpe ratio. Below, I develop analogous interpretations of the
externality-mimicking portfolio.

Constructing the externality-mimicking portfolio requires three ingredients:
1. A set of arbitrage-able assets A∗,
2. Prices for both the arbitrage-able assets in A∗ and their replicating portfolios, and
3. Expected returns and a variance-covariance matrix for the assets in A∗.

I assume, to simplify the exposition, that A∗ includes a risk-free asset, whose return is
R f . Let RI

f = (1− χ f )R f be the return on the replicating portfolio of the risk-free asset,
and let χA∗ be the vector of scaled arbitrages χa for the risky assets in A∗. Let µA∗,r and
ΣA∗,r be the mean vector and variance-covariance matrix of the returns Ra,s for each risky
arbitrage-able asset a∈A∗, under some measure πr

s . Given µA∗,r and ΣA∗,r, the mean returns
and variance-covariance matrix for the returns RI

a,s, µA∗,I,r and ΣA∗,I,r, are defined by the
relationship RI

a,s = (1−χa)Ra,s. I assume there are no redundant risky arbitrage-able assets
(ΣA∗,r has full rank). From these objects, I define the externality-mimicking portfolio.

Note, by definition, that the space of returns of the arbitrage-able assets is identical to
the space of returns of the replicating portfolios. As a result, the externality-mimicking
portfolio can be defined as either a portfolio of the arbitrage-able assets or as a portfolio
of replicating portfolios. It is convenient for what follows to define it as a portfolio of
replicating portfolios; for the alternative definition, see appendix section D.

Definition 1. The externality-mimicking portfolio is a portfolio of the replicating portfolios

17This equivalence holds if the constraint that the SDF be positive does not bind.
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of A∗, with weights on the risky replicating portfolios equal to

θ
A∗,r = (ΣA∗,I,r)−1(χA∗−χ f

µA∗,I,r

RI
f

), (9)

and a weight on the risk-free replicating portfolio equal to

θ
A∗,r
f =−(θ A∗,r)T µA∗,I,r

RI
f

+
1

(RI
f )

2 χ f . (10)

Proposition 3 below demonstrates four facts about this portfolio. The first two facts
show that this portfolio is the projection of the externalities (under the assumptions of
proposition 2) onto the space of replicating portfolio returns (i.e. the space of returns for
assets in A∗). The third fact shows that the return of the portfolio is the difference between
the household and intermediary SDFs, projected onto the space of returns. The fourth fact
shows that the portfolio maximizes the “Sharpe ratio due to arbitrage,” which I define next.

Given an arbitrary portfolio θ of risky assets in A∗, consider both its Sharpe ratio,
SA∗,r(θ), and the Sharpe ratio of the replicating portfolio,18

SA∗,I,r(θ) =

θ T µA∗,I,r

RI
f
−∑a∈A∗ θa

(θ T ΣA∗,I,rθ)
1
2

.

SA∗,r(θ) is defined similarly, with (µA∗,r,ΣA∗,r,R f ) in the place of (µA∗,I,r,ΣA∗,I,r,RI
f ).

Because the prices of the replicating portfolios are not the same as the prices of the
arbitrage-able assets, an allocation in dollars to arbitrage-able assets and the same dollar
asset allocation to the replicating portfolios are in fact claims to different cashflows.19 I
would like instead to compare portfolios that are claims to the same cashflows, but perhaps
have different prices. To that end, define the portfolio transformation θ̃(θ) by

θ̃a(θ) = (1−χa)θa.

18The definition of the Sharpe ratio given here is signed, and might be scaled by the inverse of RI
f when

compared to other definitions of the Sharpe ratio. Note also that the portfolio weights θ do not need sum to
one (the units of θ are “dollars”, not percentages), and that the Sharpe ratio is homogenous of degree zero.

19For example, if both intermediaries and households can buy stocks at $1/share but households pay
$2/bond whereas intermediaries pay $1/bond, an allocation of $4 split equally between stocks and bonds
means two shares and two bonds for the intermediaries, but two shares and one bond for the households.
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This transformation converts an allocation in dollars at the replicating portfolio prices to an
allocation in dollars at the arbitrage-able asset prices.

I define the “Sharpe ratio due to arbitrage” as the difference between the Sharpe ratio
on a set of claims and the replicating Sharpe ratio of those same claims,

ŜA∗,I,r(θ) = SA∗,r(θ̃(θ))−SA∗,I,r(θ).

A little algebra shows that the Sharpe ratio due to arbitrage is the ratio of the excess arbi-
trage, χA∗−χ f

µA∗,I,r

RI
f

, to the volatility of the portfolio,

ŜA∗,I,r(θ) =
θ T · (χA∗−χ f

µA∗,I,r

RI
f
)

(θ T ΣA∗,I,rθ)
1
2

.

Using this definition, I summarize the properties of the externality-mimicking portfolio.

Proposition 3. Under the assumptions of proposition 2, the externality-mimicking portfolio

has the following properties:

1. The externalities are the return on the portfolio plus a zero-mean residual, uncorre-

lated with the returns of all arbitrage-able assets a ∈ A∗: for all i ∈ I,

∆
h,i∗,r
s = ∑

a∈A∗
RI

a,sθ
A∗,r
a + ε

A∗,r
s ,

∑
s∈S1

π
r
s RI

a,sε
A∗,r
s = 0 ∀a ∈ A∗.

2. The variance of the externalities, ∑s∈S1 πr
s (∆

h,i∗,r
s − χ f

RI
f
)2, is weakly greater than the

variance of the externality-mimicking portfolio’s return, (θ A∗,r)T ΣA∗,I,rθ A∗,r.

3. Let mI,r
s be any SDF that prices the replicating portfolios under the measure πr

s . Then

mr
s = mI,r

s +∑a∈A∗ RI
a,sθ

A∗,r
a is the solution to the problem:

min
m∈R|S1|

∑
s∈S1

π
r
s (ms−mI,r

s )2 subject to

∑
s∈S1

π
r
s msRa,s = 1 ∀a ∈ A∗.

4. The Sharpe ratio due to arbitrage of the externality-mimicking portfolio, ŜA∗,I,r(θ A∗,r),

is weakly greater than the Sharpe ratio due to arbitrage of any other portfolio of
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replicating portfolios of the assets in A∗.

Proof. See the appendix, section E.3.

The first two claims follow from the least-squares projection. The third is the analog
of Hansen and Richard (1987), and shows that the estimated household SDF mr

s = mI,r
s +

∑a∈A∗ RI
a,sθ

A∗,r
a is the one that makes the household’s and intermediary’s SDFs as close as

possible, subject to the constraint that it price the arbitrage-able assets A∗ (and therefore
differ sufficiently from mI,r

s , which prices the replicating portfolios).20 The fourth claim is
the analog of Hansen and Jagannathan (1991), and shows that the externality-mimicking
portfolio is also the one the maximizes the Sharpe ratio due to arbitrage.

The externality-mimicking portfolio is a reflection of what regulation is actually ac-
complishing. Consider a state s in which the externality-mimicking portfolio has a negative
10% return. If policy is optimal, the best linear prediction of the externalities in this state
is negative 10%. That is, the planner would be indifferent between being able to trans-
fer ex-post one extra dollar from households to intermediaries in state s and receiving an
additional 10%×πr

s dollars in the initial state s0.
The externality-mimicking portfolio is defined in the context of the reference measure

πr. In my empirical exercises, I focus on the intermediaries’ risk-neutral measure, π i∗
s =

π
p
s RI

f Mi∗,r
s , and consider the physical (or actual) probability measure, π p, in robustness

exercises. The two corresponding externalities are the “risk-neutral externalities” ∆
h,i∗,i∗
s

and the “physical externalities” ∆
h,i∗,p
s , which are linked by the relationship

π
p
s ∆

h,i∗,p
s = π

i∗
s ∆

h,i∗,i∗
s .

This connection reflects the usual equivalence in asset pricing between state-dependent
preferences and beliefs. Using the risk-neutral externality-mimicking portfolio has a par-
ticular advantage, which is that all expected returns are equal to the risk-free rate, and hence
observable. Moreover, options and quanto option21 prices (which I presume are traded only
by intermediaries) can reveal risk-neutral variances and covariances (Martin (2017); Kre-
mens and Martin (2019)). If we consider only arbitrage-able assets for which options and
quantos are available (currencies and the S&P 500), no estimation is required when con-
structing the risk-neutral externality-mimicking portfolio. Using the physical measure, in

20That is, mr
s maximizes a “market integration” measure along the lines of Chen and Knez (1995).

21A quanto option is an option that involves both an exchange rate and an asset (such as the S&P 500). See
appendix section A.4 or Kremens and Martin (2019) for details.
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contrast, requires estimating both expected returns and a variance-covariance matrix.
The externality-mimicking portfolio reveals what externalities would justify observed

patterns of arbitrage under an optimal policy. The next step in our revealed preference ex-
ercise is to ask whether the recovered externalities make sense. We generally expect that
externalities (and hence the mimicking portfolio returns) are negative in “bad” states of the
world. That is, governments seem tempted to bailout intermediaries in bad states, not in
good states. To test whether regulations are consistent with this intuition, we need to define
what we mean by “bad” states. I consider two definitions, which result in two different
tests. The first definition is to define bad times as being bad for the intermediaries, which
is to say that the intermediaries’ SDF is high. The second definition involves studying a
particular situation– the “stress tests” conducted by the Federal Reserve– in which the reg-
ulator is concerned about externalities, and would like intermediaries to have more wealth.
Presumably, the idea behind the stress tests is to ensure that intermediaries have sufficient
wealth in the stress scenario so as to avoid a bailout ex-post.

The first approach yields a simple test. The covariance of the intermediary SDF and the
risk-neutral externality-mimicking portfolio, under the physical measure, is

Covp(Mi∗,r
s ,∆h,i∗,i∗

s ) =
1

RI
f
(

χ f

RI
f
− ∑

s∈S1

π
p
s ∆

h,i∗,i∗
s )

=− 1
RI

f
(θ A∗,i∗)T · (µA∗,I,p−RI

f )+Covp(Mi∗,r
s ,εA∗,i∗

s ).

If the externalities are negatively correlated with the intermediaries’ SDF, the expected ex-
cess return of the risk-neutral externality-mimicking portfolio under the physical measure
should be positive. Therefore, after constructing the externality-mimicking portfolio, I will
estimate its expected returns and ask whether or not they are positive. The covariance term
between the projection error and the intermediary SDF shows that this test would be biased
if there are components of the SDF that are not spanned by the space of returns, and which
are correlated with components of the externalities that are also unspanned.

The second approach uses stress tests to identify a particular state (the stress test sce-
nario) in which externalities should be negative. The purpose of the stress test is to verify
that intermediaries have sufficient wealth in the stress scenario. To the extent that regula-
tions achieve this goal, they must operate by inducing the intermediaries to hold different
assets and issue different liabilities than they otherwise would have. Consequently, the
intermediaries’ counterparties (the households) must also hold different assets and issue
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different liabilities than they otherwise would have. In other words, if the regulations act to
raise intermediaries’ wealth in certain scenarios, they must lower the wealth of households
in those scenarios (at least in an endowment economy). That is, stress test scenarios are a
statement when the regulator perceives negative externalities associated with transferring
wealth from intermediaries to households (negative ∆

h,i,r
s ). Consequently, if the regulations

are having the desired effect, returns on the externality-mimicking portfolio in the stress
test scenario should be negative. This test is biased if the unspanned component of the
externalities is large in absolute value in the stress scenario.

In this revealed preference exercise, I am recovering the externalities by observing the
effects of regulators’ policy choices and assuming those choices are optimal. This is not
because I truly believe regulators’ policy choices are optimal, in a strict mathematical sense,
but rather because I wish to know if the externalities that would rationalize existing policy
are reasonable, and by extension if existing policies are reasonable. For this reason, the
tests I have constructed are “weak” in that they consider only whether the signs of the
externality-mimicking portfolio returns are sensible.

4 Data

In this section, I describe the arbitrages, data sources, and additional assumptions I use to
conduct the tests described in the previous section.

The set of arbitrage-able securities A∗ should be limited to arbitrages induced by regu-
lation. I therefore focus on short maturity arbitrages, to avoid issues like the classic limits
to arbitrage argument (Shleifer and Vishny (1997)) and debt overhang (Andersen et al.
(2019)). This precludes many of the arbitrages documented in the literature. I focus on
arbitrages appeared after but not before the global financial crisis, reasoning that these ar-
bitrages are likely to be induced by post-crisis regulatory changes. Two classes of arbitrage
that fit these criteria are the difference between the federal funds rate and the IOER rate
and CIP violations (Bech and Klee (2011); Du et al. (2018)).

