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Abstract

We extend General Equilibrium to include negative endowments, thus allowing for initial debt and also the 

possibility of default. We show, as in traditional GE, that equilibrium always exists, is Pareto efficient, and is locally 

unique. The new phenomenon is that no matter what the utilities, for roughly half the endowments, enough debt 

necessarily leads to fragile equilibria and then multiple equilibria. This paper establishes a robust link between debt, 

fragility, and multiplicity.

1 Introduction

At the height of debt crises, or just after they have passed, leaders often suggest that confidence can 

or did restore the economy. Franklin Roosevelt famously declared in his inaugural address in 1933 that 

“The only thing we have to fear is fear itself.” In the aftermath to the 2007-09 American debt crisis, U.S. 

Treasury Secretary Geithner (2015) and U.S. Federal Reserve Chairman Bernanke (2015) suggested that 

what had been needed to stem the crisis, was confidence, which “Stress Tests” and the “Courage to Act” 

provided. Similarly, Mario Draghi declared at the height of the European debt crisis in 2012 that “The 

ECB is ready to do whatever it takes to preserve the Euro. And believe me, it will be enough.” During 

the ongoing Greek debt crisis that continues to today, the government often said that it was crucial to 

restore confidence.

One interpretation of these accounts by government officials is that the speakers believed that in the 

middle of their debt crises there were multiple equilibria, and that by restoring confidence they could 

move the economy from a bad equilibrium to a better one. An alternative interpretation is that they 

felt their indebted economies were so fragile that the interventions of the government or central bank,
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though small when measured on the scale of the entire American or European economies, could move

entire economies from a terrible outcome to a normal outcome.

The question we ask in this paper is how or why does large debt lead to fragility or multiplicity

of equilibria? An old answer to this question was suggested by Diamond and Dybvig (1983) for the

special case of bank deposits. They described bank runs as multiple equilibria of games in which there

is a common resource. Depositers have a joint claim on the assets of a bank, not individual claims to

individual pieces of the assets. When such a common resource has long run value greater than total

deposits, but liquidation value less than total deposits, there are two equilibria, one in which everybody

leaves their money in, because each is sure the others will leave their money in, and another in which

there is a run because each pulls her money out because she thinks the others are pulling their money

out and there will be nothing left for those who wait.1

The global economy is not a big bank. Many authors nonetheless have drawn connections between the

bank runs of the 1800s and early 1900s and the American crisis of 2008. Gorton (2010) for example likened

the 2008 “collateral run” to the earlier bank runs. On the face of it, however, the analogy between bank

runs, at least as described byDiamond and Dybvig (1983), and collateral runs seems imprecise. Unlike

bank assets, each collateral is pledged to one lender. One lender’s withdrawal does not diminish the

physical collateral held by another lender. There is no common pool of collateral. Thus it appears that

there is a missing link in the collateral run story between debt and multiplicity.2

Another old story called the leverage cycle linked high leverage to the fragility of equilibrium.3 In a

highly leveraged economy, a small shock can lead to a big change in equilibrium asset prices and outcomes

for two reasons. First, the most enthusiastic buyers of collateral are the ones who are most leveraged,

and so a small fall in collateral value has a leveraged effect on their wealth, reducing their demand for

the collateral. And second, when the bad news is coupled with a rise in volatility (scary bad news), the

leverage ratios plummet so that new buyers can no longer borrow much to buy the asset, and its value

falls still further. The leverage cycle thus connects debt to fragility through collateral and changes in

volatility.

In this paper we wish to investigate the effect of debt itself on the fragility and multiplicity of perfectly

competitive equilibrium, in which all resources are privately owned, without introducing banks or common

resources, or collateral or volatility. Thus we analyze classical Walrasian exchange equilibrium with one

twist: we allow for initial real debts. We make the novel observation that one can analyze any exchange

1Since the long run value of the bank’s common assets exceeds the total debt to depositors, there is no loss to leaving the
money in if the others are in for the long run, and since the total debt owed to depositors is more than the immediate liquidation
value of the bank’s assets, each depositor rushes to get her money out first if she thinks the others are running to get theirs out.

2Gorton himself acknowledges that collateral runs are not analogous to bank runs ala Diamond and Dybvig (1983). In his
view collateral runs and the old bank runs involved asymmetric information and adverse selection about what are truly safe
assets.

3See for example Geanakoplos (1997, 2003, 2010) and Fostel-Geanakoplos (2008).
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economy in which some agents have arbitrarily large negative endowments, which can be interpreted as

(real) debts. In the special case with two goods and two agents, this is like thinking about endowments

outside the Edgeworth Box. Nobody seems to have systematically analyzed such a model before, perhaps

because it is not obvious how to deal with debts that cannot be paid.4 We simply make the assumption

that everyone is obliged to pay all she can, defaulting by the same percentage on each debt.5

We discover that debt magnifies income effects, provided that agents have different marginal propen-

sities to consume. When debts are large enough, and go in the right direction, they create upward sloping

demand, and multiple equilibria. Furthermore, on the way to becoming so large, debt flattens the slope

of downward sloping aggregate demand. Thus an economy with big (but not huge) debts in the right

direction will respond to small quantity perturbations with dramatic changes in price; the equilibrium

is fragile. Walrasian economies with debt thus have three regimes. In the conventional regime, per-

turbations to endowments or utilities create small changes in equilibrium. In the fragile regime, small

perturbations to endowments or utilities produce gigantic changes in equilibrium. In the multiple equilib-

ria regime, equilibrium might jump because of a change in “confidence’, with no changes in endowments

or utilities. Whether the American or Greek economy debts of 2007-12 fell into the fragile regime or the

multiple equilibrium regime would need careful investigation. Our construction is thus a clarification,

and not an endorsement or refutation, of officials’ claims that by restoring confidence they could move

their economy to a better place.

