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Abstract

If experiment A is Blackwell more informative than experiment B, it is always possible that A
and B are induced by signals A′ and B′ such that A′ is a refinement of B′, that is, A′ entails
observing B′ plus some additional information. We first show that this result does not extend
beyond pairs of experiments: There exist collections of experiments that cannot be induced by
a collection of signals so that whenever two experiments are Blackwell ordered, the associated
signals are refinement ordered. In other words, sometimes it is impossible for more informed
agents to know everything that less informed agents know. More broadly, define an information
hierarchy to be a partially ordered set that ranks experiments in terms of informativeness.
Is it the case that for any choice of experiments indexed on the hierarchy such that higher
experiments are Blackwell more informative, there are signals that induce these experiments
with higher signals being refinements of lower signals? We show that the answers is affirmative
if and only if the undirected graph of the information hierarchy is a forest.
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1 Introduction

There are two distinct things we might mean when we say that A is more informed than B. One

is that A’s information about some state of the world is more accurate than B’s. The other is that

A knows everything that B knows; that is, A observes what B observes, plus something else. The

first notion is typically formalized by representing a source of information as an experiment, i.e., a

distribution of posterior beliefs (Blackwell, 1953).1 We then say that A is Blackwell more informed

than B if A’s beliefs are a mean-preserving spread of B’s beliefs. The second notion is formalized

by representing a source of information as a partition of some expanded state space Ω×X (Green

and Stokey 1978). This formulation distinguishes payoff-relevant states (Ω) from the realizations

of signals conditional on those states (X). We then say that A knows everything that B knows if

A’s partition is a refinement of B’s partition.

These two formalisms are closely related. Every signal, i.e., partition of the expanded state

space, induces an experiment. If one signal is a refinement of another, then the experiment it

induces is Blackwell more informative. Moreover, Green and Stokey (1978) establish a partial

converse: given two Blackwell-ordered experiments, there exist refinement-ordered signals that

induce those experiments. In other words, if A’s information is more accurate than B’s, it is always

possible that A knows everything that B knows.

A natural question is whether Green and Stokey’s result extends beyond pairs of experiments.

Suppose we have some collection of experiments. Is it always the case that we can construct a

collection of signals that induce those experiments, and whenever two experiments are Blackwell

ordered, the two corresponding signals are refinement ordered?

We show that the answer is negative. We construct an example where A is Blackwell more

informed than B and C, who are in turn more informed than D, and yet it cannot be that A knows

everything that B and C know and that all three know everything that D knows.

To examine this issue more generally, we introduce the notion of an information hierarchy,

which is simply a partially ordered set. We consider experiment allocations that assign an exper-

iment to each element of the hierarchy, with the property that a higher element’s experiment is

1This definition is equivalent to the prior-free formulation of an experiment as a map from the state to distributions
over signal realizations.
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Blackwell more informative than a lower element’s experiment. We say an experiment allocation

is constructible if it is possible to assign a signal to every element of the hierarchy so that each

signal induces the corresponding experiment, and a higher element’s signal is a refinement of a

lower element’s signal. If every monotone experiment allocation is constructible, we say that the

information hierarchy is universally constructible.

Our main theorem characterizes the set of information hierarchies that are universally con-

structible. A partially ordered set (and thus an information hierarchy) is associated with an undi-

rected graph, whose nodes are the elements of the set and whose edges are determined by the partial

order.2 We establish that an information hierarchy is universally constructible if and only if this

graph is a forest.

We also establish a generalization of this result. We consider a class of other economically

meaningful orders on signals, and we show that, if we replace refinement with any one of these

orders in our notion of constructibility, our theorem continues to hold.

We discuss two applications of our theorem. First, suppose there is an agent who observes infor-

mation from several sources and an econometrician who does not know the data generating process

behind these sources. We analyze the conditions under which the econometrician can rationalize

the agent’s reactions to this information. In particular, we show that two necessary conditions,

Bayes plausibility and Blackwell monotonicity,3 do not suffice for rationalizability when there are

more than two sources of information. Second, we study information design in organizations under

the constraint that managers must have access to the information of their subordinates.

The rest of this paper proceeds as follows. Section 2 establishes basic definitions. Section 3

presents motivating examples. Section 4 contains the remaining definitions and our main result.

Section 5 discusses extensions. Section 6 provides two applications. We discuss related literature

in probability theory and information economics in Section 7. Section 8 is a conclusion.

2The standard representation of a partially ordered set as a directed graph encodes the partial order by placing
an edge from n to n′ if n covers n′, i.e., if n > n′ and there is no n′′ such that n > n′′ > n′. We associate with each
information hierarchy the undirected version of this directed graph.

3Bayes plausibility requires that the agent’s average belief does not vary across the sets of observed information
sources. Blackwell monotonicity requires that when an agent observes a superset of sources, her beliefs are more
dispersed than when she observes a subset.
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2 States, signals, and experiments

There is a finite state space Ω and a prior µ0 ∈ ∆ (Ω).

A signal π is a finite partition of Ω× [0, 1] s.t. π ⊂ S, where S is the set of non-empty Lebesgue-

measurable subsets of Ω × [0, 1] (Green and Stokey, 1978; Gentzkow and Kamenica, 2017). An

element s ∈ S is a signal realization. The interpretation of this formalism is that a random variable

x, drawn uniformly from [0, 1], determines the signal realization conditional on the state. Thus, the

conditional probability of s given ω is p(s|ω) = λ ({x| (ω, x) ∈ s}) where λ (·) denotes the Lebesgue

measure. Importantly, if we know that one agent observed some signal, say πA, and another agent

observed some signal πB, we can deduce not only how informed each agent is about ω, but also the

joint distribution of their signal realizations (and thus their higher-order beliefs).

In contrast, a (Blackwell) experiment only specifies how informed an agent is about ω, without

specifying her information about the beliefs of other agents. The standard definition of an experi-

ment is a map from Ω to distributions over signal realizations, but for ease of exposition we identify

each experiment with the distribution of beliefs it induces. Thus, we define an experiment, denoted

by τ , as an element of ∆ (∆ (Ω)) that has finite support and satisfies Eτ [µ] = µ0.

We write π D π′ if π is a refinement of π′, i.e., every element of π is a subset of some element

of π′.4 If π D π′, an agent who observes π has access to all the information available to the agent

who observes π′ (and thus knows those agent’s beliefs). We write τ % τ ′ if τ is Blackwell more

informative than τ ′, i.e., τ is a mean-preserving spread of τ ′. If τ % τ ′, an agent who observes τ

obtains a higher payoff than the agent who observes τ ′ in any decision problem.

We denote the set of all signals by Π. The pair (Π,D) is a lattice and we let ∨ denote the

join, i.e., π ∨ π′ is the coarsest refinement of both π and π′. Note that π ∨ π′ is the signal that is

equivalent to observing both π and π′.

Each signal π induces an experiment, denoted 〈π〉, according to

〈π〉 (µ) =
∑

{s∈π|µs=µ}

p (s)

where p (s) is the unconditional probability of signal realization s and µs is the posterior belief about

4We then also say π′ is coarser than π.
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ω conditional on s.5 Moreover, given signal π, we let µ̃π denote the belief-valued random variable

on Ω× [0, 1] that is the posterior induced by the observation of the signal realization from π. Note

that the refinement order implies a belief-martingale property: if π D π′, then E [µ̃π|µ̃π′ ] = µ̃π′ .
6

In other words, observing additional information cannot change one’s belief on average.

3 Illustrative examples

There are four experiments, τA, τB, τC , and τD, some of which might be Blackwell more informative

than others. We wish to know whether there exist signals πi for i ∈ {A,B,C,D} such that

(C1) 〈πi〉 = τi and

(C2) τi % τj implies πi D πj .

As we discussed in the introduction, the answer to this question will shed light on (i) whether

Green and Stokey’s (1978) result on the equivalence of representing information as experiments vs.

signals generalizes beyond pairwise comparisons, and (ii) whether it is always possible that a more

informed agent knows what a less informed agent knows.

As we will see, for some Blackwell rankings of the experiments, the answer is yes, no matter

what the the exact experiments are. For other rankings, this is not the case; there exist experiments

for which there do not exist signals satisfying (C1) and (C2). We illustrate these results through

three examples, depicted in Figure 1.

Chain

Suppose τA % τB % τC % τD. When experiments are ordered in this way, it is always possible to

construct signals that satisfy (C1) and (C2), regardless of the particular experiments. This follows

from Green and Stokey (1978): For any π′ and τ with τ % 〈π′〉, there exists a π such that (i)

〈π〉 = τ and (ii) π D π′.7 In other words, take any signal that induces some experiment; there is a

refinement of this signal that induces any particular more-informative experiment.

5Note that p (s) =
∑
ω∈Ω p (s|ω)µ0 (ω). For any s with p (s) > 0, we have µs (ω) = p(s|ω)µ0(ω)

p(s)
. For those s with

p (s) = 0, we can set µs to be any arbitrary belief.
6Throughout the paper, when we say two random variables are equal, we mean almost surely.
7This result first appears as Theorem 1 in Green and Stokey (1978). This result is stated and proved using the

notation in our paper by Gentzkow and Kamenica (2017).
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Figure 1: Example Hierarchies
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Now, consider any πD that induces τD. Since τC % τD, there exists some signal πC D πD that

induces τC . Similarly, there is a πB D πC that induces τB. Finally, there is a πA D πB that induces

τA. Hence, we constructed signals that satisfy (C1) and (C2).

Tree

Next, suppose τA % τB % τC , τA % τD, and τD is not comparable with τB or τC . In this case, it

is again always possible to construct signals so that 〈πi〉 = τi and τi % τj implies πi D πj . The

argument, however, is more subtle than for the chain. To see the issue, suppose we first go “up the

tree” and proceed as in the previous example: we construct πD and then πA D πD that induce τD

and τA . Now, to assign a signal πB, we have to go “down the tree.” But there is no guarantee that,

given the πA we constructed, there exists a πB that is coarser than πA and induces τB.