Constructing the externality-mimicking portfolio requires determining what is the “as-
set” a ∈ A∗ and what is the “replicating portfolio.” My framework offers two ways of mak-
ing this distinction: assets a∈A∗ are tradable by households, whereas replicating portfolios
are not, and intermediaries’ trades in assets a∈A∗ are regulated, whereas trades in the repli-
cating portfolio are not. To a first approximation, the difference between “cash assets” and
“derivatives” lines up with both of these distinctions: derivatives are both less accessible to
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households and less regulated under various leverage and capital requirements.
Consider first the fed funds/IOER arbitrage, which is the difference of two risk-free

rates. A bank can earn interest on excess reserves held at the Fed, whereas a household
cannot. If there is no meeting of the FOMC within the next month, the bank is essentially
guaranteed to earn one month’s worth of interest at the current overnight rate.22 A house-
hold could instead purchase treasury bills, highly-rated commercial paper, repo agreements
(via money market funds), bank deposits, or the like. There is a significant literature argu-
ing that treasury bonds are special, relative to other bonds that appear to be close substitutes
(e.g. Fleckenstein et al. (2014)). For this reason, I use 1-month OIS swap rates, which
closely track the yields of one-month maturity highly-rated commercial paper in the US,
as a proxy for a risk-free rate available to households that provides no liquidity benefits.
These rates tend to be higher than the rates on one-month constant maturity treasuries, but
lower than LIBOR rates (which may include credit risk).23 In the notation of the model, R f

is the one-month OIS swap rate, and RI
f is the interest rate on excess reserves.

Next, consider CIP violations. Here, guided by the “cash vs. derivatives” heuristic, I
assume that households can purchase foreign-currency bonds, but cannot trade derivatives
easily.24 The asset a ∈ A∗ is therefore a claim to one euro in one month, and households
can purchase this asset by spot exchanging dollars for euros and then purchasing a risk-free
euro-denominated bond. Following Du et al. (2020), I use OIS rates as proxies for the risk-
free rates available to households in various currencies. The replicating portfolio involves
an intermediary earning the dollar IOER rate for one month and using a one-month FX
forward to lock in the dollar/euro exchange rate.25

The third arbitrage I study, in robustness exercises in appendix section B.3, is an arbi-
trage between the SPDR S&P 500 ETF and options on that ETF, which trade on the CBOE
under the ticker SPY. This arbitrage is closely related to the classic index-future arbitrage
involving S&P 500 futures (e.g. Chung (1991); MacKinlay and Ramaswamy (1988); Miller
et al. (1994)). I describe this arbitrage in more detail in appendix section A.3.

22In rare circumstances, the Fed might change the IOER rate between meetings, but such changes have
low ex-ante likelihood and are unlikely to materially alter the expected interest rate.

23For example, on August 19th, 2016 (a little over one month before the next FOMC meeting), the one-
month constant-maturity treasury rate was 27bps, the AA non-financial one-month commercial paper rates
was 37bps, the one-month OIS rate was 40bps, the IOER rate was 50bps, and one-month LIBOR was 52bps.

24That is, either the household literally cannot trade derivatives, or the transactions costs on derivatives
trades for households are high enough that households cannot profitably execute the arbitrage.

25Implicitly, I am assuming that the default risk on the forward contract is negligible (or, to be more
precise, that the pricing data reflects forward rates available to a risk-free counterparty). Du et al. (2018)
argue, persuasively in my view, that this risk is negligible.
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My data sample begins on January 4, 2011, and runs through March 12, 2018. My
sample is restricted to include only days on which the settlement of the one-month currency
forward occurs before the next FOMC meeting, excluding days with an FOMC meeting.
Because the FOMC holds eight scheduled meetings each year, roughly one quarter of all
non-weekend days are included in the dataset. My data on spot and forward exchange rates,
FX options, and OIS rates are from Bloomberg. I use the London closing time for all of
these instruments, following Du et al. (2018). I focus on the euro, yen, and pound, because
these currencies are major currencies that are modeled explicitly in the Federal Reserve’s
stress test scenarios, and the Australian dollar, which plays a role in the “carry trade.” For
details of the data construction, see appendix section A.

Information on the “stress test” scenarios comes from the Federal Reserve’s website.26

The “severely adverse” scenario described in the tests shows, among other variables, the
level of euro, yen, and pound, as well as the Dow Jones Industrial Average, at a quarterly
frequency. I collect both the one and four-quarter percentage changes for each of the assets
I study, and in my analysis will pretend that these are returns that occur over a one-month
horizon. For AUD, which is not explicitly modeled in the stress test scenarios, I impute the
returns in each stress scenario by running a daily regression predicting AUD returns using
the contemporaneous GBP, EUR, JPY, and stock returns over the preceding 720 days, and
then use these regression coefficients along with the one or four-quarter stress returns.

To conduct the tests described in the previous section, several additional assumptions
are required. To construct the risk-neutral externality-mimicking portfolio, I require a full
variance-covariance matrix under the risk-neutral measure. I construct such a matrix from
currency options on each currency possible currency pair. For details, see appendix sec-
tion §A. To estimate that portfolio’s expected excess returns under the physical measure, an
estimate of expected excess returns is required. Motivated by Meese and Rogoff (1983) and
the related literature, I assume that exchange rates are random walks over my one-month
horizon. As a result, the expected excess return of using the IOER rate and a forward to
purchase, say, one yen one month from now, is the determined by the difference between
the forward and spot exchange rate.

Table 1 presents the sample means and standard deviations of the arbitrage associated
with each currency and the risk-free arbitrage. Conceptually, these statistics correspond to
the term χa defined in (8). For example, for euros, it represents the percentage difference
in price, in dollars today, of purchasing a single euro one month in the future by buying

26https://www.federalreserve.gov/supervisionreg/dfa-stress-tests.htm
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the euro at spot today and saving at OIS (the asset a ∈ A∗), and obtaining the same euro
one month in the future by savings at the IOER rate and using a currency forward (the
replicating portfolio). I also present the difference between the dollar OIS rate and IOER
(R f vs. RI

f ). The arbitrages have a one month horizon, but are scaled to annualized values.
This table also shows the option-implied volatility and correlations of each currency

(with respect to the US dollar).27 Finally, the table reports the empirical correlations be-
tween the currencies and both the SPDR ETF and the daily He et al. (2017) (HKM) inter-
mediary capital factor, and the quanto-implied correlations between the currencies and the
S&P 500 (as in Kremens and Martin (2019), see appendix section A for details). A positive
correlation means appreciation relative to the dollar when the S&P 500 has positive returns.

From table 1, we can observe several notable features of the data. First, intermediaries
are able to earn a higher rate of interest than households (IOER vs. OIS). However, the
positive sign on the euro, pound, and yen arbitrages implies that it is more expensive for
intermediaries to use derivatives to purchase e.g. a euro one month in the future in exchange
for a dollar today than it is for intermediaries to use products also available to households.
The opposite pattern holds for the Australian dollar. Note also that the euro and Australian
dollar are positively correlated with the S&P 500 and the HKM factor, while the yen is
negatively correlated with the S&P 500. Immediately, by proposition 2, we can observe
that the AUD and JPY CIP violations do not have the expected sign, if either the S&P 500
or the HKM factor is a reasonable proxy for the externalities.

Figure 1 shows the time series of the “risk-neutral” excess arbitrages, χa − χ f , for
Australian dollar, euro, and yen in my sample. Using the risk-neutral excess arbitrage, as
opposed to the physical measure excess arbitrage, eliminates the dependence on an estimate
of expected returns. The magnitude of arbitrage is quite volatile, and there is significant
positive co-movement between the euro and yen arbitrage.

5 Results

I begin by constructing the risk-neutral externality-mimicking portfolio, using the euro,
Australian dollar, and yen assets, and a risk-free asset. This portfolio can be constructed at
daily frequency using definition 1 and data on the arbitrages and the risk-neutral variance-
covariance matrix implied by FX options prices. Figure 2 displays the time series of the

27A version of the table with physical measure estimated volatilities and correlations is in appendix section
B. The average volatilities and correlations are strikingly similar to their risk-neutral counterparts.
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portfolio weights on the risky assets (EUR, AUD, JPY).
A few patterns in the data are apparent. First, the portfolio is generally long yen and

euro and short AUD, and long currencies overall. That is, the portfolio is short US dol-
lars and short the carry trade.28 The “short US dollars” part is likely to generate positive
expected returns, whereas the “short the carry trade” generates negative expected returns,
and this latter effect will dominate (see table 2 below). Interpreted through the lens of the
model, this portfolio implies that a strong desire to transfer wealth from households to inter-
mediaries (negative externalities) coincides with an appreciation of the US dollar and high
returns for the carry trade. If we assume that the planner would like to transfer wealth to
intermediaries in “bad times,” the first part seems sensible, in light of the safe haven role of
the US dollar (see, e.g., Maggiori (2017)), but the second is surprising. Lustig and Verdel-
han (2007) show that negative carry trade returns are associated with falls in consumption,
and we would generally presume that these times are times when the planner would like
intermediaries to have relatively more wealth. Second, the noticeable spikes in the euro
and yen CIP deviations that occur around quarter- and year-end result in large changes to
the portfolio weight. This is not surprising, as there is no corresponding large change in
implied volatilities that would offset the effect. Interpreted through the lens of the model,
suddenly binding constraints could only be justified by large changes in externalities, and
hence in the externality-mimicking portfolio.

I next consider the predictions that this portfolio has about other arbitrages. I delib-
erately excluded GBP from the set of currencies used to form the externality-mimicking
portfolio. This allows me to test whether the arbitrage predicted using the externality-
mimicking portfolio is consistent with the arbitrage actually observed for the dollar-pound
currency pair. Formally, I compute

χGBP−χ f = Σ
A∗,I,i∗
GBP θ

A∗,i∗, (11)

where θ A∗,i∗ is the externality-mimicking portfolio in (9) and Σ
A∗,I,i∗
GBP is the covariance,

under the intermediaries’ risk-neutral measure, between the dollar-pound exchange rate
and the risky assets used to form the externality-mimicking portfolio (EUR, AUD, JPY).
This is equivalent to computing the excess arbitrage under the projected externalities, which
will coincide with the arbitrage under the true externalities if there is no covariance between

28In the terminology of Lustig et al. (2011), the portfolio is long the “level” factor and short the “slope”
factor (the slope is with respect to interest rates).
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the pound and the error term in the projection.
Figure 3 displays the results graphically. The actual excess arbitrage in pounds is con-

structed from OIS rates in dollars and pounds, and the spot and forward dollar-pound ex-
change rates (using excess arbitrage eliminates the dependence on the IOER rate). The
predicted excess arbitrage is constructed entirely from those same variables in euros, AUD,
and yen, along with options prices on all possible currency pairs, which are used to both
construct the externality-mimicking portfolio (in the matrix ΣA∗,I,i∗) and to construct the
covariances Σ

A∗,I,i∗
GBP . Note that the sets of financial instruments used to construct the actual

and predicted excess arbitrages do not overlap. Nevertheless, the predicted and actual ex-
cess arbitrages track each other, except near the end of 2011. The R2 of a regression of
the actual arbitrage on the predicted arbitrage, with no constant, is 83%. For predictions
involving other currencies, see appendix section B.1.

I next consider the expected return of this portfolio (the first test described in the pre-
vious section). Intuitively, because the portfolio is generally short the carry trade, the ex-
pected return on the portfolio is negative. This contradicts the intuition that the externalities
should be negatively correlated with the SDF.

Figure 4 presents the time series of expected excess returns on the portfolio, and Table 2
formally tests whether the average expected return over my sample is greater than or equal
to zero (a one-sided test). I show results for the full sample, only for dates for which the
trade crosses a quarter-end, and only for dates for which the trade crosses a year-end.29 I
also formally test whether the quarter-end dates are different from other dates, and whether
the year-end dates are different from other quarter-end dates. Both Bech and Klee (2011),
for fed funds vs. IOER, and Du et al. (2018), for CIP, have documented that the arbitrage
spikes near quarter-ends. As these results demonstrate, the problem of negative expected
returns documented above is particularly acute at quarter and year-ends.