Our formal model considers a Walrasian economy with an arbitrary number of commodities and

agents and arbitrary real debts. Depending on market prices, agents may be forced to default. No rise in

price levels can inflate the debts away, since they are denoted in real terms. We give a simple definition

of Walrasian equilibrium with default, and prove that equilibria always exist, no matter how large the

debts, and that generically, they are finite in number. Existence is somewhat surprising, because with

arbitrary debts, agents might encounter situations where their income (after they default) is driven down

to zero. Zero income is known occasionally to create discontinuities in demand. We prove nevertheless

that for all strictly monotonic utilities and endowments, equilibrium must exist. Moreover, we show

that for all utilities and endowments satisfying a weak heterogeneity hypothesis, there is an open set of

debts (including debts of arbitrarily large size, but not necessarily of small size) that give rise to multiple

4Balasko and Shell (1981) considered an economy with arbitrary nominal debts, but they only considered equilibria with no
default. High enough price levels essentially inflate the debt away, making default unnecessary. Those economies typically have
a continuum of equilibria with no default, one for each sufficiently high price level, because different price levels create different
real debts, effectively reallocating the initial endowments between creditor and lender. In our economies with real debt there
are generically only a finite number of equilibria, some of which may involve default. Cass and Pavlova (2004) did consider real
endowments outside the Edgeworth Box, but only for Cobb-Douglas economies, and only for those measure zero endowment
points where the budget lines tangent to Pareto optima cross. Again they did not consider default. We return to their model
later.

5This is tantamount to saying that the initial endowments and receivables are all no-recourse collateral, so perhaps there is
a sense in which collateral creeps into this model as well, but in a very simple way.
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equilibria. The needed heterogeneity hypothesis is that there must be a point on the Pareto frontier

at which two agents have different marginal propensities to consume some commodity. We also prove

(under the weak heterogeneity hypothesis) that given any multiplierM > 0, there is an open set of debts

at which some equilibrium price will change by at least M times the change in some endowment.

In standard Walrasian economies without debts, i.e. with endowments inside the Edgeworth Box,

it is possible to have fragile equilibria or multiple equilibria. But with some popular and convenient

utilities, like Cobb-Douglas utilities, multiplicity is impossible. Furthermore, there is no unified, thematic

explanation for why multiplicty does occasionally arise in standard Walrasian economies. Here we show

that for any uilities and endowments (with a trivial amount of heterogeneity) there must be a robust set of

debts at which there are fragile equilibria and another robust set of debts, including debts of arbitrarilly

large size, at which there must be multiple equilibria. The fragility and multiplicity arise from the

same thematic source, which is obscured in standard Walrasian economies that do not allow for negative

endowments. When in equilibrium, agents that are selling a good have higher marginal propensities

to buy the good than its buyers do, then income effects counteract the stabilizing substitution effects.

Large debts create fragility and eventually multiplicity in two ways. First, when an agent has negative

endowment of a good, she must be a buyer in equilibrium, even if she has low marginal propensity to

consume the good. Second, the bigger the debt, the larger the net trades in equilibrium, and hence the

larger the income effects, since income effects are the product of net trades and marginal propensities to

consume. With really big debts, income effects must dominate substitution effects.

The intuition for multiplicity begins by supposing that an agent A has in the past incurred a very

large debt denoted in a commodity (say food) in order to acquire another good (say houses). Starting

from this situation, why should there be multiple equilibria? An incomplete explanation is that when

the debt comes due, A is forced to sell houses in equilibrium to raise the food to pay off the debt. This is

called a “fire” sale. The “forced” sale of houses is held to be responsible for the resulting low equilibrium

price of houses. But in Walrasian equilibrium, every good is up for sale. One could just as easily say that

A voluntarily chose to buy a large quantity of food because she has a high marginal utility of food when

consumption is negative; much the same could be said if we substitute low quantity of food for negative

quantity. And what has all this got to do with multiple equilibria and confidence? If a central authority

simply announced a carefully chosen higher price of houses, how could that also clear all the markets?

The answer is that the potential multiplicity also depends on A having a higher marginal propensity

to consume houses at the original equilibrium than B does, and the desire to purchase a sufficiently

large quantity of food at the original equilibrium. These circumstances occasionally arise in standard

Walrasian equilibrium. The role for large debt is simply to ensure the desire to buy enough food, so

that the multiplicity must arise. This gives a rationale for perfectly competitive bank runs: if leverage
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Figure 1: Endowments inside and outside the Edgeworth box can lead to the same equilibrium, but with
different income effects.

is high enough, and in the right proportions, with debt used to finance net positions in the goods that

the agents have a higher propensity to consume, then there must be multiple equilibria.