We establish a result (Lemma 1), however, that tells us we can construct πB that induces τB

and has the property that 〈πA ∨ πB〉 = 〈πA〉 = τA. (To do so, we build a πB whose realizations are

independent of the state given the realization of πA.) Then, we replace the “provisional” πA with

πA ∨ πB (which is of course also finer than πD). We then apply a similar procedure to assign πC

and update the provisional πA and πB. This algorithm is discussed in greater detail in Section 4.

Hence, we constructed signals that satisfy (C1) and (C2).
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Figure 2: The diamond hierarchy is not universally constructible
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Finally, suppose τA % τB % τD, τA % τC % τD, and τB and τC are not comparable. We now give

an example of four experiments ordered in this manner such that there do not exist signals that

satisfy (C1) and (C2).8

Let Ω = {0, 1} with a uniform prior. Since the state space is binary, we associate each belief

with Pr (ω = 1) ∈ [0, 1]. The rows in Figure 2 depict the four experiments, with the number of

dots in a circle proportional to the probability mass on that belief. It is easy to see that these

four experiments satisfy the given Blackwell ordering, with arrows (solid or dashed) showing how

to obtain a higher-ranked distribution as a mean-preserving spread of a lower-ranked distribution.

Now, to obtain a contradiction, suppose that the signals πA, πB, πC , and πD satisfy (C1) and

(C2). First, note that these signals do not merely induce the respective marginal distributions of

beliefs (i.e., the experiments), but they also determine the joint distribution of these beliefs. In

particular, as noted earlier, whenever π D π′ we must have E [µ̃π|µ̃π′ ] = µ̃π′ .

We use this fact to show that when µ̃πD = 1
6 , (i) πA D πB D πD implies that µ̃πA 6= 1, while (ii)

πA D πC D πD implies that µ̃πA = 1 with a strictly positive probability. To see (i), note that when

µ̃πD = 1
6 , we must have µ̃πB = 1

6 and thus µ̃A 6= 1 (since µ̃πA = 1 if and only if µ̃πB = 1). To see

(ii), note that when µ̃πD = 1
6 , there is a strictly positive probability that µ̃πC = 2

3 (since µ̃πC = 5
6 if

8The mathematical details of this example are presented in the proof of Lemma 6 in the Appendix.
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and only if µ̃πD = 5
6); and when µ̃πC = 2

3 , there is a strictly positive probability that µ̃πA = 1 (since

all of the other beliefs in the support of µ̃πA are strictly lower than 2
3). Thus, we have reached a

contradiction.

4 Universal constructibility

4.1 Information hierarchies and constructibility

These examples motivate the following issue. Partially order a collection of experiments so that

higher experiments are Blackwell more informative than lower experiments. Is it possible to find

signals that induce these experiments, and that satisfy the property that signals inducing higher

experiments are refinements of signals inducing lower ones? We argued that this was in fact always

possible when the ranking on experiments corresponded to one of the chain or tree examples above

but was not necessarily possible when experiments were ranked as a diamond. The main result of

this paper is an if-and-only-if characterization of the rankings of experiments such that suitable

refinement-ordered signals exist for any experiments whose Blackwell order is consistent with the

ranking.

We now provide the remaining definitions needed to state our result. An information hierarchy

H is a finite partially ordered set (N,≥). We refer to elements of N as nodes. Given n, n′ ∈ N , we

say that n covers n′ if n > n′ and there does not exist n′′ ∈ N with n > n′′ > n′. The graph of H,

denoted G (H), is an undirected graph whose nodes are the elements of N with an edge between

two nodes if one covers the other. G (H) is a forest if there is at most one path between any two

nodes.9

Fix an information hierarchy H and (Ω, µ0). An experiment allocation on H is a map that

9It is standard to represent a partially ordered set as a directed graph, e.g., as we do in Figure 1. Our main
theorem relates constructibility of a hierarchy to a property of its undirected analogue; this is why we define G (H)

as the undirected version. Formally, the directed graph
−→
G (H), is the pair

(
N,
−→
E
)

, where N is the set of nodes,
−→
E ⊆ N ×N is the set of directed edges, and (n, n′) ∈

−→
E if n covers n′. A directed path from n to n′ is an alternating

sequence of nodes and directed edges (n0,
−→e 0, ..., nL−1,

−→e L−1, nL), where L > 0, n0 = n, nL = n′, nl ∈ N for all

l ∈ {0, ..., L}, −→e l = (nl, nl+1) ∈
−→
E for all l ∈ {0, ..., L− 1}, and l 6= l′ ⇒ −→e l 6= −→e l′ . G (H) is the pair (N,E), where

N is the set of nodes, E ⊆ {e ⊆ N | |e| = 2} is the set of undirected edges, and {n, n′} ∈ E if n covers n′ or n′ covers n.
An undirected path from n to n′ is an alternating sequence of nodes and undirected edges (n0, e0, ..., nL−1, eL−1, nL),
where L > 0, n0 = n, nL = n′, nl ∈ N for all l ∈ {0, ..., L}, el = {nl, nl+1} ∈ E for all l ∈ {0, ..., L− 1}, and
l 6= l′ ⇒ el 6= el′ .
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assigns an experiment to every node; experiment allocation β is monotone if n ≥ n′ implies that

β (n) % β (n′), i.e., higher nodes are Blackwell more informed than lower nodes. A signal allocation

on H is a map that assigns a signal to every node; signal allocation σ is monotone if n ≥ n′ implies

that σ (n) D σ (n′), i.e., signals associated with higher nodes refine signals associated with lower

nodes. A signal allocation σ induces an experiment allocation β if for all n, β (n) = 〈σ (n)〉. A

(monotone) experiment allocation on H is constructible if there exists a monotone signal allocation

that induces it.10

We say that H is universally constructible if for every Ω and µ0, every monotone experiment

allocation is constructible.

4.2 Main result

We now present the main result of the paper:

Theorem 1. An information hierarchy is universally constructible if and only if its graph is a forest.

To relate this result to our motivating examples, both the chain and the tree are examples of

information hierarchies whose graphs are forests; hence, every monotone experiment allocation is

constructible. The graph of the diamond, however, is not a forest, because there are two paths from

A to D, namely the path going through B and the path going through C; hence, we were able to

present a monotone experiment allocation that is not constructible.

A rigorous proof of Theorem 1 is in the Appendix. The remainder of this section sketches the

argument.

4.3 Proof sketch: If

We begin by explaining why, if G (H) is a forest, then any monotone experiment allocation can be

constructed. We illustrate this for the special case when G (H) is a tree. One can then obtain the

general case by applying the same argument on each of the disjoint trees that make up the forest.

The proof relies on the following result, which is of independent information-theoretic interest.

We say that π′ is statistically redundant given π̂ if 〈π̂∨π′〉 = 〈π̂〉, i.e., observing π̂ and π′ yields the

10It is immediate that any constructible experiment allocation is monotone because π D π′ ⇒ 〈π〉 % 〈π′〉.
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same beliefs as observing π̂ only.11

Lemma 1. Fix signals π and π, with π D π, and an experiment τ ′ that is Blackwell less informative

than 〈π〉. There exists a signal π′ that induces τ ′ and is statistically redundant given any signal

that is between π and π in the refinement order.

To better understand the content of Lemma 1, it is helpful to note that the following, stronger,

conjecture does not hold. One might think that, analogously to the aforementioned result of Green

and Stokey (1978), for any π and τ ′ with τ ′ Blackwell less informative than 〈π〉, there exists a π′

that induces τ ′ and is coarser than π. This is not the case.12 Lemma 1 implies, however, that we

can nonetheless find a π′ that induces τ ′ and is statistically redundant given π, even though we

cannot guarantee that π D π′. Moreover, the Lemma further implies we can find a π′ so that π′ is

statistically redundant given any π̂ such that π E π̂ E π.

Why do we need the upper bound π? Once we fix any π and π, we can construct π′ that

is statistically redundant given π, π, and anything in between. But, suppose we only fix π and

consider an arbitrary π′. As long as π′ is not coarser than π, there is always some refinement of π,

say π∗, such that π′ is not statistically redundant given π∗.

The proof of Lemma 1 is constructive. To see how the construction works, consider the example

in Figure 3. The state is either L or R. Each of the four rows represents a signal, i.e., a partition

of {L,R} × [0, 1]. The two rectangles in each row represent the unit interval crossed with the two

states. Each signal realization is indicated by its pattern. Note that π D π, and while 〈π〉 % 〈π̃〉, it

is not the case that π D π̃ nor that 〈π ∨ π̃〉 = 〈π〉.

To establish the claim in Lemma 1, we need to construct a signal π′ that induces the same beliefs

as π̃, but is statistically redundant given π, and given any refinement of π up to π. The bottom

row illustrates such a construction. Each signal realization of π′ corresponds to a signal realization

of π̃, with the same likelihood in each state. However, the “locations” of the signal realizations in π′

are re-arranged so that the conditional probability of each signal realization of π′ in state ω given

11It may be helpful to contrast statistical redundancy to the stronger notion of refinement/coarsening. If π̂ D π′,
we do not merely have that 〈π̂∨π′〉 = 〈π̂〉, we also have that 〈π̂∨π′ ∨π′′〉 = 〈π̂∨π′′〉 for any signal π′′. For example,
in Figure 3, π′ is not a coarsening of π, but (as explained in the discussion below) π′ is statistically redundant given
π.

12For example, suppose that 〈π〉 % τ ′ but the support of τ ′ has more elements than the number of signal realizations
in π. Then, no π′ that induces τ ′ could be a coarsening of π.
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Figure 3: Illustration of Lemma 1

ω = L ω = R

π̄

π

π̃

π′

π is (i) the same for ω = L and ω = R, and (ii) the same for any elements of π that refine the

same element of π. Property (i) ensures that π′ is statistically redundant given π, while (i) and (ii)

together ensure that it is also redundant given any π̂ s.t. π D π̂ D π. The proof in the Appendix

generalizes this construction.

With Lemma 1 in hand, we can now establish the universal constructibility of trees. Consider

the tree hierarchy described in Section 3. Take some monotone experiment allocation β on this

hierarchy. We construct a sequence of monotone signal allocations on progressively larger subsets of

N , adding one node at a time. The signal assigned to a given node may be revised as the sequence

progresses.