I now turn to the second test, using the stress tests. Once per year, the Federal Reserve
describes a “severely adverse” scenario and requires banks to maintain various leverage
and capital ratios in this scenario. In Table 3, I present the returns of the yen, euro, and
stocks in the stress test scenarios, at both the one quarter and four quarter horizons, for
each stress test conducted. A general pattern emerges: recent stress tests have involved
sizable euro depreciations relative to the dollar, and sizable yen appreciations. This pattern
is consistent with the observation that, during my sample, stock market declines tend to

29The trade crosses quarter/year end if the settlement dates of the spot and forward FX trades are before
and after the end of some quarter/year, respectively.
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coincide with euro depreciation and yen appreciation relative to the dollar, and that these
sorts of correlations might influence how the Federal Reserve constructs the stress test
scenarios. The stock return itself very negative in all of these scenarios.

The scenarios do not specify a return for the Australian dollar, presumably because it
would be virtually impossible to the specify the returns of every asset a bank might hold.
I impute the return of the AUD using the stress tests returns on euro, yen, and pounds
(not shown in Table 3) and the stock market. Because of the Australian dollar’s positive
correlation with the stock market and negative correlation with the yen, the imputed returns
are quite negative. When banks calculate their stress scenario returns, they likely perform
a similar kind of imputation.

Each of the stress test scenarios is associated with a particular date (listed in table 3)
which is the date at which the scenario starts. For each date in my sample that is also
within 180 calendar days of the stress test date, I report the returns of the risk-neutral
externality-mimicking portfolio under the associated stress test scenario. Requiring that
the relevant financial market data come from a day that is within 180 days of the stress test
date effectively assigns almost all of the days in my sample to a single stress test per date,
dropping only a handful of days that are far from any stress test date.

If regulation is optimal, we should expect that the returns of the externality-mimicking
portfolio are negative. What I find in the data, however, is that this is not the case. At almost
all points in time, the portfolio is long low-interest-rate currencies (EUR and/or JPY) and
short high-interest-rate currencies (AUD), and as a result has positive returns in the stress
scenario, because the carry trade performs poorly in the stress scenario.

Table 4 formally tests whether returns are negative, averaging across dates near a par-
ticular stress test. The p-values correspond to a one-sided test that the mean is less than or
equal to zero. I am able to reject the hypothesis that returns are negative on average for all
four stress test years beginning in 2014.

In summary, the risk-neutral externality-mimicking portfolio has negative expected re-
turns and positive returns in the stress scenario, which is the exact opposite of what we
would expect under the presumption that the planner would like intermediaries to have
more wealth relative to households in bad states as opposed to good states.

On possible explanation, of course, is that the goal of regulation is to encourage in-
termediaries to take more, not less, macro-prudential risk, and regulatory policy is in fact
accomplishing its goals. A more likely explanation, in my view, is that the current regula-
tory apparatus is not accomplishing its macro-prudential objectives.
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Du et al. (2018) shows that the direction of the CIP arbitrage across currencies is pre-
dicted by the direction of the carry trade. A simple interpretation of this fact is that house-
holds or their proxies want to do the carry trade, and intermediaries are induced by the
arbitrage to take the other side. Leverage constraints, such as the “supplementary leverage
ratio,” prevent the intermediaries from fully satisfying households’ demands. If this story
is correct, households are trying to take macro-economic risk and insure intermediaries
from those risks, but regulation (the leverage ratio) is limiting this risk transfer, which is
the exact opposite of what an optimal policy would do.

For robustness, appendix section B presents three sets of additional results. The first
set uses the physical measure externality-mimicking portfolio instead of the risk-neutral
externality-mimicking portfolio in the stress test exercise. These results show that the esti-
mated physical and risk-neutral measure covariance matrices are similar, and that the stress
test results do not depend on the choice of reference measure. Appendix section A.2 dis-
cusses the construction of the portfolio and appendix section B.2 presents the results.

The second set of results incorporates an equity-based arbitrage between the SPDR
ETF and SPY options into the risk-neutral externality-mimicking portfolio. The purpose
of this robustness exercise is to demonstrate that the puzzling results of the main analysis
are not driven by the choice of arbitrages to include in the portfolio. Including the SPDR-
SPY arbitrage in the externality-mimicking portfolio increases both the complexity and
data requirements of the exercise, and the noisiness of the results due to the imprecision in
the measurement of the arbitrage. For these reasons, I do not include it in the main analysis.
With this arbitrage included, the results of the expected return test are broadly unchanged–
expected returns are robustly negative, contrary to expectations. The results for the stress
test are “better,” in that more but not all of the stress returns are sharply negative.30 This
effect is driven by the combination of very negative equity returns in the stress scenario
and a small positive SPDR-SPY arbitrage (on average). The data is described in appendix
sections A.3 and A.4 and the results are presented in appendix section B.3.

The third and final set of results uses “carry” and “dollar” portfolios of currencies in-
stead of individual currencies. These results support the interpretation that the externality-
mimicking portfolio is short USD (which was expected) and short the carry trade (which
was not expected). The negative expected returns and positive returns in the stress sce-
nario that I document are due to the short carry aspect of the portfolio. The portfolios are

30These results taken together suggest that the stress returns might not be negative enough. Just because the
returns in the stress scenario are negative does not mean macro-prudential regulation is working optimally.
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described in appendix section A.5 and the results are presented in appendix section B.4.

6 Conclusion

Under optimal policy, there is a close connection between the externalities regulation at-
tempts to address and the arbitrage that regulation creates. Using this connection, we can
assess whether macro-prudential policies are achieving their objectives. I develop a method
of backing out a set of externalities that would rationalize a particular pattern of arbitrage
across assets. This method constructs an externality-mimicking portfolio, whose returns
are a projection of the externalities that would rationalize existing policy onto the space
of returns. I argue that these externalities should negatively covary with the SDF, and be
negative in “stress” scenarios. Using these intuitions, I develop two simple tests: does the
externality-mimicking portfolio have positive expected returns, and does it have negative
returns in the Federal Reserve’s stress tests? I show, in current data, using currencies, the
answer to both these questions is no, implying an inconsistency in current regulatory policy.
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Tables and Figures

Figure 1: Time Series of Excess Arbitrage
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Notes: This figure plots the annualized excess arbitrage χa− χ f , as defined as in (8), for the yen, euro, and Australian dollar. These
excess arbitrages are approximately equal to the one month OIS-based CIP violation vs. USD for those currencies. The sample is all US
trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.
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Figure 2: Externality-Mimicking Portfolio Weights
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is constructed using a
set of arbitrage-able assets A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset. The reference measure is
the intermediaries’ risk-neutral measure, meaning that expected returns are equal to the IOER rate and the variance-covariance matrix is
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before
an FOMC meeting.

Figure 3: Actual vs. Predicted Excess Arbitrage in Pounds
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP − χ f , as defined in (8), along with the predicted value
defined as in (11). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation. The risk-neutral
externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset.
The variance-covariance matrix used in the computation and the covariances with the pound are inferred from currency options. The
sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.
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Figure 4: Risk-Neutral EMP Expected Returns
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Notes: This figure plots the excess expected return under the physical measure of the risk-neutral externality-mimicking portfolio
(definition 1), under the assumption that currencies follow a random walk. The excess return is censored at +/- 200bps to enhance
readability. The risk-neutral externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar,
as well as a risk-free asset. The variance-covariance matrix used in the computation is inferred from currency options. The sample is all
US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.

Table 1: Summary Statistics for Arbitrage
Pounds Euros Yen Aus.

Dollar
OIS-
IOER

Arbitrage Mean (bps/year) 6.7 22.4 28.3 -15.4 -12.5
Arbitrage SD (bps/year) 28.2 37.7 37.2 18.5 2.8

OI Vol. (bps/year) 859 950 977 1073 -
OI Corr. with Pound/USD 1.00 0.56 0.22 0.47 -
OI Corr. with Euro/USD 0.56 1.00 0.31 0.51 -
OI Corr. with Yen/USD 0.22 0.31 1.00 0.26 -

Empirical Corr. with SPDR 0.23 0.10 -0.34 0.37 -
Empirical Corr. with HKM 0.26 0.17 -0.31 0.31 -
Implied Corr. with S&P 500 0.28 0.11 -0.29 0.50 -

N 444 444 444 444 444
Notes: This table presents summary statistics for the sample of all US trading days from Jan 4, 2011 to March 12, 2018 at least one month
before an FOMC meeting. Arbitrage mean χa is defined using (8) for a claim to e..g. one euro in one month, priced in dollars today. The
OIS-IOER arbitrage is the risk-free arbitrage, based on a claim to one dollar in one month. Arbitrage SD is the daily standard deviation of
χa. OI Vol. and OI Corr. variables for currencies are the time-series mean of a daily series extracted from variance-covariance matrices
implied by currency options. Empirical Corr. with SPDR and Empirical Corr. with HKM are the time-series means of the correlations
between the currency returns and the SPDR ETF (which tracks the S&P 500) and with the He et al. (2017) daily intermediary capital
factor, as estimated on a rolling basis by the methodology described in appendix section A.2. Implied Corr. with S&P 500 is based on
the time-series mean of the currency correlation with the S&P 500 extracted from quanto options and described in appendix section A.4.
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Table 2: Risk-Neutral EMP Expected Returns
N Mean (bps) Standard Deviation (bps) Test P-Value

Full Sample 444 -222 25.9 ≥ 0 0.0000
Quarter-Ends 155 -431 69.7 ≥ 0 0.0000

Year-Ends 46 -1005 209.2 ≥ 0 0.0000
QE - NQE -321 = 0 0.0000

YE - NYE QE -816 = 0 0.0000
Notes: This table reports the excess expected return under the physical measure of the risk-neutral externality-mimicking portfolio
(definition 1), under the assumption that currencies follow a random walk. The portfolio is constructed from an A∗ that contains the
yen, euro, and Australian dollar, as well as a risk-free asset. The variance-covariance matrix used in the computation is inferred from
currency options. The full sample is all US trading days from Jan 4, 2011 to March 12, 2018 at least one month before an FOMC
meeting. The quarter-end and year-end sub-samples are restricted to days on which a quarter- or year-end occurs between the spot
FX settlement date and the one-month FX settlement date. The QE-NQE and YE-NYE QE rows report the mean difference between
quarter-end vs. non-quarter-end dates and year-end vs. non-year-end quarter-end. Test indicates the hypothesis about the mean being
tested, and P-Value reports the associated p-value.

Table 3: Stress Test “Severely Adverse” Scenarios
Euro Stocks Yen AUD* *Imputed

Stress Test
Date

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

9/30/12 -7.7 -15.4 -19.3 -51.5 2.8 -1.0 -8.8 -24.5
9/30/13 -14.3 -21.4 -26.5 -49.5 3.1 -1.1 -17.2 -28.7
9/30/14 -12.0 -13.4 -16.3 -57.1 7.6 6.5 -5.1 -17.2

12/31/15 -7.7 -13.9 -20.2 -50.7 2.7 5.1 -7.7 -18.3
12/31/16 -9.1 -11.9 -34.0 -49.7 3.3 7.5 -17.0 -24.1
12/31/17 -6.6 -10.9 -51.3 -62.8 11.7 4.6 -23.7 -32.9

Notes: This table reports the percentage changes in the level of the euro, yen, and the Dow Jones Total Stock Market Index (“Stocks”)
during the first one or four quarters of the associated “Severely Adverse Scenario” from that year’s stress test. These percentage changes
are treated as returns in my analysis. Stress Test Date lists the date on which that year’s scenario begins. AUD shows the imputed return
for the Australian dollar, using the imputation method described in the text.
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Table 4: Risk-Neutral Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 63 -0.8 0.3 0.9923 -1.8 1.0 0.9593
9/30/13 59 -0.9 0.4 0.9838 -2.1 0.7 0.9987
9/30/14 62 4.8 0.6 0.0000 9.9 1.0 0.0000

12/31/15 60 1.9 0.4 0.0000 4.5 0.8 0.0000
12/31/16 61 2.8 0.8 0.0000 7.0 1.2 0.0000
12/31/17 45 31.4 5.0 0.0000 28.6 4.3 0.0000

Notes: This table reports the mean and standard deviation of stress test scenario returns for the risk-neutral externality-mimicking
portfolio portfolio. The risk-neutral EMP portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well
as a risk-free asset. The variance-covariance matrix used in the computation is computed from currency options prices. The sample is
all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting and within 180 days of
a stress test date. Each of these dates is assigned to the nearest stress test date. N reports the number of dates assigned to each stress
test, and P-Value reports the p-value associated with a one-sided hypothesis test that the mean return is negative. Results are reported for
both one-quarter (1Q) and four-return (4Q) returns from the stress test scenarios.
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Internet Appendix

A Details on Data Construction

A.1 The Risk-Neutral Variance-Covariance Matrix

The risk-neutral variance-covariance matrix ΣA∗,I,i∗ is defined as variance-covariance ma-
trix, under the intermediaries’ risk-neutral measure, of the returns RI

a,s. In the case of
currencies, these are the returns of investing at the IOER rate for one month and using a
currency forward to purchase, say, yen, and then immediately exchanging back to dollars
the spot rate. Let S j,t be the spot exchange rate of currency j per dollar (e.g. euros per
dollar, yen per dollar), and let Fj,t be the one-month forward rate. The empirical analog of
the return RI

a,s is

R j,t = RI
f ,t

Fj,t

S j,t+1
,

where RI
f ,t is the gross IOER rate accumulated over the one-month time horizon. Note that,

because RI
f ,t is the risk-free rate available to intermediaries, we must have E∗t [

Fj,t
S j,t+1

] = 1
where E∗t denotes expectations taken under the intermediaries’ risk-neutral measure.