Consider the Edgeworth box diagram in Figure 1, where the endowment labeled e is in the Edgeworth

Box and on the price line separating the two indifference curves at equilibrium. If the price of the good

labeled Y rises, as indicated by the dotted line through e, the substitution effect leads both agents A and

B to consume less of good Y. However, agent A gets richer, and if A has positive marginal propensity

to consume Y out of income, then his income effect counteracts his substitution effect. On the other

hand, the reverse is true of B, and his income effect reinforces his substitution effect. Very likely the

substitution effects, which all go in the same direction, dominate.

The essential point is that the income effect of each agent is the product of his marginal propensity

to consume at the equilibrium with the size of his excess demand (that is the difference between e and

equilibrium consumption). The excess demand of agent A is the negative of the excess demand of agent

B. Moving the endowment along the budget line proportionally increases both agents’ excess demands

without changing their marginal propensities to consume at the unchanged equilibrium. Suppose that A

has a larger marginal propensity to consume Y than B does at the equilibrium. Then on net the aggregate

income effects tend to counteract the substitution effects. The further away from the equilibrium we move

the endowment along the equilibrium price line, the larger the income effects become, and on net, the

more they counteract the substitution effect. The original aggregate excess demand at endowment e,

given by the downward sloping line, becomes flatter and flatter, becoming very flat at endowment e′.

From this initial endowment point, that a small shock in supply, or a small transfer of income from A to

B, will cause a very major change in the equilibrium price of houses. The equilibrium has become fragile.

This is one of the forces at work in the leverage cycle. But it does not require multiplicity of equilibria.
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Figure 2: Excess demand for Y becomes upward sloping in response to increased leverage along the budget
line, which leads to multiple equilibria.

Figure 3: At some prices default is inevitable, and must be defined.
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As the endowment moves still further away from the equilibrium consumption allocation, until it

eventually slopes upward, as in the solid line depicting aggregate excess demand at e′. Eventually,

perhaps only after the endowment leaves the Edgeworth Box, as at point e′ in Figure 1, the income effect

will dominate, and supply will become upward sloping around the equilibrium price, as seen in the upper

panel of Figure 2.

As the lower panel of Figure 2 demonstrates, upward sloping demand at an equilibrium price guaran-

tees the existence of two more equilibria, provided that we know that excess demand is always positive

when price is near 0, and negative when the price is near infinity.

The interesting point is that in order for the income effect to dominate, we might need to put the

initial endowment outside the Edgeworth Box. And then how do we know demand is well defined at all

prices? Consider for example Figure 3. At the dotted price line, agent A cannot achieve any non-negative

consumption. He must default.

Thus we must define default and repayment, and individual and aggregate demand, for any specified

prices and endowments/debts. Once we do, we shall show that no matter what the endowments, and

prices, demand is well defined and continuous. Moreover as price tends to zero, demand tends to infinity,

and as price tends to infinity, excess demand turns negative. This guarantees the existence of multiple

equilibria as shown in the diagrams. Moreover, with the use of the Borsuk-Ulam Theorem, this proof for

two agents and two goods can be extended to an arbitrary number of goods and agents.

We emphasize again that debt by itself does not create upward sloping demand and multiplicity. The

debt must be sufficiently large. A simpler and more general phenomenon arises from debt when demand

is still downward sloping, When A has higher marginal propensity than B to consume housing, then

more debt from A tends to counteract the substitution effect, flattening the aggregate excess demand for

housing. A failure of confidence and a leverage crash can both create very low prices of housing. The

former requires a huge amount of debt, and multiple equilibria. The latter requires less debt, and a small

shock, and is consistent with a unique equilibrium.

In sections 2-4 we define Walrasian economies with debt, and show that for any prices there are

uniquely defined repayment rates rh, at which every agent h repays all of his debts, such that every

agent is paying back as much debt as he can given the rates at which others repay him. This shows

that demand is a well-defined function of prices alone. In section 5 we define Walrasian equilibrium with

debts and in section 6 show that it always exists. In section 7 we describe the multiplicity theorem. In

section 8 we prove that generically there will be a finite number of equilibria, so that the multiplicity

we describe does not lead to a continuum of equilibria. In Section 9 we give a pictorial example of three

equilibria in the Edgeworth Box.

In section 10 we return to the question of the debt repayment rate rh for each agent h, and how it
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depends on the repayment rates of ri 6= rh. We observe that the uniqueness of consistent delivery rates

stems from the fact that no resources are lost to the economy in case of default. When resources are

lost, there can be a lattice of self consistent delivery rates, and thus additional multiplicity. We call this

default multiplicity, in contrast to the earlier leverage multiplicity.

There are at least two precursors to our work. Cass and Pavlova (2004) consider Cobb-Douglas

economies with heterogeneous consumers, and they show that the separating hyperplanes at each Pareto

optimal allocation are bound to intersect somewhere outside the Edgeworth Box, i.e. somewhere with

negative endowments. At these intersection points, there will be multiple equilibria, possibly of many

dimensions. Cass and Pavlova (2004) do not define demand or equilibrium at any other endowment

points, and they do not consider default. As Cass and Pavolva point out, the set of intersection points

that give rise to multiplicity has measure zero, and thus their multiplicity is completely non-robust.

We show that there is a robust, open set of endowment points that give rise to multiple equilibria.

Moreover, generically there will be a finite number of equilibria. Hence even in the Cobb-Douglas case,

our endowments with multiple equilibria are disjoint from those in Cass and Pavlova (2004).