In Step 1 we pick an arbitrary node, say node D. Given β (D), let σ1 (D) be any signal that

induces β (D). In Step 2 we pick a node connected to D, node A. Node A is above node D and so

we follow the same procedure as in the chain example to tentatively assign a suitable signal σ2 (A)

to A, with 〈σ2 (A)〉 = β (A) and σ2 (A) D σ1(D); the signal to D is unchanged in this step, i.e., we

let σ2(D) = σ1(D). In Step 3 we pick an unassigned node connected to A or D, which here must

be node B. Since B is below A, a complication in assigning a signal to B is that there may not

exist a signal π̃ such that 〈π̃〉 = β (B) and yet σ2 (A) D π̃. This is where Lemma 1 comes into play.

Applying Lemma 1 with π = π = σ2 (A) and τ = β (B), we conclude that there exists a signal

π′ that induces β (B) and is statistically redundant with σ2 (A), so that 〈σ2 (A) ∨ π′〉 = 〈σ2 (A)〉.

We then set σ3 (B) = π′, we replace the initial assignment to A with σ3 (A) = σ2 (A) ∨ π′, and we

leave the signal at D unchanged at σ3 (D) = σ2 (D). Finally, in Step 4, we move to the final node

11



C, below the previously assigned node B. We now apply Lemma 1 with π = σ3 (A),13 π = σ3 (B),

and τ = β (C) to obtain a new signal π′ that induces β (C) and is statistically redundant with the

previously assigned signals at nodes above C. We then set σ4 (C) = π′ and replace the signals of

the previously assigned nodes above C as in Step 3.

This completes the construction of a monotone signal allocation inducing experiment allocation

β. The full details of this procedure, applied to any hierarchy whose graph is a forest, are the heart

of the formal proof of the if direction.

Which properties of a tree are used in this argument? When we apply this procedure to trees

(or forests more generally), we can add the nodes in a way so that the new node n always covers or

is covered by exactly one node n′ to which we have previously assigned a signal. When n covers n′,

we can apply Green and Stokey’s (1978) result to obtain the new signal at n. When n is covered by

n′, we can apply Lemma 1 instead. If the hierarchy is not a forest, however, no matter how we add

the nodes, we will inevitably find ourselves in a situation where the new node covers or is covered

by more than one node, in which case neither Green and Stokey’s (1978) nor Lemma 1 is of use.

4.4 Proof sketch: Only if

We now sketch the proof of the other direction of Theorem 1, that is, a hierarchy is universally

constructible only if its graph is a forest. The proof consists of three main steps. Step 1 introduces

a notion of a closed subhierarchy and establishes that a hierarchy is universally constructible only if

its closed subhierarchies are as well. Step 2 shows that every hierarchy that is not a forest contains

a closed subhierarchy that is one of two types. Step 3 shows that both of these types are not

universally constructible, thus completing the proof.

Step 1: Given a hierarchy H = (N,≥), a subset of nodes N ′ ⊆ N induces the hierarchy

H ′ = (N ′,≥), which we refer to as a subhierarchy of H, with the partial order being the restriction

of ≥ to N ′. Say that H ′ is closed if for every n′, n′′ ∈ N ′ and n ∈ N , n′ ≥ n ≥ n′′ implies n ∈ N ′. In

other words, N ′ contains all the nodes from N that are “between” the nodes of N ′. Lemma 2 in the

Appendix shows that if H is universally constructible, then every closed subhierarchy of H is also

universally constructible. The argument is as follows. Fix a closed subhierarchy H ′. We show that

13In general, π is taken to be the join of all signals previously assigned to nodes above the new node, which in this
case is simply σ3 (A).
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any monotone experiment allocation β on H ′ can be extended to a monotone experiment allocation

on all of H. This step uses the hypothesis that H ′ is closed, since it means that in extending β, we

never have to fill in beliefs “in between” nodes in H ′. As H is universally constructible, there is a

monotone signal allocation on H that induces the extension of β, and the restriction of this signal

allocation to N ′ is a monotone signal allocation on H ′ that induces β. Since β is arbitrary, H ′ is

universal constructible.

Step 2: Suppose G (H) is not a forest. A hierarchy is cyclic if G (H) is not a forest. Given that

N is finite and H is cyclic, it follows that H contains a minimal cyclic closed subhierarchy (MCC),

i.e., a subhierarchy H ′ = (N ′,≥) such that: H ′ is cyclic, closed, and there does not exist N ′′ ( N ′

such that H ′′ = (N ′′,≥) is cyclic and closed. Any MCC H ′ must fall into one of the following

categories:

• H ′ is a union of non-comparable paths (UNP): It contains a maximal node n and a minimal

node n, and its graph consists of at least two paths between n and n. Moreover, nodes in

N \ {n, n} are comparable only if they are in the same path. The diamond is an example of

a UNP; another example is depicted in Figure 4a.

• H ′ is a crown: It contains exactly four nodes, which we label F (ather), M(other), S(on),

D(aughter), and the partial order consists of F ≥ S, F ≥ D, M ≥ S, and M ≥ D. A crown

is depicted in Figure 6a.

This taxonomy takes considerable effort to prove formally, but the high level argument is as follows.

An MCC H ′ contains maximal nodes, which are not covered by any other node, and minimal nodes,

which do not cover any other nodes. We distinguish two cases on these maximal and minimal nodes.

In the first case, every maximal node in H ′ covers every minimal node. Then, the fact that H ′

is minimal, together with the existence of a cycle, implies that H ′ contains exactly four nodes and

is in fact a crown.

Alternatively, there is a maximal node n that does not cover a minimal node n. Then, we show

that H ′ is a UNP. To see this, note the following two subcases. First, it may be that H ′ is simply

the set of nodes that are between n and n, i.e., a between set. Then, H ′ consists of a series of

directed paths between n and n. Now, if nodes in distinct paths were comparable, then it would
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n

n

A

B

C

(a) A UNP

n

n

A

B

(b) A between set

Figure 4: For adjacent nodes, the node that is higher in the figure covers the node that is lower.
(a) A UNP. Nodes A, B, and C are in different paths, and therefore are not comparable. (b) A
between set which is not an MCC. There are two overlapping (directed) paths that go from n to A
to n, one that goes through B and one that does not. There is a smaller cyclic closed subhierarchy,
namely the nodes between A and n.

be possible to find a smaller cyclic closed subhierarchy, as illustrated in Figure 4b, violating the

fact that H ′ is minimal. Thus, nodes must not be comparable across paths and H ′ is a UNP. The

second subcase is that H ′ is not a between set. Lemma 4 in the Appendix shows that then every

cycle in H ′ must contain every node in N ′. Any such spanning cycle can be decomposed into two

undirected paths between a maximal node and a minimal node. If any nodes in these two paths

were comparable, we could find a smaller cycle that does not contain every node in N ′, which would

contradict Lemma 4. As a result, H ′ is a UNP.

Step 3: Finally, we show that UNPs and crowns are not universally constructible. The former is

demonstrated in Lemma 6 in the Appendix using a similar construction as we used for the diamond

in Section 3. Indeed, the diamond is an example of a UNP in which there are exactly two undirected

paths from n to n.

For the crown, we construct a particular monotone experiment allocation that is not con-

structible: Let Ω = {0, 1, 2} and µ0 (ω = 0) = 1
2 , µ0 (ω = 1) = 1

4 , and µ0 (ω = 2) = 1
4 . We represent

each belief as a pair (x, y) in the triangle {(x, y) |x ≥ 0, y ≥ 0, x+ y ≤ 1}, where Pr (ω = 1) = x

and Pr (ω = 2) = y. Consider the experiment allocation β that assigns to F , M , S, and D the

experiments indicated in Figure 5a. Each belief realization is a circle, the letters inside the circle

14



Figure 5: The crown is not universally constructible
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indicate the nodes for which this belief is in the support, and the area of the circle is the likeli-

hood of the belief (which is the same for all nodes attached to the belief). For example, the belief

(1/4, 1/4) can be realized for F , S, and D, with likelihood of 1/2 in each case. It is easy to see

from Figure 5 that β assigns higher nodes more informative signals. For example, going from D to

M (Figure 5b), the mass on the east and west beliefs stays the same, but the mass on the central

belief is spread out in the north-south directions.

Lemma 7 in the Appendix formally defines this experiment allocation and shows that it is not

constructible. To see what goes wrong, suppose there is a monotone signal allocation that induces

β. Such a signal allocation induces a joint distribution over beliefs at all four nodes. Consider first

the joint distribution of beliefs between D, M , and S. The center D belief occurs if and only if the

M belief is north or south (Figure 5b). The center belief of S occurs if and only if the M belief is

east or west (Figure 5c). Hence, the probability of both D and S having the center belief is zero.

Now consider the joint distribution of beliefs between D, F , and S. The belief at D is in the center

if and only if the belief at F is in the center (Figure 5d), and the belief at S is in the center if and

only if the belief at F is in the center (Figure 5e). So, the probability that both D and S have the

center belief is positive, yielding a contradiction.
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Figure 6: The crown and cross hierarchies.

5 Discussion

5.1 Binary states

A key step in our proof of the only-if direction of Theorem 1 shows that the crown is not universally

constructible. Specifically, Figure 5 presents a particular experiment allocation involving three

states that is not constructible.

It is natural to ask whether there is an example of a non-constructible allocation on the crown

using two states. No such example exists: when the state space is binary, every monotone ex-

periment allocation on the crown is constructible. The reason is as follows. Take an arbitrary

monotone experiment allocation β on {F,M, S,D}. It is known that the set of experiments under

the Blackwell order is a lattice when the state space is binary (Kertz and Rösler, 2000; Müller and

Scarsini, 2006). Thus, there exists an experiment β (S) ∨ β (D) such that β (S) ∨ β (D) % β (S),

β (S) ∨ β (D) % β (D), and τ % β (S) ∨ β (D) for any τ % β (S) , β (D). We can therefore expand

the crown hierarchy by adding a T (utor) whom F (ather) and M(other) hired to oversee the chil-

dren: F ≥ T , M ≥ T , T ≥ S, and T ≥ D. We refer to this hierarchy as the cross, which is

depicted in Figure 6b. Let β̂ be the experiment allocation on the cross that sets β̂ (n) = β (n) for

n ∈ {F,M, S,D} and β̂ (T ) = β (S) ∨ β (D). The allocation β̂ is monotone by construction. The

cross is a forest, and hence by Theorem 1, it is universally constructible. Thus, there is a monotone

signal allocation σ̂ that induces β̂. Restricting σ̂ to {F,M, S,D} yields a monotone signal allocation

on the crown that induces β.