To construct the risk-neutral variance-covariance matrix of currency returns, I use daily,
London-closing at-the-money 1-month implied volatilities from Bloomberg for each cur-
rency pair. The volatilities are “percentage” volatilities from a log-normal Garman and
Kohlhagen (1983) model. If S j,t and S j′,t are two exchange rates vs. the US dollar at time t

(e.g. euros per dollar and yen per dollar), then

Cov∗t [∆s j,t+1,∆s j′,t+1] =
1
2
(V ∗t [∆s j,t+1]+V ∗t [∆s j′,t+1]−V ∗t [∆s j,t+1−∆s j′,t+1])

where ∆s j,t = ln(S j,t+1
S j,t

) and Cov∗ and V ∗ denote the risk-neutral variance and covariance,
respectively. Under the assumption of log-normality,

Cov∗t [
S j,t

S j,t+1
,

S j′,t

S j′,t+1
] = E∗t [exp(−∆s j,t+1−∆s j′,t+1)]−E∗t [exp(−∆s j,t+1)]E∗t [exp(−∆s j′,t+1)]

=
S j,tS j′,t

Fj,tFj′,t
(exp(Cov∗t [∆s j,t+1,∆s j′,t+1])−1),
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where F1,t and F2,t are the forward rates. It follows that

Σ
A∗,I,i
j, j′,t = (RI

f ,t)
2(exp(

1
2
(V ∗t [∆s j,t+1]+V ∗t [∆s j′,t+1]−V ∗t [∆s j,t+1−∆s j′,t+1]))−1).

In theory, I should make an adjustment to Bloomberg implied volatilities to use a dis-
count rate associated with the IOER rate, instead of the more standard OIS rate. However,
the difference amounts to about one basis point in the option price, and hence is negligible.
I have also experimented with more sophisticated methods of computing the risk-neutral
variance-covariance matrix (the “SVIX” method of Martin (2017)). Such methods avoid
log-normality assumptions at the expense of additional data requirements and complexity,
and have little impact on my results.

A.2 The Physical Expected Returns and Variance-Covariance Matrix

Expected returns under the physical measure are required both to conducted the expected
returns test described in the text and to construct the physical measure externality-mimicking
portfolio. The latter also requires an estimate of the physical measure variance-covariance
matrix of returns.

As described in the text, I assume that currencies are random walks. Specifically, I
assume log-normal exchange rates and that the log-exchange rate is a martingale. The
expected excess return of using the IOER rate and a forward to purchase, say, one yen one
month from now, is the determined by the difference between the forward and expected
exchange rate. That is,

µ
A∗,I,p
j,t = RI

f ,tEt [
Fj,t

S j,t+1
],

where St+1 is the exchange rate in foreign currency per dollar, Ft is the one-month forward
rate, RI

f ,t is the IOER rate accumulated over the next month, and expectations are taken
under the physical measure. Under the stated assumptions,

µ
A∗,I,p
j,t = RI

f ,t
Fj,t

S j,t
exp(

1
2

Vt [∆s j,t+1])

where Vt [∆st+1] is the conditional variance of the log change in the exchange rate. Conse-
quently, armed with an estimate for Vt [∆st+1], we can construct expected returns.

I estimate a daily physical-measure variance-covariance matrix using an exponentially
weighted moving average of the daily series, with a decay factor of 0.97 (a procedure
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known as the “RiskMetrics” methodology, see for example Alexander (2008)). This avoids
using future information to estimate the variance-covariance matrix. I initialize my variance
and covariance estimates at the beginning of 2011 with the realized variance/covariance for
2010. I then scale my daily estimated variance-covariance matrix to a one-month horizon.31

I use this estimated variance-covariance matrix of log returns both construct my esti-
mates of mean returns, as above, and to construct a variance-covariance matrix for arith-
metic returns, as described in appendix section A.1, under the assumption of log-normality.
In this case,

Covt [
S j,t

S j,t+1
,

S j′,t

S j′,t+1
] = Et [exp(−∆s j,t+1−∆s j′,t+1)]−Et [exp(−∆s j,t+1)]Et [exp(−∆s j′,t+1)]

=
µ

A∗,I,p
j,t µ

A∗,I,p
j′,t

(RI
f ,t)

2

S j,tS j′,t

Fj,tFj′,t
(exp(Covt [∆s j,t+1,∆s j′,t+1])−1)

and

Σ
A∗,I,p
j, j′,t = (µA∗,I,p

j,t µ
A∗,I,p
j′,t )(exp(

1
2
(Vt [∆s j,t+1]+Vt [∆s j′,t+1]−Vt [∆s j,t+1−∆s j′,t+1]))−1).

A.3 The SPDR ETF/SPY Option Arbitrage

In this section, I describe an equity-related arbitrage that I include in a robustness exercise.
The arbitrage I consider is an arbitrage between the SPDR S&P 500 ETF and options
on that ETF, which trade on the CBOE under the ticker SPY. This arbitrage is closely
related to the classic index-future arbitrage involving S&P 500 futures (e.g. Chung (1991);
MacKinlay and Ramaswamy (1988); Miller et al. (1994)).

The arbitrage I study considers the cost of purchasing a share of the SPDR ETF and
holding it for one month as compared to the cost of purchasing that ETF via put-call parity
(by buying a call and selling a put with a one month horizon). The ETF share itself is
the arbitrage-able asset (both because it is easily purchased by households and because
regulations affect intermediaries’ trade in equity shares). The intermediary, to replicate
the ETF, can buy a call on the ETF, sell a put on the ETF at the same strike, and invest
enough cash at the IOER rate over the next month to cover the exercise price of the put/call.
Regardless of whether the ETF ends up above or below the strike price, the intermediary

31More sophisticated approaches that incorporate higher-frequency data might yield better results. See, for
example, Ghysels et al. (2006).
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will end up owning the ETF in one month.
The particular details of this arbitrage are complicated by the fact that the SPY options

are “American” and not “European” options, meaning they can be exercised at any time.
I deal with this issue by employing the Margrabe (1978) bound on American put prices,
which in my setting (short time horizons and low interest rates) is reasonably tight. I discuss
this issue in more detail below.

The ETF and the replicating portfolio will generate identical payoffs as long as there are
no dividends over the course of the month (more precisely, that an ex-dividend date does
not occur within the month). The ETF has ex-dividend dates quarterly, usually on the third
Friday of March, June, September, and December.32 I therefore limit my sample to avoid
these dates. This illustrates one of the two main advantages the ETF-based arbitrage has
over the traditional S&P 500 cash-futures arbitrage. The stocks of the S&P 500 index pay
dividends often, and hence most studies of index arbitrage assume either perfect foresight
of dividends or use a dividend forecast, whereas no such assumptions are required for the
ETF arbitrage. The second advantage relates to transactions costs and stale prices. The
traditional index arbitrage involves buying and selling 500 stocks, generating substantial
transactions costs and exacerbating the issue that prices might not be synchronized. Using
the ETF, which is one of the most actively traded securities in the equity market and has a
very small bid-offer, mitigates many of these issues. Of course, synchronizing the options
prices and the ETF price is still critically important, as in Van Binsbergen et al. (2012).

For this arbitrage, I am assuming that the costs associated with posting margin on the
options are negligible. That is, the margin is sufficiently small, and the interest rate the in-
termediary receives on the posted margin sufficiently close to the IOER rate, that these costs
are negligible. This assumption is also, implicitly, being applied to the margin required by
counterparties in the OTC market for FX swaps when studying CIP violations.

Because the SPY options are American, not European, I construct arbitrage bounds as
opposed to a single arbitrage measure. It is straightforward to observe that an American
call or put must be weakly more valuable than its European counterpart, but the possibility
of early exercise implies that this weak inequality might be strict.

Let pa(K) ∈ A and ca(K) ∈ A denote the American put and American call of strike
K. Following the argument of Margrabe (1978), let p̂a(K) be an American put option to
exchange the ETF for an amount that grows at the IOER rate, K exp(t · ln(RI

f )), where t is

32The prospectus, available at https://us.spdrs.com/library-content/public/SPDR 500%20TRUST PROSPECTUS.pdf,
describes the details of how the ex-dividend dates are determined.
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the time of the exchange. Because the option matures prior to the next FOMC meeting,
the IOER rate is assumed to be constant. Because the intermediary is always indifferent
between buying the ETF and the risk-free bond, there is never any advantage to early ex-
ercise. Consequently, the put option p̂a has the same value as a European style put option
with the same expiry and a strike KRI

f . Moreover, because RI
f ≥ 1, the option p̂a is more

valuable than the American put pa. Hence, by no-arbitrage, the following inequalities hold
for the American put:

0≤ Qpe(K) ≤ Qpa(K) ≤ Qp̂a(K) = Qpe(KRI
f )
,

where pe(K) ∈ A is the European put of strike K. Using essentially the same argument,
let ĉa be an American call option to buy the ETF in exchange for K

RI
f
exp(t · ln(RI

f )) dollars

at time t. Early exercise is again never optimal, and hence this call’s value is equal to
the European call with strike K and the same expiry. Moreover, this call dominates the
American call with strike K and the same expiry, and hence early exercise is never optimal
and the American and European calls have the same value. That is,

Qca(K) = Qce(K),

where ce(K) ∈ A is the European call of strike K.
Let us now consider how to replicate the ETF. If I observed European options prices, I

would calculate the arbitrage, for any strike K, as

χe =
Qce(K)−Qpe(K)+

K
RI

f
−Qe

Qce(K)−Qpe(K)+
K
RI

f

,

where Qe is the ETF price. Using the put inequalities derived above,

χe ≥ χe,min(K) =
Qca(K)−Qpa(K)+

K
RI

f
−Qe

Qca(K)−Qpa(K)+
K
RI

f

,

and, for K′ = K
RI

f
,

χe ≤
Qca(K′RI

f )
−Qpa(K′)+K′−Qe

Qca(K′RI
f )
−Qpa(K′)+K′

. (12)
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If RI
f is sufficiently close to one (and one month’s worth of interest is indeed quite small),

these bounds will be tight.
One implementation issue that arises from these inequalities is that the strike KRi

f is un-
likely to be traded. However, by the convexity of call prices (another cashflow dominance
argument),

Qce(KRJ
f )
≤ αQce(K1)+(1−α)Qce(K2)

for any K1 ≤ KRI
f ≤ K2 such that αK1 +(1−α)K2 = KRI

f . Choosing K1 and K2 to be as
close as possible to KRI

f generates the tightest bound. If KRI
f is greater than the maximum

traded strike Kmax, then Qce(KRI
f )
≤Qce(Kmax). Using these bounds along with (12) generates

an implementable upper-bound, which I will call χe,max(K). Because these bounds must
hold for all K, we are free to choose the greatest lower bound and least upper bound from
the set of available strikes.

Another empirical issue to consider in the implementation of this trading strategy is
whether to use bids and offers or mid-prices. Bid-offers are wide in options markets, and
likely substantially overstate the bid-offer associated with “delta one” trades. That is, buy-
ing a call and selling a put together likely has a much smaller bid-offer than doing those
trades separately. For this reason, authors such as van Binsbergen et al. (2019) use mid-
prices. However, mid-prices can exhibit strange behavior when bid-offers are particularly
wide (which is why those authors use outlier-robust methods of analysis). To deal with
this issue, I consider only strikes K with sufficiently small bid-offers. In particular, I re-
strict attention to values of χe,min(K) which the difference between the mid-price and the
lowest bound that can be constructed from the various bids and offers is less than 0.05%
of the spot price Qe. Under this restriction, the lower bound χe,min(K) constructed from
mid prices is at most ˜5bps too high in the worse-case scenario. Similarly, I require that
the difference between χe,max(K) and the highest bound constructed from bids and offers
be less than 0.05% of Qe. From these two sets of valid strikes (one for χe,min and one for
χe,max), I choose the strikes that generate the tightest possible bounds on χe.