Brunnermeier and Pedersen (2009) give an example of a 3 period economy in which multiple equilibria

arise in one state in the second period, starting from the endowments inherited from the first period in

which debt was incurred to buy securities. Neither Cass and Pavlova (2004) nor Brunnermeier and

Pedersen (2009) mention the role increased debt plays in magnifying income effects that can reverse

substituion effects and create upward sloping demand, provided that agents display different marginal

propensities to consume. And both of those papers work with special, parameterized examples.

2 Economy

The consumption space is RL
+and the set of agents is H = {1, ..., H}. Agents have utilities

uh : RL+ → R

that are continuous, concave, and strictly monotonic.

The innovation is that the endowments of each agent h ∈ H are given not only by the usual

eh ∈ RL++

but also by additional vectors

dhi ∈ RL+, i 6= h

where dhi` ≥ 0 denotes the amount of good ` that agent h owes agent i.
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3 Budget Set

We assume that every agent h either delivers completely or else defaults by the same percentage on every

debt. Let ri ∈ [0, 1] be the rate of delivery by agent i, that is, the fraction of the debt owed by i that i

actually delivers. Let r = (r1, ..., rH) ∈ [0, 1]H .The income of any agent h ∈ H is then

Ih(p, r) = p · eh +
∑
i 6=h

rip · dih − rh
∑
i 6=h

p · dhi

The budget set of agent h is

Bh(p, r) = {x ∈ RL+ : p · x ≤ Ih(p, r)}

We suppose that rh is determined by collateral owned by agent h, which simultaneously backs all her

debts. Two definitions are presented, depending on whether physical goods are the only collateral, or

whether debts can collateralize debts. Note that the latter pyramiding collateral involves an infinite

regress, since how much i defaults affects how much j defaults which affects how much i defaults, etc.

So we start with the simpler definition. But we shall focus on the more interesting pyramiding collateral

case.

3.1 Budget Set without Pyramiding

We suppose that if an agent defaults, her endowments eh can be seized, but not the income she receives

from others’ debts to her. Note that income from debt receivables will be usable by h for consumption

no matter what h’s own debts are. They are not collateralized by h’s debts. If p · eh ≥ p ·
∑
i 6=h d

hi, then

the agent must fully deliver and rh = 1. If p · eh < p ·
∑
i 6=h d

hi, then all her collateral will be seized and

she will default. Her delivery rate in both cases can be succinctly written as

rh = fh(p) =


1 p ·

∑
i6=h d

hi = 0

min
(

1, p·eh
p·

∑
i6=h d

hi

)
p ·
∑
i6=h d

hi > 0

Notice that rh does not depend on ri.

3.2 Budget Set with Pyramiding

Alternatively we can imagine that h’s receivables
∑
i6=h rip · d

ih are also collateral for her debts. Then

we get

rh = gh(p, r) =


1 p ·

∑
i 6=h d

hi = 0

min

(
1,

p·eh+
∑

i6=h rip·d
ih

p·
∑

i6=h d
hi

)
p ·
∑
i 6=h d

hi > 0
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Figure 4: Equilibrium correspondence for the δ indexed economy of Section 4.

This time rh does depend on ri. We call this pyramiding collateral because i’s debt to h is being used

as collateral for h’s debt to k, which in turn is being used as collateral for k’s debt to m.

4 Example

For a scalar δ consider the following two good two agent Walrasian endowment economy with debt

ui =

(
(αi)

1/si
(
x1i
)(si−1)/si

+ (1− αi)1/si
(
x2i
)(si−1)/si

)si/(si−1)

α1 =1/2, α2 = 1/3, s1 = 2, s2 = 1/2,

e1 =(1, 1), e2 = (1, 2),

d12 =(max(0, δ),max(0,−δ)), d21 = (max(0,−δ),max(0, δ)).

Regardless of δ, p1 = p2 is always an equilibrium of this economy. Indeed from an accounting perspective

such debt are of no consequence. But p1 = p2 is not always the only equilibrium. Figure 4 presents the

equilibrium correspondence with δ. We see that for δ values that are low enough there are two additional

equilibria.

To see that multiplicity is assured for high enough leverage, and a geometric version of the main

proof for the two good two agent case, it is helpful to examine the Edgeworth box presented in Figure
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Figure 5: Edgeworth box for the δ indexed economy of Section 4.

5. Because debts allow the effective endowment to lie outside the Edgeworth box, Figure 5 extends the

view to include the surroundings of the Edgeworth box. The blue line describes the set of Pareto optimal

allocations. The red line describes the budget line in the p1 = p2 equilibrium. Because changing δ changes

debt in a way that does not transfer wealth in the p1 = p2 equilibrium, it amounts to shifting the effective

endowment along the red line. Each gray line presents the budget line for another equilibrium, and the

black lines present the budget line in the any equilibria that involve zero consumption for one of the

agents.

As long as the red line does not intersect another line, the original equilibrium remains unique. But

because the other budget lines have different slopes, there must be a points where the red line meets each

of the other budget lines. Each meeting point is an economy that sustains multiple equilibria, one for

each meeting budget line. Moreover, any point on the red line that is beyond a black line also supports

the associated default equilibrium. The example demonstrates why generally there must be an open set

of economies that generate multiple equilibria because it shows that all that is needed is different sloped

budget lines.