This example illustrates that the binary state space is special. With three or more states, every
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monotone experiment allocation is constructible if and only if the hierarchy is a forest. With binary

states, being a forest is sufficient for constructibility, but it is not necessary. A natural direction for

future research is to characterize necessary and sufficient conditions for every monotone experiment

allocation to be constructible for the case of binary states.

5.2 Beyond the refinement order

As we mentioned at the outset, there are various things one might mean by “A is more informed

than B.” One is that A’s signal is Blackwell more informative than B’s, i.e., 〈πA〉 % 〈πB〉. Another

is that A has observed all of B’s information, i.e., πA D πB. These, however, are not the only

economically relevant comparisons of signals. For instance, it might be that A knows B’s belief

about the state. Or, it might be that if A observed B’s information, A’s belief about the state

of the world would not change, i.e., that πB is statistically redundant given πA. In a companion

paper (Brooks et al., 2020), we explore these and other relations on signals in more detail. In this

section, we explain how our results extend to a large class of notions of “more informed,” including

those just mentioned.

First, consider the belief-martingale relation on Π, denoted B, defined by π B π′ if E [µ̃π|µ̃π′ ] =

µ̃π′ . (We use the word relation rather than order because B is not transitive.)14 Note that the

refinement order implies the belief-martingale relation, which in turn implies the Blackwell order:

π D π′ ⇒ π B π′ ⇒ 〈π〉 % 〈π′〉.

Many economically relevant comparisons of signals are “in between” refinement and the belief-

martingale relation, i.e., they are weaker than the former and stronger than the latter. For example,

the two aforementioned comparisons—A knowing B’s belief or B’s signal being statistically redun-

dant given A’s—fall in this in-between category. Formally, we say a binary relation R on Π is

proper if π D π′ ⇒ π R π′ ⇒ π B π′.

Our main result can be extended by replacing the refinement order with any proper relation.

In particular, say a signal allocation σ on H is R-monotone if n ≥ n′ implies that σ (n) R σ (n′).

The experiment allocation β on H is R-constructible if β is induced by some R-monotone signal

14See Brooks et al. (2020).

17



allocation on H. A hierarchy is said to be R-universally constructible if every monotone experiment

allocation is R-constructible for any Ω and µ0. With this terminology, we have the following:

Theorem 2. Fix any proper relation R. A hierarchy H is R-universally constructible if and only if

its graph is a forest.

The if direction follows immediately from Theorem 1, since D-universal constructibility implies

R-universal constructibility for any proper R. For the only if direction, the key is to recognize

that the proofs of Lemmas 6 and 7 in the Appendix establish not only that UNPs and crowns are

not D-universally constructible, but also that they are not B-universally constructible. With that

change, the remainder of the proof of the only if direction of Theorem 1 (replacing every instance

of “universally constructible” with “B-universally constructible”) establishes that if G(H) is not a

forest, it is not B-universally constructible. A fortiori, it is not R-universally constructible for any

proper R.

6 Applications

6.1 Rationalizing reaction to unknown sources of information

Consider an agent who obtains information from multiple sources. If we do not know the information-

generating process, what restrictions does the agent’s rationality impose on her potential reactions

to this information? Concretely, suppose a decision maker has access to a set of information sources

{x1, x2, ..., xM}. Suppose further that our dataset D = {τS}S⊆{x1,...,xM} tells us the distribution

of beliefs conditional on observing any non-empty subset of information sources. When can we

rationalize a given dataset D in the sense that we can associate each information source xi with

some signal (i.e., an element of Π) and conclude that belief formation is consistent with Bayes’

rule?

To be rationalized, belief distributions (i.e., experiments) in D have to satisfy two obvious prop-

erties. First, there is Bayes plausibility : the average belief cannot differ across sets of information

sources, i.e., EτS [µ] = EτS′ [µ] for any two subsets S and S′. Second, there is Blackwell monotonic-

ity : observing a superset of sources necessarily induces a more dispersed distribution of beliefs, i.e.,
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Figure 7: The set-inclusion hierarchy.

τS is a mean-preserving spread of τS′ if S′ ⊆ S. A natural question is whether these are the only

properties imposed by Bayesian updating.

Theorem 1 tells us that, when there are three or more sources, the answer is no.15 In this

case, Bayesian updating requires more than just Bayes plausibility and Blackwell monotonicity. To

see why, consider the set-inclusion information hierarchy H where each non-empty collection of

sources S ⊆ {x1, ..., xM} is associated with a node nS and the partial order is the superset order:

nS ≥ nS′ if S′ ⊆ S. As illustrated in Figure 7, the graph of this information hierarchy is not a

forest. By Theorem 1, this means that there is some monotone experiment allocation on H, call it

β, that cannot be induced by any monotone signal allocation on H. Now, we can associate with

this β a dataset D = {τS}S⊆{x1,...,xM} by setting τS = β (nS). Note that D necessarily satisfies

Bayes plausibility and Blackwell monotonicity (since β is monotone). If we could rationalize D by

associating each xi with some signal π (xi) ∈ Π, then the signal allocation σ (ns) =
∨
xi∈S π (xi)

would induce β and be monotone (since S′ ⊆ S implies
∨
xi∈S π (xi) D

∨
xi∈S′ π (xi)), contradicting

Theorem 1. Thus, we know that there are datasets that satisfy Bayes plausibility and Blackwell

monotonicity, yet cannot be rationalized.

A fruitful direction for future research would be to fully characterize which reactions to unknown

sources of information are rationalizable.

15When there are only two sources, M = 2, it is easy to show that the answer is indeed affirmative. Any reaction
to two unknown sources of information that satisfies Bayes plausibility and Blackwell monotonicity is consistent with
Bayesian updating.
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6.2 Information design

Suppose Sender provides information to a set of agents. Moreover, she face certain types of mono-

tonicity constraints such as some agents must know the beliefs of some other agents or some agents

must have access to others’ information. Then, we can think of agents as elements of an information

hierarchy, and the information design problem consists of selecting a (suitably monotone) signal

allocation on this hierarchy. Our results shed light on how such monotonicity constraints affect the

information design problem.

For example, consider organizations. A long literature in organization economics emphasizes

the importance of the hierarchical structure of managerial relationships (Williamson, 1967). One

important aspect of organizational design is deciding how much information to provide—about

individuals’ prospects for promotion, about the overall performance of the organization, etc.—to

each member of the organization. It is often suboptimal to provide full transparency and share full

information with everyone (Fuchs, 2007; Jehiel, 2015; Smolin, 2017).

A natural constraint that an information designer might face is that anyone in the organization

ought to have access to the information that is available to her subordinates, i.e., that the allocation

of signals within the organization should be monotone with respect to the management structure,

so that the signal of a superior refines the signals of their subordinates. This constraint interacts

with the organization structure. Theorem 1 implies that, if an organization has the feature that ev-

ery subordinate has at most one superior, the aforementioned constraint can always be satisfied as

long as individuals who are higher up in the organization are more informed in the Blackwell sense.

Furthermore, if the information designer’s objectives only depend on each agent’s experiment, then

one could reformulate the information design problem in terms of the choice of monotone experi-

ment allocation, rather than choosing monotone signal allocations directly. With richer managerial

relationships,16 however, Theorem 1 also tells us there could be desirable allocations of information

which are incompatible with the monotonicity constraint, even though they provide (Blackwell)

more information to those higher up in the organization.

16For instance, suppose that the CEO oversees two middle managers who share the oversight of an employee.
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7 Related literature

We now discuss the connection between our results and related literature in probability theory and

in information economics.17

7.1 Connections to probability theory

Mathematically, our results are close to a literature in probability theory on the relationship be-

tween orders on probability distributions and stochastic processes. Because the connection to this

literature is technical, our discussion is somewhat formal and detailed.

Fix two distributions τ, τ ′ ∈ ∆
(
Rk
)
. We say that τ is greater than τ ′ in the convex order if

for every convex function φ : Rk → R,
∫
φdτ ≥

∫
φdτ ′. The Sherman-Stein theorem says that the

following are equivalent: (i) τ is greater than τ ′ in the convex order; (ii) τ can be obtained from τ ′

via mean-preserving spreads. Blackwell (1953, Section 3) observes that his result is implied by the

Sherman-Stein theorem, since we can interpret τ as an experiment and the convex function φ as the

maximum utility obtained in a decision problem given a belief. Importantly, the mean-preserving

spread from τ to τ ′ is a probability transition kernel which defines a martingale on Rk. Thus,

an equivalent way of stating (ii) is that there exists a two-period martingale on Rk such that the

marginals are τ and τ ′.

The equivalence was later generalized by Strassen (1965, Theorem 8): τ1, . . . , τM ∈ ∆
(
Rk
)

are

increasing in the convex order if and only if there exists an M -period martingale with marginals

τ1, . . . , τM . This result is closely related to Green and Stokey (1978) and, more broadly, whether

experiments can be represented as partitions: When the set of realizations of the martingale is finite,

the martingale generates a filtration (Σm)Mm=1, where each Σm is generated by a finite partition

πm of the underlying probability space, and the partitions are increasing in the refinement order.

We can therefore view the probability space itself as an expanded state space, so that the πm

are refinement-ordered signals that induce the given experiments. In our terminology, Strassen’s

theorem implies that the chain is universally constructible.

There is a substantial literature that further generalizes and strengthens Strassen’s theorem.