After finding the maximum and minimum bounds, χe,min and χe,max, I define the esti-
mated arbitrage as

χe =


χe,min max(χe,min,χe,max)> χRF

χe,max min(χe,min,χe,max)< χRF

χRF otherwise.

In other words, I will assume that there is zero risk-neutral excess arbitrage (χe− χRF) if
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this is possible, and assume the minimum amount, in absolute value terms, if it is not possi-
ble.33 In practice, my final dataset never has χe = χRF , because the bounds are sufficiently
tight.

The dataset is a high-frequency (minute-level) dataset of options quotes purchased from
the CBOE DataShop. From this dataset (which contains quotes for all minutes the ex-
change is open), I have extracted the five minutes on each day immediately preceding the
Bloomberg London closing time. On most days, this is 12:55pm-12:59pm EST, although
the EST hour moves around due the asynchronous use of daylight savings time in the US
and UK.

This dataset contains SPY options of many different expiries. Because I am interested in
one-month options (where one-month is defined based on FX trading conventions) that do
not cross an SPY dividend date, I restrict attention to expiries between 21 and 58 days in the
future. These cutoffs ensure expiries are roughly one month and using these specific cutoffs
simplifies the logic of determining whether an expiry occurs after the next ex-dividend date
on the SPY. I also require that each expiry have at least eleven different strikes quoted to
be included in the dataset.

The result of these restrictions and calculations is a dataset containing many estimates
of χe on each day (five minutes times the number of valid expiries). From this set, for each
day I search for minute/expiry pairs with non-missing data, expiries that cross neither the
next SPY ex-dividend date nor the next FOMC meeting, and that have no arbitrage viola-
tions based on the bids and offers of options prices.34 Among the surviving minute/expiry
pairs, I choose first the expiries that are closest to the FX market definition of one month,
and then among those choose the minute-expiry pair with the narrowest bid-offer for the
relevant arbitrage bounds. This procedures results in a unique value for χe on each day.

A.4 Expectations, Variance, and Covariance with the SPDR Arbitrage

To use the SPY arbitrage described in the preceding sub-section in my exercise, I require
estimates of its variance and covariance with currency returns under both the physical and
risk-neutral measures, as well as an estimate of its expected return under the physical mea-
sure.

33Note that, because I am using mid prices, it is possible to have χ̃e,min > χ̃e,max.
34This last filter eliminates a few days with bad options quotes.
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I use, as an empirical analog of the one-month return RI
a,s = (1−χa)Ra,s,

Re,t = (1−χe,t−1)
Qe,t

Qe,t−1
,

where Qe,t is the spot SPY price. Note that this definition does not include dividends,
because I have restricted attention to dates on which dividends will not occur over the next
month.

To compute expected returns under the physical measure, I assume an equity premium
of 5% (roughly the average value of Martin (2017) in recent years). Although many pre-
dictors of time-varying equity returns have been documented in the literature, over a one-
month horizon most of these predictors are quite weak, and it seems reasonable to use an
estimate of the unconditional equity premium. Under this assumption,

µ
A∗,I,p
t = (1−χe,t)(R f ,t−1+1.05∆t),

where ∆t is the time (in years) to the next month under the FX market convention and R f ,t

is the US OIS rate accumulated over that month.
To compute the physical-measure variance-covariance matrix, I use a daily series of

surprise log-returns,

re,t = ln(Qe,t)− ln(Qe,t−1)− ln(R f ,t−1+1.05∆t),

consistent with how I construct surprise currency returns. I then use the same “Risk-
Metrics” methodology described in appendix section A.2.

I compute the risk-neutral variance-covariance matrix using the SVIX method of Martin
(2017) and data on quanto options from Markit (as in Kremens and Martin (2019)). Apply-
ing the SVIX methodology of Martin (2017) (in particular, equation (11) of that paper) to
the SPY options data used to construct the arbitrage series χe, I compute V ∗t−1[

Qe,t
Qe,t−1

], and
then scale by (1−χe,t−1)

2 to compute the variance.
I extract covariances from data on quanto options on the S&P 500. A quanto call

option is, for example, the right to buy the S&P 500 for a fixed amount of euros at a certain
date. Such options are traded in OTC markets, and Markit provides a pricing service to
help dealers that trade these options mark their books. The prices represent the (trimmed,
cleaned) averages of prices submitted by participating dealers. My data set includes prices
for call and put options for all of currencies used in this paper. Unfortunately, these options
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have a twenty-four month expiry (this is essentially the only traded expiry), and the data is
monthly rather than daily. I discuss how I deal with both of these issues below. My use of
the quanto options is also complicated by the presence of arbitrage (CIP violations). I deal
with this issue by pricing the options under the assumptions of the framework developed in
this paper, and then extracting a risk-neutral covariance from those pricing formulas.

Let S j,t be the spot exchange rate (e.g. euros per dollar). The dollar price of a quanto
call (qc) option, as a percentage of the spot price, with a strike equal to the current spot
price is

qc j,t =

1
RI

f ,t,t+24
E∗t [

X j,t
S j,t+24

max{Qe,t+24−Qe,t ,0}]

Qe,t
,

where X j,t is the agreed-upon fixed exchange rate for the quanto option and RI
f ,t,t+24 is the

intermediaries’ cumulative discount factor over the next two years. The Markit data use the
convention X j,t = S j,t .

Quanto-put (qp) prices follow an analogous formula, and by put-call parity, for the
strikes in my data,

RI
f ,t,t+24(qc j,t−qp j,t) = E∗t [

S j,tQe,t+24

S j,t+24Qe,t
]−E∗t [

S j,t

S j,t+24
].

My data also includes hypothetical prices for quanto call and put options under the assump-
tion of zero correlation between the foreign exchange rate and the S&P 500. Under this
assumption, the price of the quanto call with X j,t = S j,t is

zc j,t = E∗t [
S j,t

S j,t+24
]×

1
RI

f ,t,t+24
E∗t [max{Qe,t+24−Qe,t ,0}]

Qe,t

and hence is equal to the (inverse) forward premium multiplied by the price of the vanilla
(standard) call option on the S&P 500. That is, by asking for “zero-correlation” quanto call
prices, Markit is not asking dealers to price a new exotic instrument but rather to report the
levels of two standard contracts along with the the price of the quanto call option.

Again by put-call parity,

RI
f ,t,t+24(zc j,t− zp j,t) = E∗t [

S j,t

S j,t+24
]E∗t [

Qe,t+24

Qe,t
]−E∗t [

S j,t

S j,t+24
],

where zp j,t is the zero-correlation quanto put price.
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It follows that

E∗t [
Qe,t+24

E∗t [Qe,t+24]

Fj,t,t+24

S j,t+24
] =

1+ Fj,t,t+24
S j,t

RI
f ,t,t+24(qc j,t−qp j,t)

1+ Fj,t,t+24
S j,t

RI
f ,t,t+24(zc j,t− zp j,t)

, (13)

where Fj,t,t+24 is the two-year forward price.
As mentioned previously, the quanto dataset is a monthly dataset (with a few missing

observations) of 24-month expiry options. The goal of this exercise is to extract one-month
horizon covariances. To that end, I assume that correlations are constant over horizon, so
that I can extract a 24-month risk-neutral correlation and then assume it is equal to the one-
month correlation. I will use the most recent non-missing observation for each currency. In
the data, the correlations I extract move slowly over time.

Ignoring these issues for a moment, the quantity of interest is

Σ
A∗,I,i∗
j,e,t = E∗t [Re,t+1R j,t+1]−E∗t [Re,t+1]E∗t [R j,t+1],

where R j,t is the intermediary currency return defined in A.1. This is

Σ
A∗,I,i∗
j,e,t = (1−χe,t)RI

f ,t
E∗t [Qe,t+1]

Qt
Cov∗t [

Qe,t+1

E∗t [Qe,t+1]
,

Fj,t

S j,t+1
]

= (RI
f ,t)

2Corr∗t [
Qe,t+1

E∗t [Qe,t+1]
,

Fj,t

S j,t+1
]V ∗t [

Qe,t+1

E∗t [Qe,t+1]
]

1
2V ∗t [

Fj,t

S j,t+1
]

1
2 . (14)

Under the assumption that correlations are constant across horizon,

Corr∗t [
Qe,t+1

E∗t [Qe,t+1]
,

Fj,t

S j,t+1
] =

Cov∗t [
Qe,t+24

E∗t [Qe,t+24]
,

Fj,t,t+24
S j,t+24

]

V ∗t [
Qe,t+24

E∗t [Qe,t+24]
]

1
2V ∗t [

Fj,t,t+24
S j,t+24

]
1
2

=
E∗t [

Qe,t+24
E∗t [Qe,t+24]

Fj,t,t+24
S j,t+24

]−1

V ∗t [
Qe,t+24

E∗t [Qe,t+24]
]

1
2V ∗t [

Fj,t,t+24
S j,t+24

]
1
2
. (15)

I compute risk-neutral variances V ∗t [
Qe,t+24

E∗t [Qe,t+24]
] and V ∗t [

Fj,t,t+24
S j,t+24

] from Bloomberg at-the-
money 2-year at-the-money SPX implied volatilities and 2-year FX volatilities (implicitly
assuming log-normality). As discussed earlier, using an SVIX-based calculation would
avoid log-normality assumptions at the expense of increased data requirements, computa-
tional complexity, and uncertainty related to bid-offers and illiquidity of out-of-the-money
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options. Under an assumption of log-normality,

V ∗t [
Qe,t+24

E∗t [Qe,t+24]
] = exp(V ∗t [ln(Qe,t+24)])−1,

and likewise
V ∗t [

Fj,t,t+24

S j,t+24
] = exp(V ∗t [ln(S jt+24)])−1.

One last implementation concerns the intermediaries’ two-year discount factor, RI
f ,t,t+24.

In the main text, I study only dates at least one month before an FOMC meeting and use the
IOER rate as the one-month rate. This approach does not allow me to construct a two-year
rate. For simplicity, I use instead the two-year OIS rate and then add the sample mean
spread between IOER and fed funds (see Table 1). This adjustment makes almost no dif-
ference to the estimated correlations. van Binsbergen et al. (2019) offer a better approach:
extracting a two-year intermediary discount factor using “box” trades (put-call parity for
different strikes). As with the SVIX methodology, this approach is theoretically superior
but increases data requirements and concerns about issues related to illiquidity, bid-offer
spreads, and the like.

A.5 Construction of the Dollar and Carry Portfolios

As an additional robustness exercise, I construct an externality-mimicking portfolio under
the assumption that A∗ includes a risk-free asset and two portfolios of currency trades,
which I will refer to as dollar and carry.

These portfolios are portfolios of five developed-market currencies vs. the US dollar.
The five currencies (plus the US dollar) in the portfolio are: euro, yen, pound, Australian
dollar, and Canadian dollar. To select these currencies, I started with the nine non-US-
dollar G10 currencies. I removed the New Zealand dollar, Swedish krona, and Norwegian
Krone due to limited data availability for FX options and OIS swaps. I removed the Swiss
franc both because of problems with its OIS rate (discussed in Du et al. (2020)) and because
of the pegging and de-pegging events that occur during the sample period.

From these five non-USD currencies, I define the dollar and carry portfolios, in the
spirit of the factor approach of Lustig et al. (2011). Dollar is an equal-weighted basket of
the five currencies vs. USD. Note that this portfolio is short USD vs. these other curren-
cies, not long. This sign convention helps make the portfolio definition consistent with the
exercise in the main text. Carry is a long-short portfolio that is long the two currencies
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with the smallest 1m forward premium and short the two countries with the largest forward
premium. For almost all of the sample, this means long AUD and CAD and short JPY and
EUR. To ensure a positive price, I add some of the risk-free USD investment to the Carry
portfolio. This has no effect on the excess arbitrage χcarry− χRF , and hence no effect on
resulting externality-mimicking portfolio.

Expected returns and variance-covariance matrices for these portfolios can be con-
structed from the assumed expected returns and variance-covariance matrices of the in-
dividual currencies (as described in the previous parts of this appendix section). Because
some of the currencies in these portfolios are not explicitly modeled in the stress tests, I
impute returns using the same procedure used in the main text for AUD.

B Additional Results

B.1 Predicted Arbitrage in Other Currencies

This sub-section presents the predicted vs. actual arbitrage using the risk-neutral externality-
mimicking portfolio for three additional currencies: CAD, CHF, and SEK. These currencies
have enough OIS swap and options data available to make these predictions, although for
both CHF and SEK the sample size is reduced.
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Figure 1: Actual vs. Predicted Excess Arbitrage in Canadian Dollar
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CAD Pred. CAD

Notes: This figure plots excess the annualized CAD excess arbitrage χCAD − χ f , as defined in (8), along with the predicted value
defined as in (11). The excess arbitrage is approximately equal to the one month OIS-based CAD-USD CIP violation. The risk-neutral
externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset.
The variance-covariance matrix used in the computation and the covariances with the pound are inferred from currency options. The
sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.