The reason for the appearance of multiplicity is the intensification of wealth effects generated by
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Figure 6: Excess demand for good 1 for the δ indexed economy of Section 4.

higher debts. By the Slutsky equation

dxh

dp
= Kh + vh

xh − p · eh −∑
i 6=h

rip · dih + rh
∑
i 6=h

p · dhi
T

h ∈ {1, 2}

where Kh is a matrix of substitution effects and vh is a vector of wealth effects. When vh differs across

agents, changing δ alters the slope of excess demand around the equilibrium, as presented in Figure 6.

Increasing the slope of excess demand moves us always closer to multiplicity. Indeed, when the slope

turns positive multiplicity becomes assured for any continuous demand function because the demand

function is required to cross zero at least two additional times with a descending slope. This is the idea

of the proof for the multiple good multiple agent case of Section 9, with the determinant of the Jacobian

of excess demand generalizing the notion of slope.

5 Uniqueness of Consistent Delivery Rates

From now on we concentrate on pyramiding collateral. Our first goal is to show that the self-referential

default rates are actually always uniquely determined.

Theorem 1. Fix p ∈ RL++. Then there exists a unique r ∈ [0, 1]H such that r = g(p, r). Moreover,

writing the solution r = r∗(p), the function r∗(p) is continuous.
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The function gp : [0, 1]H → [0, 1]H defined by gp(r) = g(p, r) is continuous in r, since each coordinate

gh(p, r) is continuous in both variables, and weakly vector increasing, in the sense that s ≥ r ⇒ gp(s) ≥

gp(r), since each coordinate is weakly increasing. Our first step is to prove the existence of a consistent

r.

Lemma 2. Fix p ∈ RL++. If a ∈ [0, 1]H , and gp(a) ≥ a, then there exists b ∈ [0, 1]H with gp(b) = b ≥ a.

In particular, there exists at least one fixed point r ∈ [0, 1]H with gp(r) = r.

Proof. If gp(a) ≥ a, then by the monotonicity of gp, g2p(a) ≥ gp(a), and more generally, gnp (a) is increasing

in n. By the monotonicity and continuity of gp, and the compactness of [0, 1]H , gp(b) = b = supn g
n
p (a) ≥

a. Taking a = 0 shows that there is indeed at least one fixed point r ≥ 0.

Our next step is to prove uniqueness. Along the way we shall derive some interesting properties of

consistent default rates, including the fact that at least one agent fully delivers.

Lemma 3. If gp has two distinct fixed points, then it has distinct fixed points b ≥ a.

Proof. Let gp(a) = a 6= b = gp(b). Then denoting the component-wise maximum by c = a ∨ b, gp(c) ≥

gp(a) = a and gp(c) ≥ gp(b) = b, hence gp(c) ≥ c = a ∨ b. By Lemma 2, there is a fixed point

gp(r) = r ≥ a ∨ b.

The next lemma shows that whatever is delivered goes to somebody else, so total income is always

p ·
∑
h∈H e

h.

Lemma 4. For all (p, r) ∈ RL++ × [0, 1]H ,

∑
h∈H

Ih(p, r) = p ·
∑
h∈H

eh

Proof. Obvious by plugging in the definition of Ih(p, r).

Corollary 5. Fix p ∈ RL++. Suppose r = g(p, r). Then some rh = 1.

Proof. If rh < 1, then Ih(p, r) = 0. If rh < 1 for all h ∈ H, then
∑
h∈H I

h(p, r) = 0 < p ·
∑
h∈H e

h,

contradicting Lemma 4.

Lemma 6. Suppose H0 ⊂ H and for all h ∈ H0, i ∈ H \H0, dhi = 0. Then for all (p, r) ∈ RL++× [0, 1]H ,

∑
h∈H0

Ih(p, r) ≥ p ·
∑
h∈H0

eh

Proof. Again, by the definition of Ih(p, r).

13



Lemma 7. Suppose r = g(p, r). Then if s ≥ r, and s = g(p, s), then r = s.

Proof. Let H0 = {h ∈ H : rh < sh}. If h ∈ H0, then rh < sh ≤ 1, and so Ih(p, r) = 0; hence Ih(p, s) ≥

0 = Ih(p, r). For i ∈ H \H0, which must exist due to Corollary 5, we also have Ii(p, s) ≥ Ii(p, r), because

Ii is increasing in r−i and ri = si. By Lemma 6, we cannot have dhi = 0 for all h ∈ H0, i ∈ H \ H0,

because that would imply 0 =
∑
h∈H0

Ih(p, r) ≥ p·
∑
h∈H0

eh > 0. So for some h ∈ H0, i ∈ H\H0 we have

p · dhil > 0. But so shp · dhi > rhp · dhi and hence Ii(p, s) > Ii(p, r). Thus
∑
i∈H I

i(p, s) >
∑
i∈H I

i(p, r),

contradicting Lemma 4.