17Our inquiry also leads us to a pure graph-theoretic question of whether a partially ordered set contains subsets of
a particular form. This subject has been studied in combinatorics and graph theory (e.g., Lu, 2014); within economics,
it is used by Curello and Sinander (2019) to study rankings on preference relations.
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See Hirsch et al. (2011) for a survey.18 To our knowledge, Juillet (2016) is the only paper in this

literature to study collections of distributions that are indexed on partially ordered sets. He presents

examples that illustrate various ways in which Strassen’s theorem does not generalize. Most closely

related to the present study, Juillet (2016, Section 4.1) constructs a collection (τx)x∈X , where X

is the diamond and τx ∈ ∆ (R), such that the collection is increasing in the convex order but

there does not exist a real-valued martingale on X with the given marginals. The distributions

in Juillet’s example are similar in spirit to (but distinct from) our example of a non-constructible

belief allocation given in Section 3.19 Our Theorem 1 implies that the equivalence between (τx)x∈X

increasing in the convex order and induced by a martingale holds if and only if X is a forest.

Also related is Fill and Machida (2001), who study an analogue of the problem of Juillet (2016),

but where the convex order is replaced by a generalization of first-order stochastic dominance.

Specifically, Fill and Machida (2001) consider collections of distributions indexed on a partially

ordered set (τx)x∈X , where each τx is a distribution on a different partially ordered set S. They de-

fine a notion of stochastic monotonicity for distributions on S that reduces to first-order stochastic

dominance when S is totally ordered. A pair (X,S) is monotonicity equivalent if the following con-

dition holds: a collection is (τx)x∈X is stochastically monotone if and only if there is a distribution

over non-decreasing functions f : X → S such that τx is the marginal distribution of f (x). Mono-

tonicity equivalence is analogous to universal constructibility, but with stochastic monotonicity in

place of the Blackwell order. In the special case that S contains a sub-poset that is either a cycle

or a crown, Fill and Machida (2001) show that (X,S) is monotonicity equivalent if and only if X

is a forest. The cases where X is a diamond or a crown also feature prominently in their proof,

which follows a similar strategy of showing that if X is not a forest, then it contains a sub-poset

on which monotonicity equivalence fails, and then extending the counterexample to all of X.

7.2 Connections to information economics

Our paper connects to various threads in the economics literature studying information and beliefs.

In addition to the aforementioned classical literature on information orders, Bergemann and Morris

18We thank Ludvig Sinander and Aniko Oery for drawing our attention to this literature.
19It is straightforward to adapt Juillet’s example to show that the diamond is not universally constructible. But

unlike our example from Section 3, his example is not easily adapted for general UNPs.
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(2016) study an extension of the Blackwell order to type spaces, and Mu et al. (2019) consider

comparisons of repeated experiments.

We contribute to the literature on higher order beliefs (Harsanyi, 1967; Mertens and Zamir,

1985; Brandenburger and Dekel, 1993). Specifically, we characterize when restrictions of the form

“player i knows player j’s type”place constraints on i’s and j’s first-order beliefs, beyond the obvious

constraint that i must be Blackwell more informed than j.20

We also study how signals can be combined to produce more informative signals. Gentzkow

and Kamenica (2017) study this issue in the context of a communication game with a receiver

who combines information provided by multiple senders. Börgers, Hernando-Veciana and Krähmer

(2013) study the interaction between signals from the perspective of whether signals are substitutes

or complements.

We also contribute to the growing literature on information design (Kamenica and Gentzkow,

2011; Bergemann and Morris, 2016). Arieli et al. (2021) characterize feasible joint belief distri-

butions of a group of agents in a binary state case. Mathevet and Taneva (2020) analyze the

implications of information design for organizational structure.

8 Conclusion

We conclude with a brief discussion of an important direction for future work. Our analysis has

focused on the question of when an information hierarchy is universally constructible. That condi-

tion requires that every monotone experiment allocation is constructible. Of course, even when not

every monotone experiment allocation is constructible, some are. A natural goal would therefore

be to characterize, for a given information hierarchy, the set of constructible monotone experiment

allocations. Such a characterization would be of particular interest in the case of the set-inclusion

hierarchy (Figure 7), which would identify the exact sufficient and necessary conditions for ratio-

nalizability of reactions to unknown sources of information, as discussed in Section 6.1.

20In the language of type spaces, “player i knows player j’s type” is analogous to the refinement order. As discussed
in Section 5.2, we also study relations that are weaker than refinement.
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A Proofs

A.1 Proof of Lemma 1

Proof of Lemma 1. Let π̃ be a signal s.t. 〈π̃〉 = τ ′. Since 〈π〉 % τ ′, there exists a garbling g : π×π̃ →

[0, 1] such that
∑

s̃∈π̃ g (s, s̃) = 1 ∀s ∈ π, and p (s̃|ω) =
∑

s∈π g (s, s̃) p (s|ω). For every s ∈ π, let

s (s) denote the element of π s.t. s ⊆ s (s). (This element exists since π D π.) Now, ∀s ∈ π, let{
Xs
s̃

}
s̃∈Ms be a partition of s s.t. ∀ω, λ

({
x| (ω, x) ∈ Xs

s̃

})
= λ ({x| (ω, x) ∈ s}) g (s (s) , s̃), where

M s = {s̃ ∈ π̃|g (s (s) , s̃) > 0}. Such a partition exists because
∑

s̃∈π̃ g (s (s) , s̃) = 1 for all s (s) ∈ π.

Let π′ =
{
Z s̃
}
s̃∈π̃ with Z s̃ = ∪

s∈π s.t.s̃∈Ms
Xs
s̃ . We now show that π′ satisfies (i) and (ii). To show

(i), it suffices to show that p
(
Z s̃|ω

)
= p (s̃|ω) for every s̃ and ω. We have

p
(
Z s̃|ω

)
= λ

({
x| (ω, x) ∈ ∪

s∈π s.t.s̃∈Ms
Xs
s̃

})
=

∑
s∈π s.t.s̃∈Ms

λ
({
x| (ω, x) ∈ Xs

s̃

})
=

∑
s∈π s.t.s̃∈Ms

λ ({x| (ω, x) ∈ s}) g (s (s) , s̃)

=
∑
s∈π

λ ({x| (ω, x) ∈ s}) g (s (s) , s̃)

=
∑
s∈π

∑
s s.t. s(s)=s

λ ({x| (ω, x) ∈ s}) g (s (s) , ŝ)

=
∑
s∈π

g (s, ŝ)
∑

s s.t. s(s)=s

λ ({x| (ω, x) ∈ s})

=
∑
s∈π

g (s, s̃)λ ({x| (ω, x) ∈ s})

=
∑
s∈π

g (s, s̃) p (s|ω)

= p (s̃|ω) .

To show (ii), consider some π̂ s.t. π D π̂ D π and some ŝ ∈ π̂. Since π̂ ∨ π′ D π̂, there is a partition

of ŝ, say {s∨i }i∈I s.t. s∨i ∈ π̂ ∨ π′ for all i. It will suffice to show that for every ω, ω′, and s∨i , we

have

p (s∨i |ω)

p (s∨i |ω′)
=
p (ŝ|ω)

p (ŝ|ω′)
.
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Consider some s∨i . Note that there exists s ∈ π with ŝ ⊆ s since π̂ D π. Let Q = {s ∈ π|s ⊆ ŝ}.

Since π D π̂, for every ω, λ (x| (ω, x) ∈ ŝ) =
∑

s∈Q λ (x| (ω, x) ∈ s). Note that s ⊆ s for all s ∈ Q.

Now, we know that s∨i = s′∩ŝ for some s′ ∈ π′. By definition of π′, we know that s′ = ∪
s∈π s.t.s̃∈Ms

Xs
s̃

for some s̃ ∈ π̃. Hence,

s∨i =

(
∪

s∈π s.t.s̃∈Ms
Xs
s̃

)
∩ ŝ

= ∪
s∈π s.t.s̃∈Ms

(
Xs
s̃ ∩ ŝ

)
= ∪

s∈Q s.t.s̃∈Ms
Xs
s̃ ,

where the last equality follows from the fact that Xs
s̃ ⊆ s, and hence Xs

s̃ ∩ ŝ = Xs
s̃ if s ∈ Q and

Xs
s̃ ∩ ŝ is empty if s /∈ Q. Hence,

p
(
s∨i |ω

)
= λ

({
x| (ω, x) ∈ s∨i

})
= λ

({
x| (ω, x) ∈ ∪

s∈Q s.t.s̃∈Ms
Xs
s̃

})
=

∑
s∈Q s.t.s̃∈Ms

λ
({
x| (ω, x) ∈ Xs

s̃

})
=

∑
s∈Q s.t.s̃∈Ms

λ ({x| (ω, x) ∈ s}) g (s, s̃)

=
∑
s∈Q

λ ({x| (ω, x) ∈ s}) g (s, s̃)

= g (s, s̃)
∑
s∈Q

λ ({x| (ω, x) ∈ s})

= g (s, s̃)λ ({x| (ω, x) ∈ ŝ})

= g (s, s̃) p (ŝ|ω) .

Hence,

p (s∨i |ω)

p (s∨i |ω′)
=
g (s, s̃) p (ŝ|ω)

g (s, s̃) p (ŝ|ω′)
=
p (ŝ|ω)

p (ŝ|ω′)
,

which completes the proof of Lemma 1.
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A.2 Proof of Theorem 1: If

Let H be an information hierarchy and suppose G(H) is a forest. Let β be a monotone experiment

allocation on H. We will construct a monotone signal allocation that induces β. To do so, we

construct a sequence of subhierarchies of H, adding nodes of H one by one, until we reach the full

hierarchy H. At each step, we assign a signal to the newly added node and potentially reassign the

signals allocated to the previously added nodes.

We begin with some notation and terminology. A construction procedure f is a bijection from

{1, ..., |N |} to N that specifies the order in which the nodes are added. Let Nf
l = {f (1) , ..., f (l)}. If

f (l) = n, we say that n was added at time l, and we refer to Nf
l−1 as the previously added nodes. For

any subset N ′ ⊆ N , let CoveredBy (N ′) = {n ∈ N \N ′|∃n′ ∈ N ′ that covers n}, Covering (N ′) =

{n ∈ N \N ′|∃n′ ∈ N ′ that is covered by n}, and

Disconnected
(
N ′
)

=
{
n ∈ N \N ′|@n′ ∈ N ′ s.t. there is a path from n to n′ in G(H)

}
.

Now, consider a construction procedure f of the following form. Let f (1) be any node in N .