Figure 2: Actual vs. Predicted Excess Arbitrage in Swiss Franc
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Notes: This figure plots excess the annualized CHF excess arbitrage χCHF − χ f , as defined in (8), along with the predicted value
defined as in (11). The excess arbitrage is approximately equal to the one month OIS-based CHF-USD CIP violation. The risk-neutral
externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset.
The variance-covariance matrix used in the computation and the covariances with the pound are inferred from currency options. The
sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.The two vertical
lines indicate the beginning and end of a period during which CHF was pegged to EUR.
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Figure 3: Actual vs. Predicted Excess Arbitrage in Swedish Krona
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Notes: This figure plots excess the annualized SEK excess arbitrage χSEK − χ f , as defined in (8), along with the predicted value
defined as in (11). The excess arbitrage is approximately equal to the one month OIS-based SEK-USD CIP violation. The risk-neutral
externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset.
The variance-covariance matrix used in the computation and the covariances with the pound are inferred from currency options. The
sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.

B.2 Results using the Physical Measure

This sub-section presents results using the physical-measure externality-mimicking portfo-
lio, as described in appendix section A.2. Table 1 presents a version of the summary statis-
tics table, with an estimated variance-covariance matrix in the place of an option-implied
variance-covariance matrix. I then present the portfolio weights, predicted vs. actual GBP
arbitrage, and stress test returns for the physical measure. The results are similar to their
counterparts from the main text.
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Table 1: Summary Statistics for Physical-Measure Arbitrage
Pounds Euros Yen Aus.

Dollar
OIS-
IOER

Arbitrage Mean (bps/year) 6.7 22.4 28.3 -15.4 -12.5
Arbitrage SD (bps/year) 28.2 37.7 37.2 18.5 2.8

Empirical Vol. (bps/year) 812 852 922 1046 -
Empirical Corr. with Pound/USD 1.00 0.58 0.18 0.46 -
Empirical Corr. with Euro/USD 0.58 1.00 0.32 0.46 -
Empirical Corr. with Yen/USD 0.18 0.32 1.00 0.24 -

Empirical Corr. with SPDR 0.23 0.10 -0.34 0.37 -
Empirical Corr. with HKM 0.26 0.17 -0.31 0.31 -

N 444 444 444 444 444
Notes: This table presents summary statistics for the sample of days from Jan 4, 2011 to March 12, 2018 at least one month before an
FOMC meeting. Arbitrage mean χa is defined using (8) for a claim to e..g. one euro in one month, priced in dollars today. The OIS-
IOER arbitrage is the risk-free arbitrage, based on a claim to one dollar in one month. Arbitrage SD is the daily standard deviation of χa.
Empirical Vol. and Empirical Corr. variables for currencies are the time-series means of the correlations between the currency returns,
as estimated on a rolling basis by the methodology described in appendix section A.2.. Empirical Corr. with SPDR and Empirical Corr.
with HKM are the time-series means of the correlations between the currency returns and the SPDR ETF (which tracks the S&P 500)
and with the He et al. (2017) daily intermediary capital factor, as estimated on a rolling basis by the methodology described in appendix
section A.2.

Figure 4: Externality-Mimicking Portfolio Weights, Physical Measure
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is constructed using
a set of arbitrage-able assets A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset. The reference measure
is the physical measure, meaning that expected returns calculated under the assumption that log exchange rates are random walks and
the variance-covariance matrix is estimated using the RiskMetrics methodology. The sample is all US trading days from Jan 4, 2011 to
March 12, 2018 that are at least one month before an FOMC meeting.
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Figure 5: Actual vs. Predicted Excess Arbitrage in Pounds, Physical Measure
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP−χ f , as defined in (8), along with the predicted value defined
as in (11). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation. The externality-mimicking
portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset. The reference measure
is the physical measure, meaning that expected returns calculated under the assumption that log exchange rates are random walks and
the variance-covariance matrix, as well as the covariances with the pound, is estimated using the RiskMetrics methodology. The sample
is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.

Table 2: Physical Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 63 -1.0 0.3 0.9998 -2.8 0.8 0.9995
9/30/13 59 -1.2 0.4 0.9963 -2.7 0.7 0.9999
9/30/14 62 6.2 0.9 0.0000 11.7 1.4 0.0000

12/31/15 60 1.9 0.5 0.0002 4.0 0.9 0.000
12/31/16 61 1.4 0.8 0.0384 4.9 1.1 0.0000
12/31/17 45 35.7 4.3 0.0000 31.8 3.3 0.0000

Notes: This table reports the mean and standard deviation of stress test scenario returns for the physical-measure externality-mimicking
portfolio portfolio. The physical measure EMP portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar,
as well as a risk-free asset. The expected returns are calculated under the assumption that log exchange rates are random walks and
the variance-covariance matrix is estimated using the RiskMetrics methodology. The sample is all US trading days from Jan 4, 2011
to March 12, 2018 that are at least one month before an FOMC meeting and within 180 days of a stress test date. Each of these dates
is assigned to the nearest stress test date. N reports the number of dates assigned to each stress test, and P-Value reports the p-value
associated with a one-sided hypothesis test that the mean return is negative. Results are reported for both one-quarter (1Q) and four-return
(4Q) returns from the stress test scenarios.
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B.3 Results including Equity Arbitrage

This sub-section presents results for a risk-neutral externality-mimicking portfolio that in-
corporates JPY, EUR, and AUD arbitrages as well as the SPY-based arbitrage described in
appendix section A.3 and the risk-free rate arbitrage. The covariances and expected returns
under the physical measure used in this section are described in appendix section A.4.

Table 3: Summary Statistics for Arbitrage including SPY
Pounds Euros Yen Aus.

Dollar
SPY OIS-

IOER

Arbitrage Mean (bps/year) 6.7 22.4 28.3 -15.4 5.4 -12.5
Arbitrage SD (bps/year) 28.2 37.7 37.2 18.5 47.5 2.8

OI Vol. (bps/year) 859 950 977 1073 1566 -
OI Corr. with Pound/USD 1.00 0.56 0.22 0.47 0.28 -
OI Corr. with Euro/USD 0.56 1.00 0.31 0.51 0.11 -
OI Corr. with Yen/USD 0.22 0.31 1.00 0.26 -0.29 -

Empirical Corr. with SPDR 0.23 0.10 -0.34 0.37 1.00 -
Empirical Corr. with HKM 0.26 0.17 -0.31 0.31 0.66 -
Implied Corr. with S&P 500 0.28 0.11 -0.29 0.50 1.00 -

N 444 444 444 444 312 444
Notes: This table presents summary statistics for the sample of all US trading days from Jan 4, 2011 to March 12, 2018 at least one
month before an FOMC meeting. The SPY statistics are restricted to dates at least one month before a SPDR ex-dividend date. Arbitrage
mean χa is defined using (8) for a claim to e..g. one euro in one month, priced in dollars today. The OIS-IOER arbitrage is the risk-free
arbitrage, based on a claim to one dollar in one month. Arbitrage SD is the daily standard deviation of χa. OI Vol. and OI Corr. variables
for currencies are the time-series mean of a daily series extracted from variance-covariance matrices implied by currency options, SPY
options, and quanto options. Empirical Corr. with SPDR and Empirical Corr. with HKM are the time-series means of the correlations
between the currency returns and the SPDR ETF (which tracks the S&P 500) and with the He et al. (2017) daily intermediary capital
factor, as estimated on a rolling basis by the methodology described in appendix section A.2. Implied Corr. with S&P 500 is based on
the time-series mean of the currency correlation with the S&P 500 extracted from quanto options and described in appendix section A.4.
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Figure 6: Risk-Neutral Externality-Mimicking Portfolio Weights with SPY
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is constructed using
a set of arbitrage-able assets A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset and the SPDR ETF. The
reference measure is the intermediaries’ risk-neutral measure, meaning that expected returns are equal to the IOER rate and the variance-
covariance matrix is inferred from currency options, SPY options, and quanto options. The sample is all US trading days from Jan 4,
2011 to March 12, 2018 that are at least one month before an FOMC meeting and one month before a SPDR ex-dividend date.

Figure 7: Actual vs. Predicted Excess Arbitrage in Pounds, Risk-Neutral Measure with
SPY
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP − χ f , as defined in (8), along with the predicted value
defined as in (11). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation. The risk-neutral
externality-mimicking portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset
and the SPDR ETF. The variance-covariance matrix used in the computation and the covariances with the pound are inferred from
currency options, SPY options, and quanto options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at
least one month before an FOMC meeting and one month before a SPDR ex-dividend date.
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Table 4: Risk-Neutral EMP Expected Returns with SPY
N Mean (bps) Standard Deviation (bps) Test P-Value

Full Sample 312 -111 43.3 ≥ 0 0.0053
Quarter-Ends 93 -425 125.9 ≥ 0 0.0005

Year-Ends 23 -1495 439.9 ≥ 0 0.0013
QE - Full -447.0 = 0 0.0000
YE - QE -1421 = 0 0.0000

Notes: This table reports the excess expected return under the physical measure of the risk-neutral externality-mimicking portfolio (def-
inition 1), under the assumption that currencies follow a random walk and with a 5% equity risk premium. The portfolio is constructed
from an A∗ that contains the yen, euro, and Australian dollar, as well as a risk-free asset and the SPDR ETF. The variance-covariance
matrix used in the computation is inferred from currency options, SPY options, and quanto options. The full sample is all US trading
days from Jan 4, 2011 to March 12, 2018 at least one month before an FOMC meeting and one month before a SPDR ex-dividend
date. The quarter-end and year-end sub-samples are restricted to days on which a quarter- or year-end occurs between the spot FX
settlement date and the one-month FX settlement date. The QE-NQE and YE-NYE QE report the mean difference between quarter-end
vs. non-quarter-end dates and year-end vs. non-year-end quarter-end. Test indicates the hypothesis about the mean being tested, and
P-Value reports the associated p-value.

Table 5: Risk-Neutral Portfolio with SPY, Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 28 -1.9 0.6 0.9989 -6.0 2.1 0.9956
9/30/13 52 -0.7 1.5 0.6786 -17.7 4.3 0.9999
9/30/14 54 2.5 1.3 0.0304 -14.3 2.0 1.0000

12/31/15 53 0.1 0.7 0.4302 0.4 1.6 0.4142
12/31/16 55 -23.4 1.6 1.0000 -30.2 2.1 1.0000
12/31/17 41 0.0 5.4 0.5013 -16.7 4.8 0.9994

Notes: This table reports the mean and standard deviation of stress test scenario returns for the risk-neutral externality-mimicking
portfolio portfolio. The risk-neutral EMP portfolio is constructed with an A∗ that contains the yen, euro, and Australian dollar, as well
as a risk-free asset and the SPDR ETF. The variance-covariance matrix used in the computation is computed from currency options
prices, SPY options, and quanto options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one
month before an FOMC meeting, one month before a SPDR ex-dividend date, and within 180 days of a stress test date. Each of these
dates is assigned to the nearest stress test date. N reports the number of dates assigned to each stress test, and P-Value reports the
p-value associated with a one-sided hypothesis test that the mean return is negative. Results are reported for both one-quarter (1Q) and
four-return (4Q) returns from the stress test scenarios.

B.4 Results with Dollar and Carry Portfolios

This sub-section presents for a risk-neutral externality-mimicking portfolio that incorpo-
rates “Carry” and “Dollar” arbitrages, as well as a risk-free rate arbitrage. Carry and Dollar
(defined in appendix section A.5) are portfolios of currency trades. Carry is long two low-
forward-premium currencies (AUD and CAD for most of the sample) and short two high-
forward-premium currencies (JPY and EUR for most of the sample). Dollar is an equally
weighted portfolio of currencies vs. USD. Note when interpreting the results below that
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Dollar is short USD, not long USD.