Now to the main:

Proof of Theorem 1: By Lemma 3 if gp has two distinct fixed points, then it has distinct fixed points

b ≥ a. But by Lemma 7 two fixed points b ≥ a cannot be distinct. We therefore conclude that gp cannot

have two distinct fixed points. Thus the correspondence r∗(p) is actually a function. Furthermore, since

the correspondence is defined by a continuous function g, it is clearly upper semi continuous. But any

upper semi continuous function is continuous. QED

6 Walrasian Equilibrium with Debt, Default, and Pyramid-

ing

Given a Walrasian economy with debts (uh, eh, dhi)h,i∈H , define a Walrasian equilibrium with pyramiding

by (p, (xh, rh)h∈H) satisfying

1.
∑
h∈H x

h =
∑
h∈H e

h and for all h ∈ H,

2. xh ∈ Bh(p, r)

3. xh ∈ Bh(p, r)⇒ uh(xh) ≥ uh(x)

4. rh = gh(p, r)

7 Existence

Theorem 8. Every Walrasian economy with debts (uh, eh, dhi)h,i∈H has a Walrasian equilibrium with

pyramiding (p, (xh, rh)h∈H).

Our proof is similar to the standard Walrasian existence proof. We begin by showing that the budget

set is a continuous correspondence. For all (p, r) ∈ RL++ × [0, 1]H , define Ih+(p, r) = max(0, Ih(p, r)) and

Bh+(p, r) = {x ∈ RL+ : p · x ≤ Ih+(p, r)}.
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Lemma 9. Bh+(p, r) is a nonempty, convex-valued, continuous correspondence at all (p, r) ∈ RL++ ×

[0, 1]H .

Proof. Clearly 0 ∈ Bh+(p, r) and clearly Bh+(p, r) is convex. The correspondence is defined by continuous

inequalities, so it is upper semi-continuous. To show lower semi-continuity, let (p, r) ∈ RL++ × [0, 1]H

and x ∈ Bh+(p, r) be given. Suppose (p(n), r(n)) →n (p, r). We must find x(n) ∈ Bh+(p(n), r(n)) with

(x(n)) →n x. We consider two cases. If x = 0, take x(n) = 0 for all n. If x 6= 0, then Ih(p, r) =

p · x > 0. By continuity Ih(p(n), r(n)) → Ih(p, r), and p(n) · x →n p · x > 0. In that case let x(n) =

xmin(I
h(p(n),r(n)),p·x)
p(n)·x .

Lemma 10. The budget sets βh(p) = Bh(p, r∗(p)) are continuous correspondences on RL++.

Proof. The function r∗(p) is continuous, and over its range, Ih(p, r) ≥ 0. Hence, by Lemma 9, βh(p) =

Bh(p, r∗(p)) = Bh+(p, r∗(p)) is a continuous correspondence.

Lemma 11. The demand correspondences χh defined by

χh(p) = arg max x∈βh(p)[u
h(x)]

are nonempty and convex valued and upper semi-continuous onRL++.

Proof. This follows from the maximum principle and the continuity of the budget correspondences βh,

established in Lemma 10.

Lemma 12. The aggregate excess demand correspondence z(p) =
∑
h∈H(χh(p)− eh) is non-empty and

convex valued and USC, and satisfies Walras Law (even though individual excess demand does not).

Proof. Lemma 4 guarantees Walras Law, and Lemma 11 gives USC.

Lemma 13. For p ∈ ∆L−1
++ , as some price p` → 0, aggregate excess demand for some good must go to

infinity.

Proof. By Lemma 4 some agent’s wealth must stay bounded away from 0, and by strict monotonicity

his demand goes to infinity. The other agents’ demands are bounded below by 0.

Hence can apply standard argument. QED
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8 Generic Finiteness of Equilibria

Our goal is to show that Walrasian equilibria with enough debts almost always have multiple equilibria.

But we begin by showing that the multiplicity is still finite. Our theorem shows that generically, equilibria

are finite in number.

We restrict attention to smooth preferences, that is utilities uh that are infinitely differentiable, that

satisfy Duh(x) >> 0, z′D2uh(x)z > 0, ∀x ∈ RL+, z ∈ RL/{0}.

Theorem 14. Fix smooth (uh)h∈H , and (dh)h,i∈H ∈ RH(H−1)L
+ . Then for almost all (eh)h∈H ∈ RHL++ ,

the economy (uh, eh, dhi)h,i∈H has a finite number of equilibria (p, (xh, rh)h∈H).

Proof of Theorem 14:

First we consider all economies (uh, eh, dhi)h,i∈H and equilibria (p, (xh, rh)h∈H) in which the agents

can be partitioned into two disjoint subsets H0in which rh < 1 and H1for which Ih > 0.

To that end, let us fix a partition of H into disjoint subsets H0, which will include only agents who

default, and H1 6= ∅, which will include only agents who fully deliver. For variables p = (p1, ..., pL−1, 1) ∈

RL−1
++ , I = (Ih)h∈H1 ∈ R

H1
++, r = (rh)h∈H0 ∈ (0, 1)H0 and h ∈ H1, let us define

χh(p, Ih) = argmaxx∈{x∈RL
++:p·x≤Ih}[u

h(x)]

By the smoothness hypothesis on preferences, χh is a smooth function. So is

χ(p, I) =
∑
h∈H1

χh(p, Ih)

Let χ̂(p, I)be the first L − 1 coordinates of χ(p, I). Similarly, let ê be the first L − 1 coordinates of

e =
∑
h∈H e

h. Letẑ(p, I, r, (eh)h∈H) = χ̂(p, I)− ê.