For l ∈ {2, 3, ..., |N |}, let f (l) be an arbitrary element of CoveredBy
(
Nf
l−1

)
∪Covering

(
Nf
l−1

)
∪

Disconnected
(
Nf
l−1

)
. Note that for anyN ′ ( N , CoveredBy (N ′)∪Covering (N ′)∪Disconnected (N ′)

is not empty.

Claim 1. For each l ≥ 2, there is at most one edge in G(H) between f (l) and nodes in Nf
l−1.

Proof of Claim 1. Suppose toward contradiction that f (l) has an edge in G(H) with distinct n,n′ ∈

Nf
l−1. Since n and n′ both have an edge with f (l), they must belong to the same tree in G(H).

Moreover, there must be a path between n and n′ in G
((
Nf
l−1,≥

))
. To see this, let n be the

node that was added earliest to Nf
l−1 among the nodes in the tree to which n and n′ belong.

For every other node f (l′) ∈ Nf
l−1 from this tree, we must have f (l′) ∈ CoveredBy

(
Nf
l′−1

)
∪

Covering
(
Nf
l′−1

)
, which in turn means that there is a path from f (l′) to n in G

((
Nf
l′−1,≥

))
and

thus in G
((
Nf
l−1,≥

))
. Hence, there is a path from both n and n′ to n and thus a path between

n and n′ in G
((
Nf
l−1,≥

))
. So, there must be a path between n and n′ in G(H) that does not go

through f (l). But, because f (l) has an edge with both n and n′, there is another path from n to

n′ that goes through f (l). However, G(H) is a forest, so there cannot be multiple paths between
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two nodes; we have reached a contradiction.

Now, given this construction procedure f , we assign signals to nodes as follows. At step l, we

expand Nf
l−1 to Nf

l = Nf
l−1 ∪ f (l) and assign signals according to σl : Nf

l → Π. We proceed by

induction and show that, as long as the signals previously allocated to nodes in Nf
l−1 are monotone

on
(
Nf
l−1,≥

)
and induce appropriate experiments (i.e., for all m ∈ Nf

l−1, 〈σ
l−1 (m)〉 = β (m)), then

the σl we specify is monotone on
(
Nf
l ,≥

)
induces appropriate experiments.

First, to node f (1), we assign an arbitrary signal σ1 (f (1)) such that 〈σ1 (f (1))〉 = β (f (1)).

Note we are vacuously satisfying the base case of the induction argument: the signal allocation

to the single node in Nf
1 induces appropriate experiments. For l ≥ 2, there are three cases:

f (l) ∈ CoveredBy
(
Nf
l−1

)
, f (l) ∈ Covering

(
Nf
l−1

)
, and f (l) ∈ Disconnected

(
Nf
l−1

)
.

We first consider the case f (l) ∈ Covering
(
Nf
l−1

)
. Note that, by Claim 1, f (l) covers exactly

one node in Nf
l−1 (call this node m̄) and is not covered by any nodes in Nf

l−1. Since β(f (l)) % β (m̄),

there exists some π D σl−1 (m̄) such that 〈π〉 = β (f (l)) (which follows from Theorem 1 of Green

and Stokey (1978)). We set σl (f (l)) = π and we keep the signal allocation for nodes in Nf
l−1

unchanged, i.e., σl (m) = σl−1 (m) for all m ∈ Nf
l−1. It is clear that σl induces appropriate

experiments (by the inductive hypothesis for m ∈ Nf
l−1 and by construction for f (l)). We also

need to show that this signal allocation is monotone on Nf
l . Consider any m,m′ ∈ Nf

l such that

m > m′. Since f (l) ∈ Covering
(
Nf
l−1

)
, either m,m′ ∈ Nf

l−1 or f (l) = m. In the former case,

we know σl (m) = σl−1 (m) D σl−1 (m′) = σl (m′) by the inductive hypothesis. If f (l) = m, we

know f (l) > m̄ ≥ m′. By the inductive hypothesis, σl (m̄) = σl−1 D σl−1 (m′) = σl (m′) and thus

σl (f (l)) D σl (m̄) D σl (m′). That completes the proof for this case.

Now consider the case where f (l) ∈ CoveredBy
(
Nf
l−1

)
. Let m be the node in Nf

l−1 that

covers f (l). Denote τ ′ = β (f (l)), π = σl−1 (m), and π =
∨
m∈Nf

l−1
σl−1 (m). By Lemma 1, we

know ∃π′ such that (i) 〈π′〉 = τ ′, and (ii) ∀π̂ s.t. π D π̂ D π, 〈π̂ ∨ π′〉 = 〈π̂〉. We set σl (f (l)) =

π′. For m ∈ Nf
l−1, if m ≥ f (l), we set σl (m) = σl−1 (m) ∨ π′; otherwise, we set σl (m) =

σl−1 (m). We need to show that σl is monotone on
(
Nf
l ,≥

)
and induces appropriate experiments.

We have that 〈σl (f (l))〉 = 〈π′〉 = τ ′ = β (f (l)). For m ∈ Nf
l−1, first consider cases where

m ≥ f (l), so 〈σl (m)〉 = 〈σl−1 (m) ∨ π′〉. Since m ≥ m (recall that m covers f (l)), by the

inductive hypothesis, σl−1 (m) D σl−1 (m) = π; moreover, π =
∨
m′∈Nf

l−1
σl−1 (m′) D σl−1 (m);
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hence, 〈σl (m)〉 = 〈σl−1 (m)∨π′〉 = 〈σl−1 (m)〉. For m ∈ Nf
l−1 s.t. m � f (l), 〈σl (m)〉 = 〈σl−1 (m)〉.

Since by the inductive hypothesis, 〈σl−1 (m)〉 = β (m), we have established that 〈σl (m)〉 = β (m)

for all m ∈ Nf
l−1. We now need to show that σl is monotone. Consider any m,m′ ∈ Nf

l−1 s.t.

m ≥ m′. There are three cases. First, suppose m ≥ m′ ≥ f (l). In that case, we know that

σl (m) = σl−1 (m)∨π′ and σl (m′) = σl−1 (m′)∨π′. Since (by the inductive hypothesis) σl−1 (m) D

σl−1 (m′), we know that σl−1 (m)∨π′ D σl−1 (m′)∨π′, and hence σl (m) D σl (m′). The second case

is where m ≥ f (l) and m′ � f (l). Then, σl (m) = σl−1 (m)∨π′ and σl (m′) = σl−1 (m′). Since (by

the inductive hypothesis) σl−1 (m) D σl−1 (m′), we have that σl (m) = σl−1 (m) ∨ π′ D σl−1 (m) D

σl−1 (m′) = σl (m′). Finally, suppose that m � f (l) and m′ � f (l). Then, σl (m) = σl−1 (m)

and σl (m′) = σl−1 (m′). Since (by the inductive hypothesis) σl−1 (m) D σl−1 (m′), we have that

σl (m) D σl (m′) .

Finally, suppose f (l) ∈ Disconnected
(
Nf
l−1

)
. We assign an arbitrary signal σl (f (l)) to f (l)

such that 〈σl (f (l))〉 = β (f (l)), and we keep the signal allocation to nodes in Nf
l−1 unchanged, i.e.,

σl (m) = σl−1 (m) for all m ∈ Nf
l−1. It is clear that σl induces appropriate experiments (by the

inductive hypothesis for m ∈ Nf
l−1 and by construction for f (l)). Since f (l) is not comparable to

any node in Nf
l−1, the fact that σl−1 is a signal allocation on

(
Nf
l−1,≥

)
implies that σl is monotone

on
(
Nf
l ,≥

)
. This completes the proof. �

A.3 Proof of Theorem 1: Only if

Lemma 2. If an information hierarchy H is universally constructible and H ′ is a closed subhierarchy

of H, then H ′ is universally constructible.

Proof of Lemma 2. Suppose H is an information hierarchy that is universally constructible under

B. Fix a state space Ω and a prior µ0. Suppose H ′ = (N ′,≥) is a closed subhierarchy of H. Let

β′ be a monotone experiment allocation on H ′. We need to construct a monotone signal allocation

on H ′ that induces β′. Let β : N → ∆ (∆ (Ω)) defined as follows: (i) if n ∈ N ′, let β (n) = β′ (n);

(ii) if n /∈ N ′ and ∃n′ ∈ N ′ such that n > n′, let β (n) = τ ; and (iii) if n /∈ N ′ and 6 ∃n′ ∈ N ′ such

that n > n′, let β (n) = τ .

Claim 2. β is monotone on H.
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Proof of Claim 2. Consider n, n′ ∈ N with n ≥ n′. We show that β (n) % β (n′) by considering

four exhaustive cases:

If n and n′ are both in N ′, this follows from the fact that β′ is monotone on H ′.

If n and n′ are both not N ′, consider two subcases. If ∃n′′ ∈ N ′ such that n > n′′, then

β (n) = τ % β (n′) . Otherwise, since n ≥ n′ and 6 ∃n′′ ∈ N ′ such that n > n′′, it must be that

6 ∃n′′ ∈ N ′ such that n′ > n′′, so β (n) % β (n′) = τ .

If n /∈ N ′ and n′ ∈ N ′, β (n) = τ % β (n′).

Finally, if n ∈ N ′ and n′ /∈ N ′, then there cannot exist an n′′ ∈ N ′ with n′ > n′′. If such an

n′′ did exist, then since H ′ is closed and n, n′′ ∈ N ′, we would have that n′ ∈ N ′, a contradiction.

Thus, β (n) % β (n′) = τ . ♦

Since β is a monotone experiment allocation on H and H is universally constructible, there

exists a monotone signal allocation σ on H that induces β. Clearly, the restriction of σ to N ′

induces β′ and is monotone on H ′.

Recall that
−→
G (H) is the directed graph associated with the hierarchy H (see footnote 9). The

next result shows that if H ′ is a closed subhierarchy of H, then
−→
G (H ′) is the subgraph of

−→
G (H)

obtained by dropping edges with nodes that are not in H ′.

Lemma 3. Fix a hierarchy H = (N,≥) and a closed subhierarchy H ′ = (N ′,≥). Let
−→
E be the set

of edges in
−→
G (H). Then

−→
G (H ′) =

(
N ′,
−→
E ′
)

, where
−→
E ′ =

{
(n, n′) ∈

−→
E |n, n′ ∈ N ′

}
.