Table 6: Summary Statistics for Carry and Dollar Arbitrage
Carry Dollar OIS-

IOER

Arbitrage Mean (bps/year) -44.1 8.6 -12.5
Arbitrage SD (bps/year) 31.4 23.3 2.8

OI Vol. (bps/year) 835 680 -
OI Corr. with Carry 1.00 0.15 -
OI Corr. with Dollar 0.15 1.00 -

Empirical Corr. with SPDR 0.56 0.21 -
Empirical Corr. with HKM 0.46 0.21 -
Implied Corr. with S&P 500 0.68 0.30 -

N 444 444 444
Notes: This table presents summary statistics for the sample of all US trading days from Jan 4, 2011 to March 12, 2018 at least one
month before an FOMC meeting. Arbitrage mean χa is defined using (8) for a claim to e..g. one euro in one month, priced in dollars
today. The OIS-IOER arbitrage is the risk-free arbitrage, based on a claim to one dollar in one month. Arbitrage SD is the daily standard
deviation of χa. The OI Vol. and OI Corr. variables are the time-series mean of a daily series extracted from variance-covariance matrices
implied by currency options. Empirical Corr. with SPDR and Empirical Corr. with HKM are the time-series means of the correlations
between the currency returns and the SPDR ETF (which tracks the S&P 500) and with the He et al. (2017) daily intermediary capital
factor, as estimated on a rolling basis by the methodology described in appendix section A.2. Implied Corr. with S&P 500 is based on
the time-series mean of the currency correlation with the S&P 500 extracted from quanto options and described in appendix section A.4.

Figure 8: Risk-Neutral Externality-Mimicking Portfolio Weights with Carry and Dollar
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Notes: This figure plots the portfolio weights of the externality-mimicking portfolio (definition 1). The portfolio is constructed using
a set of arbitrage-able assets A∗ that contains the Carry and Dollar portfolios, as well as a risk-free asset. The reference measure is the
intermediaries’ risk-neutral measure, meaning that expected returns are equal to the IOER rate and the variance-covariance matrix is
inferred from currency options. The sample is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before
an FOMC meeting.
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Table 7: Risk-Neutral EMP Expected Returns with Carry and Dollar
N Mean (bps) Standard Deviation (bps) Test P-Value

Full Sample 444 -151 20.7 ≥ 0 0.0000
Quarter-Ends 155 -315 56.1 ≥ 0 0.0000

Year-Ends 46 -763 169.9 ≥ 0 0.0000
QE - Full -252 = 0 0.0000
YE - QE -638 = 0 0.0000

Notes: This table reports the excess expected return under the physical measure of the risk-neutral externality-mimicking portfolio
(definition 1), under the assumption that currencies follow a random walk. The portfolio is constructed from an A∗ that contains the
Carry and Dollar portfolios, as well as a risk-free asset. The variance-covariance matrix used in the computation is inferred from currency
options. The full sample is all US trading days from Jan 4, 2011 to March 12, 2018 at least one month before an FOMC meeting. The
quarter-end and year-end sub-samples are restricted to days on which a quarter- or year-end occurs between the spot FX settlement date
and the one-month FX settlement date. The QE-NQE and YE-NYE QE report the mean difference between quarter-end vs. non-quarter-
end dates and year-end vs. non-year-end quarter-end. Test indicates the hypothesis about the mean being tested, and P-Value reports the
associated p-value.

Figure 9: Actual vs. Predicted Excess Arbitrage in Pounds, Risk-Neutral Measure with
Carry and Dollar
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Notes: This figure plots excess the annualized pound excess arbitrage χGBP − χ f , as defined in (8), along with the predicted value
defined as in (11). The excess arbitrage is approximately equal to the one month OIS-based GBP-USD CIP violation. The risk-neutral
externality-mimicking portfolio is constructed with an A∗ that contains the Carry and Dollar portfolios, as well as a risk-free asset. The
variance-covariance matrix used in the computation and the covariances with the pound are inferred from currency options. The sample
is all US trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting.
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Table 8: Stress Test “Severely Adverse” Scenarios
Carry* *Imputed Dollar* *Imputed

Stress Test
Date

One-
Quarter
Return

Four-
Quarter
Return

One-
Quarter
Return

Four-
Quarter
Return

9/30/12 -7.4 -16.5 -4.1 -11.6
9/30/13 -8.9 -13.1 -10.5 -16.5
9/30/14 -2.1 -10.5 -3.2 -7.7

12/31/15 -3.8 -10.5 -4.1 -8.8
12/31/16 -11.3 -18.2 -7.9 -11.0
12/31/17 -23.6 -25.9 -8.0 -14.2

Notes: This table reports the imputed returns of the Carry and Dollar portfolios during the first one or four quarters of the associated
“Severely Adverse Scenario” from that year’s stress test, using the imputation method described in the text. Stress Test Date lists the
date on which that year’s scenario begins.

Table 9: Risk-Neutral Portfolio with Carry and Dollar, Returns in Stress Scenario
Stress
Test
Date

N Mean
(1Q,%)

S.D.
(1Q,%)

P-value
(1Q)

Mean
(4Q,%)

S.D.
(4Q,%)

P-value
(4Q)

9/30/12 63 0.9 0.4 0.0144 0.4 0.9 0.3234
9/30/13 59 -1.8 0.4 1.0000 -2.9 0.6 1.0000
9/30/14 62 0.1 0.1 0.1707 3.9 0.6 0.0000

12/31/15 60 -0.5 0.1 0.9992 0.1 0.3 0.3965
12/31/16 61 3.7 0.6 0.0000 7.9 1.0 0.0000
12/31/17 45 27.5 4.4 0.0000 20.6 3.0 0.0000

Notes: This table reports the mean and standard deviation of stress test scenario returns for the risk-neutral externality-mimicking
portfolio portfolio. The risk-neutral EMP portfolio is constructed with an A∗ that contains the Carry and Dollar portfolios, as well as a
risk-free asset. The variance-covariance matrix used in the computation is computed from currency options prices. The sample is all US
trading days from Jan 4, 2011 to March 12, 2018 that are at least one month before an FOMC meeting and within 180 days of a stress
test date. Each of these dates is assigned to the nearest stress test date. N reports the number of dates assigned to each stress test, and
P-Value reports the p-value associated with a one-sided hypothesis test that the mean return is negative. Results are reported for both
one-quarter (1Q) and four-return (4Q) returns from the stress test scenarios.

C General Equilibrium with Intermediaries

This appendix section describes a general equilibrium endowment economy with incom-
plete markets (GEI) that features a distinction between households and intermediaries. It is
an endowment economy35 version of the economy studied by Farhi and Werning (2016),
with a specific asset structure that I will introduce below.

35For simplicity, I also assume flexible prices and a simpler form of constraints on government transfers.
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The economy has a set of future states, S1, and an initial state, s0. Let S = S1 ∪{s0}
denote the set of all states, and let Js be the set of goods in each state s∈ S. The government
can transfer income between agents in the initial state, s0, but not any other state, and these
transfers must sum to zero. The goods available in each state are denoted by the set Js.36

Households h ∈H maximize expected utility,

∑
s∈S

Uh({Xh
j,s} j∈Js ;s),

where Uh({Xh
j,s} j∈Js;s) is the utility of household h in state s, inclusive of the household’s

rate of time preference and the probability the household places on state s. I will assume
non-satiation for at least one good in each state, implying that each household places non-
zero probability on each state in S1, and that the utility functions are differentiable. Note
that I will refer to each h as “a household,” and assume price-taking; nothing would change
if we thought of each h as representing a mass of identical households. In each state s ∈ S,
household h ∈ H has an endowment of good j ∈ Js equal to Y h

j,s. In state s0, the household
might also receive a transfer T h.

The set of securities available in the economy, A, has securities which offer payoffs
Za,s({Pj,s} j∈Js) for security a ∈ A in state s ∈ S. Note that the payoff may be a function of
goods prices, which are endogenous, and I will assume that the payoffs are homogenous
of degree one in prices, so that it is without loss of generality to fix the price for one good
(the numeraire) in each state. Let Dh

a denote the quantity of security a purchased or sold by
household h, and let Qa be the “ex-dividend” price at time zero (i.e. under the convention
that Za,s0 = 0).

In state s, the household’s income used for consumption (i.e. consumption expenditure)
is

Ih
s =

∑ j∈Js Pj,sY h
j,s +∑a∈A Dh

aZa,s({Pj,s} j∈Js) if s 6= s0,

T h +∑ j∈Js Pj,sY h
j,s−∑a∈A Dh

aQa if s = s0.
(16)

That is, for all states except the initial state, consumption expenditure is equal to income,
and is the value of the household endowment plus the payoffs of the household’s asset
holdings. In the initial state, income used for consumption is the value of the endowment
plus any transfers, less the purchase price of the household’s asset holdings. In all states,
there is a budget constraint for consumption in the state,

36Separating contingent commodities into states and goods available in each state will give meaning to the
financial structure described below.
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∑
j∈Js

Pj,sXh
j,s ≤ Ih

s .

Household asset allocations are constrained by limited participation constraints or other
kinds of limits. The constraints on households’ asset positions are summarized by

Φ
h({Dh

a}a∈A)≤~0, (17)

where Φh is a vector-valued function, convex in Dh. Limited participation is the key form
of constraint I am attempting to capture with these Φ functions, but it is not the only kind
of constraint that fits into this framework.

Having defined expenditure and prices, I define the standard indirect utility function in
each state,

V h(Ih
s ,{Pj,s} j∈Js;s) = max

{Xh
j,s∈R+} j∈Js

Uh({Xh
j,s} j∈Js;s)

subject to

∑
j∈Js

Pj,sXh
j,s ≤ Ih

s .

Using these indirect utility functions, we can write the portfolio choice problem as

max
{Dh

a∈R}a∈A
∑
s∈S

V h(Ih
s ,{Pj,s} j∈Js;s)

subject to the budget constraints that define income (equation (16)) and the constraints on
asset allocation (equation (17)). Note that I fold the household’s discounting and subjective
probability assessments into the state-dependent direct and indirect utility functions. In a
competitive equilibrium (that is, taking asset prices Q and goods prices P as given, defined
below), this is the problem households solve when choosing their asset allocation.

I will call the other type of agents in the economy intermediaries, and use i ∈ I to
denote a particular intermediary. Intermediaries are like households (in the sense that all of
the notation above applies, with some i ∈ I in the place of an h ∈H ), except that they face
different constraints on their portfolio choices. In particular, households are constrained to
trade only with intermediaries, but intermediaries can trade with both households and other
intermediaries.

The constraint that households can trade only with intermediaries, but not each other,
can be implemented using this notation in the following way. The set of assets, A, is a
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superset of the union of disjoint sets {Ah}h∈H , denoting trades with household h. For
a given household h, the function Φh implements the requirement that, for all a ∈ A \
Ah, Dh

a = 0. To be precise, if a ∈ A \ Ah and Dh
a 6= 0, then there exists an element of

Φh(Dh) strictly greater than zero. The set of assets also includes assets that cannot be
traded by any household. Define AI = A \ (∪h∈HAh) as the set of securities tradable only
by intermediaries.

For arbitrage between the asset market AI and the asset market Ah to exist, intermedi-
aries must face financial constraints. The approach of this paper, in contrast to the much of
the existing literature on arbitrages, is to assume that the constraints faced by intermediaries
are induced by government policy. That is, I will assume that some of the Φi functions are
the government’s policy instrument; in contrast, the Φh functions are assumed to be exoge-
nous. The assumption that the Φh cannot be augmented by regulation does not constrain
the social planner. Because all trades are intermediated, and the government can constrain
intermediaries, the government can effectively control all of the trades in the economy, and
therefore implement any allocation that could be implemented with agent-specific taxes
(see proposition 2 in the main text).

The notion of equilibrium is standard:

Definition 2. An equilibrium is a collection of consumptions Xh
j,s and X i

j,s, goods prices
Pj,s, asset positions Dh

a and Di
a, transfers T h and T i, and asset prices Qa such that:

1. Households and intermediaries maximize their utility over consumption and asset
positions, given goods prices and asset prices, respecting the constraints that con-
sumption be weakly positive and the constraints on their asset positions,

2. Goods markets clear: for all s ∈ S and j ∈ Js,

∑
h∈H

(Xh
j,s−Y h

j,s) = ∑
i∈I

(X i
j,s−Y i

j,s),

3. Asset markets clear: for all a ∈ A,

∑
h∈H

Dh
a + ∑

i∈I
Di

a = 0, (18)

4. The government’s budget constraint balances,

∑
h∈H

T h + ∑
i∈I

T i = 0. (19)
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The definition of equilibrium presumes price-taking by households and intermediaries.
Absent government constraints, each household h can trade with every intermediary, and
the price of asset a ∈ Ah will be pinned down by competition between intermediaries. The
equilibrium definition supposes that this will continue to be the case, even if the govern-
ment places asymmetric constraints on intermediaries– for example, by granting a single
intermediary a monopoly over trades with a particular household. In this case, it is as if the
household had all of the bargaining power. Such a policy is unlikely to optimal, and will
never be the unique optimum.