Similarly, for h ∈ H1, let us define

ηh(p, I, r, (eh)h∈H) = Ih − [p · eh −
∑
i 6=h

p · dhi +
∑
i∈H1

p · dih +
∑
i∈H0

rip · dih]

Finally, for h ∈ H0, let us define

ρh(p, I, r, (eh)h∈H) = rh
∑
i 6=h

p · dhi − [p · eh +
∑
i∈H1

p · dih +
∑
i∈H0

rip · dih]

The map

F : RL−1
++ ×R

H1
++ × (0, 1)H0 ×RH1L

++ → RL−1 ×RH1 ×RH0
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defined by

F (p, I, r, (eh)h∈H) = (ẑ(p, I, r, (eh)h∈H), (ηh(p, I, r, (eh)h∈H))h∈H1 , (ρh(p, I, r, (eh)h∈H))h∈H0)

is smooth. Moreover, we claim that F t 0. To see why, let us show that DF has full rank whenever

F = 0..

Take h ∈ H1. Observe first that by decreasing eh` by ε while increasing ehL by p1ε, we leave p · eh and

thus χ unchanged, and so increase ẑ` by ε without affecting any other coordinate of F . Thus dẑ
deh

has

full rank, and no other coordinate is affected by these changes in eh.

Observe next that by decreasing ehL by ε we increase ηh by ε without affecting any other coordinate

of F . Thus dη

(deh
L
)h∈H1

has full rank, and no other coordinate is affected by these changes in ehL.

Take h ∈ H0. By decreasing ehL by ε we increase ηh by ε without affecting any other coordinate of

F . Thus dρ

(deh
L
)h∈H1

has full rank, and no other coordinate is affected by these changes in ehL.

By the transversality theorem, for almost all (eh)h∈H , the equations F (p, I, r, (eh)h∈H) = 0 have a

finite number of equilibria. Since there are only a finite number of subsets H1 of the finite set H, there

can be only a finite number of equilibria. The only other equilibria involve agents h who at equilibrium

pay all their debts in full but are left with exactly zero income. A nearly identical transversality argument

sows that for almost all (eh)h∈H , this cannot happen. QED.

9 Leverage Multiplicity

Theorem 15. Consider any standard Walrasian exchange economy with fixed endowments and smooth

utilities (uh, eh)h∈H , with standard Walrasian equilibrium (p, (xh)h∈H). Suppose that at this equilibrium

the Marginal Propensities to Consume from wealth are not all identical across agents. Then there there

is an open set of debts (dhi)h,i∈H (including points with arbitrarily large debt) such that each Walrasian

economy with debts (uh, eh, dhi)h,i∈H has multiple equilibria, including at least one with no default that

is close to the original equilibrium.

Proof of Theorem 15:

For any debts (dhi)h,i∈H , define the extra endowment each h would get if there were no defaults by

δh =
∑
i 6=h d

ih −
∑
i 6=h d

hi. If p · δh = 0 for all h, the same equilibrium with no defaults will prevail

(and agents will all be spending strictly positive amounts on consumption). By continuity, for all nearby

prices and debts nearby (dhi)h,i∈H , demand will also involve no default. Hence demand is also smooth

around the old equilibrium price vector p and debts (dhi)h,i∈H .

By Slutsky’s Theorem (see Barten et al. (1969)) we can write the derivative of each agent’s demand
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at p by

dxh

dp
= Dxh = Kh + vh

(
(eh − xh) + δh

)T
where (i) Kh is symmetric and negative semidefinite, (ii) rank(Kh) = L− 1 (iii) pTKh = Khp = 0, (iv)

p · vh = 1.

From now on, by adding a hat we drop the last row and column from each matrix. (We are normalizing

the last price pL = 1, and ignoring demand for the last good, giving us a “truncated” demand.) Denote

the derivative of aggregate demand by

Dx̂ =
∑
h∈H

Dx̂h =
∑
h∈H

K̂h +
∑
h∈H

v̂h
(

(êh − x̂h) + δ̂h
)T

= K̂ +
∑
h∈H

v̂h
(

(êh − x̂h) + δ̂h
)T

Note that after dropping the last row and column, K̂ becomes negative definite. Hence sign(det(K̂)) =

(−1)L−1.

Consider two agents, i and j, for which for some good l < L vil > vjl . (We can always renumber the

goods so that l is not the last good.) For all h, let

δh = (xh − eh)− ch(Kl)
T

where Kl is the lth row of K. Let ci = −cj = c > 1

vi
l
−vj

l

, and let ch = 0 for all h 6= i, j. Then by Walras

Law and Slutsky, p · δh = 0 for all h. Moreover

Dx̂ = K̂ − c(v̂i − v̂j)K̂l

This matrix must have determinant of the opposite sign of the determinant of K̂. Its lth row is a negative

scalar multiple 1− c(vil − vjl ) < 0 of the row K̂l, which by itself flips the sign of det(K̂). Its other rows

k 6= l are equal to their original rows K̂k plus a scalar multiple of the lth row, which induces no further

change in the determinant.

Now for any scalar α, define α+ = max(0, α) and α− = max(0,−α). For any two agents h, k, and

good g = 1, ..., L, define

dhkg = (skg)(δhg )−

where skg is the share among all agents of good g owed to agent k

skg =
(δkg )+∑
h(δhg )+

From the fact that
∑
h δ

h = 0, we deduce that indeed δh =
∑
i 6=h d

ih −
∑
i 6=h d

hi and p · δh = 0 for all h.
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The Walrasian economy with debt (uh, eh, dhi)h,i∈H has the old equilibrium (p, (xh)h∈H , (r
h =

1)h∈H). In a neighborhood N of the equilibrium prices p, there is no default, so the truncated ex-

cess demand ẑ(p) = x̂(p)−
∑
h e

h is smooth and the determinant of its jacobian Dẑ = Dx̂ has sign equal

to −(−1)L−1, as we just saw. We now apply the Poincare-Hopf Index Theorem to deduce that there

must be at least one more equilibrium.