Proof of Lemma 3. Fix n, n′ ∈ N ′. We need to show that (n, n′) ∈
−→
E ′ if and only if (n, n′) ∈

−→
E . If

(n, n′) ∈
−→
E , then n covers n′ in H, i.e., n > n′ and there is no n′′ ∈ N with n > n′′ > n′. A fortiori,

there is no n′′ ∈ N ′ ⊂ N with n > n′′ > n′; hence, n covers n′ in H ′, so (n, n′) ∈
−→
E ′. If (n, n′) ∈

−→
E ′,

then n covers n′ in H ′. As a result, n > n′. If there exists n′′ ∈ N such that n > n′′ > n′, then,

since H ′ is closed, n′′ ∈ N ′, so n must not cover n′ in H ′, a contradiction. As a result, n covers n′

in H as well, so (n, n′) ∈
−→
E .

The between set of (n, n′) in H = (N,≥) is defined as

Btw
(
n, n′, H

)
=
{
n̂ ∈ N |n ≥ n̂ ≥ n′

}
.
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Clearly, the subhierarchy induced by the between set of any pair of nodes is closed. Moreover, a

subhierarchy H ′ = (N ′,≥) is closed if and only if N ′ contains Btw (n, n′, H) for all n, n′ ∈ N ′. We

say that Btw (n, n′, H) is simple if every node in Btw (n, n′, H) \ {n, n′} belongs to exactly one

directed path in
−→
G(H) from n to n′. H ′ is a minimal cyclic closed subhierarchy (MCC ) of H if it

is cyclic, closed, and there is no cyclic and closed subhierarchy H ′′ = (N ′′,≥) of H with N ′′ ( N ′.

We say that a cycle in G(H ′) is a spanning cycle if every node in N ′ is in the cycle.

Lemma 4. Fix a hierarchy H = (N,≥) and a subhierarchy H ′ = (N ′,≥). Suppose H ′ is an MCC

of H. Then, either (i) N ′ is a simple between set in H, or (ii) every cycle in G (H ′) is a spanning

cycle.

Proof of Lemma 4. For this proof, all between sets are defined relative to H, and we simply write

Btw (n, n′) for Btw (n, n′, H). Similarly, by closed we mean closed in H. Note that by Lemma 3,

−→
G (H ′) is the subgraph of

−→
G (H) obtained by dropping edges with nodes that are not in H ′. In

particular, H ′ is cyclic if and only if H contains a cycle whose nodes are in H ′. This fact is used

freely below.

We consider two cases. First, suppose there are two nodes n, n′ ∈ N ′ such that n ≥ n′ and there

are two distinct paths from n to n′ in the directed graph
−→
G(H). Note that Btw (n, n′) is closed, so

that these paths are in
−→
G ((Btw (n, n′) ,≥)) as well, so that (Btw (n, n′) ,≥) is cyclic. Moreover,

since H ′ is closed, we have that Btw (n, n′) ⊆ N ′. Hence, since H ′ is an MCC, we must have that

N ′ = Btw (n, n′). It remains to show that the between set N ′ is simple. Suppose to the contrary

there is some node n̂ ∈ N ′ \{n, n′} such that n̂ belongs to two distinct paths from n to n′ in
−→
G(H).

Then, there are either two distinct directed paths from n to n̂ or two distinct directed paths from n̂

to n′; thus, either Btw (n, n̂) or Btw (n̂, n′) must be cyclic. Since both Btw (n, n̂) and Btw (n̂, n′)

are closed and strict subsets of N ′, H ′ must not be an MCC, so we have reached a contradiction.

Thus, we have established that N ′ must be a simple between set.

Now consider the second case where for every n, n′ ∈ N ′, there is at most one path from n to

n′ in the directed graph
−→
G(H). Given a path P (either directed or undirected), let NP denote

the set of nodes that appear in P . Since H ′ is an MCC, G (H ′) = (N ′, E) contains a cycle

C = (n0, e0, ...nL−1, eL−1, nL) where L > 1, n0 = nL. We will argue that (NC ,≥) is closed. The

fact that NC = N ′ will then follow directly from the hypothesis that H ′ is an MCC.
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Let us then suppose that (NC ,≥) is not closed, in order to reach a contradiction. Given a di-

rected path (n0,
−→e 0, ..., nL−1,

−→e L−1, nL), its undirected analogue is the undirected path (n0, e0, ...nL−1, eL−1, nL)

where ei = {ni, ni+1}. Say that a directed path P in
−→
G (H) only contains edges in C if every edge

in the undirected analogue of P is in C. A directed path P in
−→
G(H) is an external directed con-

nection (EDC) from n to n′ if (i) P is a directed path from n to n′; (ii) n, n′ ∈ NC ; and (iii) P

does not only contain edges in C. Say that (n, n′) ∈ NC are an externally connected pair (ECP) if

there is an external directed connection from n to n′ or from n′ to n. An ECP (ni, nj) is said to

be minimally close if for every i ≤ l < l ≤ j,
(
nl, nl

)
is an ECP only if l = i and l = j.

Claim 3. Given any two nodes n, n′ ∈ N ′, if P is the unique directed path in
−→
G (H) from n to n′,

then NP = Btw (n, n′).

Proof of Claim 3. If there are two non-comparable nodes in Btw (n, n′), there would be two distinct

directed paths from n to n′. Hence, all nodes in Btw (n, n′) are comparable. Therefore, there is a

directed path from n to n′ whose nodes are Btw (n, n′). Since there is a unique directed path from

n to n′, the set of nodes in P is Btw (n, n′). ♦

Claim 4. There exist i, j such that (ni, nj) is a minimally close ECP.

Proof of Claim 4. We know there is a pair of nodes in NC that are an ECP. Otherwise, (NC ,≥)

would be closed. Moreover, since L is finite, there is a pair of nodes in NC that are a minimally

close ECP. ♦

Let (ni, nj) be a minimally close ECP s.t. {ni, ni+1, ..., nj} ( NC . Let n = max {ni, nj} and n =

min {ni, nj}. Let P e denote the external directed connection from n to n. Let P̃ be the undirected

path (ni, ẽi, ..., ẽj−1, nj) in G (H) from ni to nj in C. Let Q̃ denote the undirected path from ni to nj

that“goes in the other direction”from P̃ in C, i.e., Q̃ = (ni, ei−1, ni−1, ..., e0, n0, eL−1, nL−1, ..., ej , nj).

Let S = NP̃ ∪Btw (n, n).

Claim 5. (S,≥) is cyclic.

Proof of Claim 5. It suffices to show there are two distinct undirected paths from ni to nj in

G ((S,≥)). One path is P̃ . The other path is the undirected analogue of the external directed

connection P e. Since P e is external, these two undirected paths must be distinct. ♦
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Claim 6. S is closed.

Proof of Claim 6. Let Y = ∪n,n′∈NP̃Btw (n, n′). We will show that Y is closed and that Y = S.

First we show that Y is closed. Consider any n′, n′′ ∈ Y and n ∈ Btw (n′, n′′). By definition of

Y , n′ ∈ Btw (n1, n2) and n′′ ∈ Btw (n3, n4), where nl ∈ NP̃ for l = 1, 2, 3, 4. Hence, n1 ≥ n′ ≥ n ≥

n′′ ≥ n4 and thus n ∈ Btw (n1, n4) ⊆ Y .

It remains to show that S = Y . Given n ∈ NP̃ , n ∈ Btw (n, n) ⊆ Y . Moreover, Btw (n, n) ⊆ Y .

Hence, S ⊆ Y .

Now, consider some n ∈ Y . We need to show that n ∈ S. If n ∈ NP̃ , then we are done.

Otherwise, n /∈ NP̃ . We know n ∈ Btw (n′, n′′) for some n′, n′′ ∈ NP̃ . If (n′, n′′) = (n, n), n ∈

Btw (n, n) ⊆ S. Suppose instead that (n′, n′′) 6= (n, n). We will reach a contradiction. Let P

denote the directed path from n′ to n′′ whose nodes include n. Because (n, n) is a minimally close

ECP, path P must only include edges in C. Since n /∈ NP̃ , the nodes in path P cannot be a subset

of NP̃ . Thus, the nodes in P contain the nodes in Q̃, including n and n. The sequence of nodes and

edges in P between n and n is a directed path between those nodes, and thus is equal to P e (by

uniqueness of the directed path). Since P e contains an edge which is not in C, we have contradicted

the hypothesis that P only contains edges in C. Thus, we have established that Y ⊆ S. ♦

We have established that (S,≥) is cyclic and closed and that S ⊆ N ′. Since H ′ is an MCC,

it must be that S = N ′. But since S = NP̃ ∪ Btw (n, n), it must be that NQ̃ ⊆ Btw (n, n). All

nodes in a between set are comparable, by the hypothesis that directed paths are unique, and so all

nodes in NQ̃ are comparable. Hence, Q̃ must be the undirected analogue of P e. This contradicts

the hypothesis that (n, n) is an ECP.

Lemma 5. If the hierarchy H = (N,≥) is such that every cycle in G (H) is a spanning cycle, then

for any pair of nodes n, n′ ∈ N , there exist two undirected paths from n to n′ such that the union

of the nodes in the two paths is N and the intersection of the nodes in the two paths is {n, n′}.

Proof of Lemma 5. Since there exists a spanning cycle G (H), for any pair of nodes n, n′ ∈ N ,

there exist two paths P =
(
n, eP0 , n

P
1 ..., n

P
LP−1, e

P
LP−1, n

′
)

and Q =
(
n, eQ0 , n

Q
1 ..., n

Q
LQ−1, e

Q
LQ−1, n

′
)

in G (H) such that N = NP ∪ NQ and EP ∩ EQ = ∅, where EP =
{
eP0 , ..., e

P
LP−1

}
and EQ ={

eQ0 , ..., e
Q
LQ−1

}
. We need to show that NP ∩ NQ = {n, n′}. Suppose to the contrary that there

34



exists n̂ ∈ NP∩NQ with n̂ 6∈ {n, n′}. We know there exist lP ∈ {1, ..., LP−1} and lQ ∈ {1, ..., LQ−1}

such that n̂ = nP
lP

= nQ
lQ

. Now, consider the path
(
n, eP0 , n

P
1 , ..., e

P
lP−1, n

P
lP
, eQ
lQ−1, n

Q
lQ−1, e

Q
lQ−2, ..., n

)
in G (H). Since EP ∩EQ = ∅, this is a well-defined path. But it is a cycle that is not spanning and

thus we have reached a contradiction.