I next describe a planner’s problem for this economy. I assume that the planner is
unable to redistribute resources ex-post (doing so would allow the planner to circumvent
limited participation). Instead, in the spirit of Geanakoplos and Polemarchakis (1986), I
will allow the planner to trade in asset markets on behalf of agents, trading for each agent
only in markets the agent can participate in, to maximize a weighted sum of the household’s
indirect utility functions, subject to an ex-ante participation constraint for intermediaries.

Definition 3. The constrained planner’s problem is

max
{Dh

a∈R}a∈A,h∈H ,{Di
a∈R}a∈A,i∈I ,{Pj,s∈R+}s∈S, j∈Js ,{T i∈R}i∈I ,{T h∈R}h∈H

∑
h∈H

λ
h
∑
s∈S

V h(Ih
s ,{Pj,s} j∈Js;s),

subject to the intermediaries’ ex-ante participation constraint,

∑
s∈S

V i(Ii
s,{Pj,s} j∈Js;s)≥ V̄ i, ∀i ∈I ,

household’s limited participation constraints,

Φ
h({Dh

a}a∈A)≤~0, ∀h ∈H ,

intermediaries exogenous portfolios constraints,

Φ
i,exog({Di

a}a∈A)≤~0, ∀i ∈I ,

the definition of incomes Ih
s and Ii

s (16), market clearing in assets (18), the government’s
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budget constraint (19), and goods market clearing for each state s ∈ S and good j ∈ Js,

∑
h∈H

(Xh
j,s(I

h
s ,{Pj′,s} j′∈Js)−Y h

j,s) = ∑
i∈I

(X i
j,s(I

i
s,{Pj′,s} j′∈Js)−Y i

j,s).

Here, Xh
j,s(I

h
s ,{Pj′,s} j′∈Js) denotes the demand function for good j by agent h in state s.

Note that the definition of the social planner’s problem includes only exogenous constraints
on intermediaries’ trades (Φi,exog). Note also that I have chosen to write the planner’s
problem as maximizing household utility subject to an ex-ante participation constraint for
intermediaries, because this fits best into the example from the text; nothing would change
if instead the planner maximized a weighted combination of all agents’ utilities. Next, I
define constrained (in)efficiency:

Definition 4. A competitive equilibrium is constrained efficient if there exists Pareto weights
λ h and outside options V̄ i such that the allocation of assets and goods in the competitive
equilibrium coincides with the solution to the planner’s problem. Otherwise, the competi-
tive equilibrium is constrained inefficient.

Lastly, I will define macro-prudential regulation. Regulation, in this framework, are ad-
ditional convex functions Φi,reg({Di

a}a∈A) such that the intermediaries face the constraint
Φi(·) =

[
Φi,reg Φi,exog

]
. As discussed in the text, for notational simplicity I assume that

these functions depend only on asset quantities and not on asset prices. Because the equi-
librium gradient on these constraints is the only quantity that matters for equilibrium, this
assumption is without loss of generality.

D Alternative Definition of the Externality-Mimicking Port-
folio

In this section, I provide a definition of the externality-mimicking portfolio as a portfolio
of arbitrage-able assets (as opposed to a portfolio of replicating portfolios). Defining

θ̃
A∗,r = θ̃(θ A∗,r),

where θ A∗,r is the externality-mimicking portfolio of definition 1, and

χ̃a =
−Qa +∑a′∈AI wa′(a)Qa′

Qa
,
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we can see that the following defines a portfolio of arbitrage-able assets with payoffs iden-
tical to those of θ A∗,r.

Definition 5. The alternative externality-mimicking portfolio is a portfolio arbitrage-able
assets in A∗, with weights on the risky assets equal to

θ̃
A∗,r = (ΣA∗,r)−1(χ̃A∗− χ̃ f

µA∗,r

R f
), (20)

and a weight on the risk-free asset equal to

θ̃
A∗,r
f =−(θ̃ A∗,r)T µA∗,r

R f
+

1
(R f )2 χ̃ f . (21)

This definition is identical to definition 1, except that the arbitrage is now normalized
by the asset price (as opposed to the replicating portfolio price) and the expected returns,
variance-covariance matrix, and risk-free rates are for the arbitrage-able assets as opposed
to the replicating portfolios.

E Proofs

E.1 Proof of Proposition 1

For a formal definition of the planner’s problem discussed in this proof, see appendix sec-
tion C.

Consider a perturbation to the solution of the planner’s problem in which the planner
re-allocates an asset a ∈ A from agent i to agent h. If such a perturbation is feasible, we
must have (by differentiability)

−λ
h0V h0

I,s0 ∑
s∈S

∑
j∈Js

µ j,s[Xh
I, j,s−X i

I, j,s]Za,s({P∗j,s} j∈Js) = ∑
s∈S

(λ iV i
I,s−λ

hV h
I,s)Za,s({P∗j,s} j∈Js),

where λ i is the multiplier on intermediary i’s participation constraint and µ j,sλ
h0V h0

I,s0
is

the multiplier on the goods-market clearing constraint. Note that the derivatives Xh
I, j,s =

∂

∂ I Xh
j,s(I,{P∗j,s} j∈Js)|I=Ih∗

s
and V h

I,s =
∂

∂ IV
h
s (I,{P∗j,s} j∈Js)|I=Ih∗

s
are evaluated at the solution to

the planner’s problem. Note also that I have normalized the multiplier to units of dollars,
rather than social utility, using the marginal utility of an arbitrary agent h0.
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By the definition of the wedges, this is

λ
h0V h0

I,s0 ∑
s∈S

∑
j∈Js

(πr
s τ

r
j,s−

1
|Js| ∑

j′∈Js

µ j′,s

P∗j′,s
)P∗j,s[X

h
I, j,s−X i

I, j,s]Za,s({P∗j,s} j∈Js) =

∑
s∈S

(λ iV i
I,s−λ

hV h
I,s)Za,s({P∗j,s} j∈Js).

By non-satiation, the identity ∑ j∈Js Xh
I, j,sP

∗
j,s = 1 holds, and this simplifies using the defini-

tion of the externalities to

λ
h0V h0

I,s0 ∑
s∈S

π
r
s ∆

h,i,r
s Za,s({P∗j,s} j∈Js) = ∑

s∈S
(λ iV i

I,s−λ
hV h

I,s)Za,s({P∗j,s} j∈Js).

By the first-order condition for the transfer between h0 and h,

λ
h0V h0

I,s0
= λ

hV h
I,s0

and likewise λ h0V h0
I,s0

= λ iV i
I,s0

, and therefore

∑
s∈S

π
r
s ∆

h,i,r
s Za,s({P∗j,s} j∈Js) = ∑

s∈S
(
V i

I,s

V i
s0

−
V h

I,s

V h
I,s0

)Za,s({P∗j,s} j∈Js)

= ∑
s∈S

π
r
s (M

i,r
s −Mh,r

s )Za,s({P∗j,s} j∈Js),

where

Mh,r
s =

V h
I,s

πr
sV h

I,s0

.

E.2 Proof of Proposition 2

Observe first that, via quantity constraints on portfolio choices, the planner can dictate the
asset allocations of all agents. So any allocation (including any optimal allocations) can be
implemented via portfolio constraints.

Moreover, for each asset, the planner can implement the allocation without regulating
one agent’s trade in that asset. If the planner regulates the quantities for all other agents
who can trade that asset, market clearing will ensure the unregulated agent holds the desired
asset allocation. In this case, the asset price will be determined by the valuation of the
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unregulated agent.
Applying this logic to all assets a∈ Ah for some h∈H , the planner can implement any

desired allocation without regulating the household h. All other households cannot trade
that asset, and hence do not need to be regulated either. Generically, the planner will need
to regulate the trades of all intermediaries in that asset.

Applying the same logic to the assets in AI , which no household can trade, it is without
loss of generality to designate one intermediary, i∗, as unregulated for all the assets in AI .

In such an implementation, equations (2) and (3) hold. The result immediately follows
by proposition 1 and those equations.

E.3 Proof of Proposition 3

The first two of these claims are simply the definition of the least-squares projection. That
is

(∑
s∈S

π
r
s RI

s(R
I
s)

T )−1(∑
s∈S

π
r
s RI

s∆
h,i,r
s ) = (∑

s∈S
π

r
s RI

s(R
I
s)

T )−1

[
χa

χ f

]

=

[
(ΣA∗,I,r +µA∗,I,r(µA∗,I,r)T ) RI

f µA∗,I,r

RI
f (µ

A∗,I,r)T (RI
f )

2

]−1[
χa

χ f

]

=

[
(ΣA∗,I,r)−1 −(RI

f )
−1(ΣA∗,I,r)−1µA∗,I,r

−(RI
f )
−1(µA∗,I,r)T (ΣA∗,I,r)−1 (RI

f )
−2(1+(µA∗,I,r)T (ΣA∗,I,r)−1µA∗,I,r)

][
χa

χ f

]

=

[
θ A∗,r

θ
A∗,r
f

]
.

where RI
s is the vector form of {RI

a,s}a∈A∗ . The mean externalities, by construction, are

∑
s∈S

π
r
s ∆

h,i,r
s =

χ f

RI
f
,

and the claim about the variance follows.
I prove the third claim below. Define the Lagrangian, using Ra,s(1−χa) = RI

a,s, as
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min
m∈R|S1|

max
θ∈R|A∗|

1
2 ∑

s∈S1

π
r
s (ms−mI,r

s )2−

∑
a∈A∗

θa[(1−χa)− ∑
s∈S1

π
r
s msRI

a,s].

The FOC for m is
π

r
s (ms−mI,r

s )+π
r
s ∑

a∈A∗
θaRI

a,s = 0.

Plugging this back into the problem,

max
θ∈R|A∗|

1
2 ∑

s∈S1

π
r
s ( ∑

a∈A∗
θaRI

a,s)
2−

∑
a∈A∗

θa[ ∑
s∈S1

π
r
s ((1−χa)−mI,r

s RI
a,s +RI

a,s ∑
a′∈A∗

θa′R
I
a′,s)],

which simplifies, using the assumption that mI,r
s prices the replicating portfolios (∑s∈S1 πr

s mI,r
s RI

a′,s =

1), to

max
θ∈R|A∗|

∑
a∈A∗

θaχ̃a−
1
2 ∑

s∈S1

π
r
s ( ∑

a∈A∗
θaRI

a,s)
2. (22)

It follows immediately that θ ∗, the solution to this problem, is the projection of χa onto
the space of returns, and hence is the externality-mimicking portfolio. Observe, by con-
struction, that the mean return of the externality-mimicking portfolio is χ f

RI
f
= ( 1

RI
f
− 1

R f
).

Therefore,
mr

s = mI,r
s − ∑

a∈A∗
θ

A∗,r
a RI

a,s

is the household SDF that minimizes the variance of the difference between SDFs subject
to the constraint that the SDFs are consistent with the observed arbitrages.

Lastly, consider the fourth claim: the externality-mimicking portfolio maximizes the
Sharpe ratio due to arbitrage,
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ŜA∗,I,r(θ) = SA∗,r(θ̃(θ))−SA∗,I,r(θ)

=

θ̃(θ)T µA∗,r

R f
−∑a∈A∗ θ̃a(θ)

(θ̃(θ)T ΣA∗,I,rθ̃(θ))
1
2
−

θ T µA∗,I,r

RI
f
−∑a∈A∗ θa

(θ T ΣA∗,I,rθ)
1
2

=
∑a∈A∗ θa(χa−χ f

µA∗,I,r

RI
f
)

(θ T ΣA∗,I,rθ)
1
2

.

Suppose not; let θ̂ be some portfolio with a higher ratio. Note that the Sharpe ratio due to
arbitrage is homogenous of degree zero. Moreover, mixing in some amount of the risk-free
rate does not change this ratio,

∑a∈A∗ θ̂a(χa− µA∗,I,r

RI
f

χ f )

(θ T ΣA∗,I,rθ)
1
2

=
∑a∈A∗(θ̂a +1(a = f ))(χa− µA∗,I,r

RI
f

χ f )

((θ̂a +1(a = f ))T ΣA∗,I,r(θ̂a +1(a = f ))T )
1
2
.

It is therefore without loss of generality to suppose that

∑
a∈A∗

θ̂aµ
A∗,I,r = ∑

a∈A∗
θaµ

A∗,I,r

and

∑
a∈A∗

θ̂aχa = ∑
a∈A∗

θaχa.

But in this case, θ̂ must achieve a higher payoff than the externality-mimicking portfolio
in (22), a contradiction.
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