By Lemma 10, for all small enough ε > 0, the function ẑ : Pε → RL−1does not point directly out on

the boundary of Pε = {p ∈ RL−1 : pl ≥ ε, l = 1, ..., L− 1,
∑L−1
l=1 p2l ≤ 1/ε}. For arbitrarily small η > 0,

we can find a smooth function ẑη : Pε → RL−1that agrees with ẑ on N , and is within η of ẑ on all Pεand

is transverse to 0. Following the argument of Dierker (1972) and Varian (1975), who appealed to the

Poincare-Hopf Index Theorem, the sum of the signs of the determinants of the Jacobians of all the finite

number of zeroes of ẑη must be (−1)L−1. Since ẑη has one zero, at p, which has a determinant with the

opposite sign, there must be at least two more equilibria with determinants of sign (−1)L−1. Letting

η → 0 and taking convergent subsequences gives at least one equilibrium of ẑ that is distinct from p.

Consider now debts d′ close to d. Since Dẑ has a nonzero determinant of sign −(−1)L−1, by the

implicit function theorem, for d′ close enough to d, the economy (uh, eh, d′hi)h,i∈H also has a no-default

equilibrium with determinant of the same sign. Applying the same argument from the last paragraph

shows that (uh, eh, d′hi)h,i∈H also has multiple equilibria. ♠

This proof formalizes the intuition given in the introduction. Recall that in the proof above, the

agent i with higher marginal propensity to consume good l is given extra endowment δi = −cKl. This

entails a positive amount of good l, because own substitution effects are negative, Kll < 0, hence δil > 0.

Since p · δi = 0, there is another good l′ with δil′ < 0. In effect agent i incurred a big debt in l′ that he

used to buy l. In the equilibrium at prices p he is selling l. The theorem shows that if the price pl rises

a little, the excess demand for l rises, thus pushing the price pl still higher.

10 Default Multiplicity

The uniqueness of consistent delivery rates proved in Section 5 originates from the fact that seizing

collateral is frictionless. It is possible however to imagine an economy where circular debt arrangements

lead to delivery rate multiplicity, arising from losses associated with defaults. This section provides an

example.

Consider an economy with three agents where some defaults are costly. For example say that when

agent 1 defaults and is able to send only r1 < 1 of the goods that she owed, the default itself creates a

proportional loss of 1 − r1 < 1 of the goods sent, so that only r21 arrives at her creditors. Incomes are
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thus

I1(p, r) = p · e1 +
∑
i 6=1

rip · di1 − r1
∑
i 6=1

p · d1i

I2(p, r) = p · e2 + r21p · d12 + r3p · d32 − r2
∑
i 6=2

p · d2i

I3(p, r) = p · e3 + r21p · d13 + r2p · d23 − r3
∑
i 6=3

p · d3i

For simplicity let all agents have identical linear presences so that prices are fixed at some p. This

implies that we can limit the description to endowment and debt values. Let the endowments values be

p · e1 = 2, p · e2 = 0, p · e3 = 6

and debt values be

− p · d12 = 16, p · d13 = 0,

p · d21 = 15, − p · d23 = 3

p · d31 = 0, p · d32 = 3, − .

The delivery vector of r = (1, 1, 1) leads to positive income for all agents,

I1 = 1, I2 = 1, I3 = 6,

so it is self consistent. But the delivery vector of r =
(
3
4
, 2
3
, 1
)
is also self consistent. Because r1 = 3

4

agent one sends only 12 to agent two. But only 3
4
of that survives the journey, so agent two gets only 9

worth of goods. Because r3 = 1 agent two has 3 worth of goods delivered from agent three, so with 12

units in total coming in, no endowment and debt of 18, it must default and only deliver r2 = 2
3
of the

goods that it owes. Agent one now has an endowment valued at 2 and delivery from agent two valued

at 10. With a debt of 16 it must default and deliver only r1 = 3
4
of the goods that it owed. Agent three

has an endowment of 6, from which it must deliver 3 and only receive 2. Incomes are now

I1 = 0, I2 = 0, I3 = 5,

with the cost of the 3 units lost in delivery from agent one to agent two spread across all agents.

In a pure endowment economy multiple equilibria never Pareto dominate each other. This is also

true with default. When some agents default there must be some other agents that ultimately consume
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the defaulting agents’ endowment. So prices only transfer wealth across agents. In Diamond and Dybvig

(1983) the two equilibria are Pareto raked because by assumption the act of transferring ownership

disrupts production. The argument of this paper has been that multiplicity does not require any of the

special assumptions of Diamond and Dybvig (1983), just debt. What the example of this section shows

is that it is possible to also get Pareto ranked multiplicity, but we do need to assume some way for the

economy to lose goods. As to what assumption better describes the conditions that trigger the loss of

goods, it remains an empirical question. Our conjecture is that the inefficiency of bankruptcy proceedings

is much larger than the production disruption caused by a normal change of ownership.
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