Suppose a hierarchy H has nodes

N = {n} ∪ {n} ∪Ll=1

{
nlk

}Kl
k=1

,

with L ≥ 2, such that for all l = 1, . . . , L, (i) Kl ≥ 1, (ii) n > nl1, (iii) nlKl > n, (iv) nlk and nlk+1

are comparable for every k = 1, . . . ,Kl − 1, and (v) nlk is not comparable to nl
′
k′ if l 6= l′. In this

case, we say that H is a union of non-comparable paths (UNP).

Lemma 6. If the hierarchy H is a UNP, then H is not universally constructible.

Proof of Lemma 6. Let Ω = {0, 1}. We will present a monotone experiment allocation based on

the allocation on the diamond in Section 3 and show that it is not constructible. Consider the

experiment allocation given by21 β (n) =
(
1
2 ,
(
1
6

)
; 1
2

(
5
6

))
; β (n) =

(
3
8 , (0) ; 1

4 ,
(
1
2

)
; 3
8 , (1)

)
, β
(
n1k
)

=(
3
8 , (0) ; 1

8 ,
(
2
3

)
; 1
2 ,
(
5
6

))
for k = 1, . . . ,K1; and β

(
nlk
)

=
(
1
2 ,
(
1
6

)
; 1
8 ,
(
1
3

)
; 3
8 , (1)

)
for all l = 2, . . . , L

and k = 1, . . . ,Kl. These are the experiments depicted in Figure 2, where β(n) = τA; β(n) = τD;

for k = 1, . . . ,K1, let β(n1k) = τB; and for all l = 2, . . . , L and k = 1, . . . ,Kl, let β(nlk) = τC .

Monotonicity of β is immediate from the mean-preserving spreads depicted in Figure 2.22

Toward a contradiction, suppose σ is monotone signal allocation that induces β. We begin by

establishing that, it must be that case that, along any undirected path from n to n, the realized

beliefs must be equal across the interior nodes on that path.

Claim 7. For all l = 1, . . . , L, we have µ̃σ(nlk)
= µ̃σ(nl1)

for all k = 1, . . . ,Kl.

Proof of Claim 7. It suffices to establish that for any k = 1, ...,Kl − 1, we have µ̃σ(nlk+1)
= µ̃σ(nlk)

.

We know nlk and nlk+1 are comparable. Assume that nlk+1 > nlk; the case where nlk > nlk+1 is

21The experiment is given as a sequence of ordered pairs of a probability and a belief.
22To see that τB is a mean-preserving spread of τD, note that we can obtain τB from τD by spreading the realization

µ = 5
6

in τD to
{

1
3
, 1
}

in τB and leaving the realization µ = 1
6

in τD unchanged. To see that τA is a mean-preserving
spread of τB , note that we can obtain τA from τB by spreading the realizations µ = 1

6
and µ = 1

3
in τB to

{
0, 1

2

}
in

τA and leaving the realization µ = 1 in τB unchanged. The argument for why τA % τC % τD is symmetric.
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analogous and omitted. Since σ is monotone, we have that σ
(
nlk+1

)
D σ

(
nlk
)
. As the refinement

order implies the belief-martingale property we have that E[µ̃σ(nlk+1)
|µ̃σ(nlk)] = µ̃σ(nlk)

. Now sup-

pose toward contradiction that µ̃σ(nlk+1)
6= µ̃σ(nlk)

. We would conclude that µ̃σ(nlk+1)
is a strict

mean-preserving spread of µ̃σ(nlk)
.23 But that would mean that µ̃σ(nlk+1)

is not equal to µ̃σ(nlk)
in

distribution and thus that 〈σ
(
nlk+1

)
〉 6= 〈σ

(
nlk
)
〉. ♦

We will now reach a contradiction by establishing that Pr
(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
is equal to

zero and is strictly bigger than zero.

Step 1: We show that Pr
(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
= 0. First, note that Pr

(
µ̃σ(n) = 0|µ̃σ(n1

1)
= 0
)

=

1 since E
[
µ̃σ(n)|µ̃σ(n1

1)
= 0
]

= 0 and the support of µ̃σ(n) lies above 0. Moreover, since Pr
(
µ̃σ(n) = 0

)
=

3
8 = Pr

(
µ̃σ(n1

1)
= 0
)

, we must also have Pr
(
µ̃σ(n1

1)
= 0|µ̃σ(n) = 0

)
= 1. A similar argument es-

tablishes that Pr

(
µ̃
σ
(
n1
K1

) = 5
6 |µ̃σ(n) = 5

6

)
= 1 and Pr

(
µ̃σ(n) = 5

6 |µ̃σ
(
n1
K1

) = 5
6

)
= 1. Claim 7

tells us that Pr
(
µ̃σ(n1

1)
= 0 & µ̃σ(n1

K1
) = 5

6

)
= 0. Hence, Pr

(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
= 0.

Step 2: We show that Pr
(
µ̃σ(n) = 0 & µ̃σ(n) = 5

6

)
> 0. It suffices to show that (a) Pr

(
µ̃σ(n2

1)
= 1

3 |µ̃σ(n) = 5
6

)
>

0, and (b) Pr
(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3 & µ̃σ(n) = 5
6

)
> 0.

Arguments analogous to the ones in Step 1 yield Pr

(
µ̃
σ
(
n2
K2

) = 1
6 |µ̃σ(n) = 1

6

)
= 1. Be-

cause Supp
(
µ̃σ(n)

)
=
{
1
6 ,

5
6

}
, this in turn implies that Pr

(
µ̃σ(n) = 5

6 |µ̃σ
(
n2
K2

) = 1
3

)
= 1. Thus,

Claim 7 tells us that Pr
(
µ̃σ(n) = 5

6 |µ̃σ(n2
1)

= 1
3

)
= 1. Therefore Pr

(
µ̃σ(n2

1)
= 1

3 |µ̃σ(n) = 5
6

)
=

Pr

(
µ̃
σ(n2

1)
= 1

3

)
Pr(µ̃σ(n)=

5
6)

> 0, establishing part (a).

Now, note that Pr
(
µ̃σ(n) = 5

6 |µ̃σ(n2
1)

= 1
3

)
= 1 implies Pr

(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3 & µ̃σ(n) = 5
6

)
=

Pr
(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3

)
.Moreover, since Supp

(
µ̃σ(n)

)
=
{

0, 12 , 1
}

, we have E
[
µ̃σ(n)|µ̃σ(n2

1)
= 1

3

]
=

1
3 ⇒ Pr

(
µ̃σ(n) = 0|µ̃σ(n2

1)
= 1

3

)
> 0, establishing (b).

Lemma 7. The crown is not universally constructible.

Proof. Consider the experiment allocation given by β (F ) =
(
1
8 ,
(
0, 12
)

; 1
8 ,
(
1
2 ,

1
2

)
; 1
8 ,
(
1
2 , 0
)

; 1
8 , (0, 0) ; 1

2 ,
(
1
4 ,

1
4

))
,

β (M) =
(
1
4 ,
(
0, 14
)

; 1
4 ,
(
1
2 ,

1
4

)
; 1
4 ,
(
1
4 , 0
)

; 1
4 ,
(
1
4 ,

1
2

))
, β (S) =

(
1
4 ,
(
1
4 , 0
)

; 1
2 ,
(
1
4 ,

1
4

)
; 1
4 ,
(
1
4 ,

1
2

))
, and β (D) =(

1
4 ,
(
0, 14
)

; 1
2 ,
(
1
4 ,

1
4

)
; 1
4 ,
(
1
2 ,

1
4

))
. These experiments are depicted in Figure 5. To see that β (F ) is

a mean-preserving spread of β (S), note that we can obtain β (F ) from β (S) by (i) spreading the

23For any two random variables X and Y , if E [X|Y ] = Y and X 6= Y , X must be a strict mean-preserving spread
of Y .
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realization
(
1
4 , 0
)

in β (S) to
{

(0, 0) ,
(
1
2 , 0
)}

in β(F ), (ii) leaving the realization
(
1
4 ,

1
4

)
in β(S) un-

changed, and (iii) spreading the realization
(
1
4 ,

1
2

)
in β (S) to

{(
0, 12
)
,
(
1
2 ,

1
2

)}
. To see that β (M) is

a mean-preserving spread of β (S), note that we can obtain β (M) from β (S) by (i) leaving the re-

alization
(
1
4 , 0
)

in β (S) unchanged, (ii) spreading the realization
(
1
4 ,

1
4

)
in β (S) to

{(
0, 14
)
,
(
1
2 ,

1
4

)}
in β(M), and (iii) leaving the realization β (S) =

(
1
4 ,

1
2

)
unchanged. The argument for why β (F )

and β (M) are mean-preserving spreads of β (D) is symmetric. Hence, β is monotone.

We claim that β is not constructible. As before, consider the joint distribution of beliefs on

{F,M,S,D} induced by any monotone signal allocation σ, and recall that σ(n) D σ(n′) implies

E
[
µ̃σ(n)|µ̃σ(n′)

]
= µ̃σ(n′). Specifically, consider the conditional probability of µ̃σ(S) = µ0 given

µ̃σ(D) = µ0. Since σ (M) D σ (S), we have that µ̃σ(S) = µ0 ⇔ µ̃σ(M) ∈
{(

0, 14
)
,
(
1
2 ,

1
4

)}
. Since

σ (M) D σ (D), we have that µ̃σ(D) = µ0 ⇔ µ̃σ(M) ∈
{(

1
4 , 0
)
,
(
1
4 ,

1
2

)}
. Hence, the joint probability of

µ̃σ(S) = µ0 and µ̃σ(D) = µ0 must be zero, i.e., Pr
(
µ̃σ(S) = µ0|µ̃σ(D) = µ0

)
= 0. But, σ (F ) D σ (S)

implies µ̃σ(S) = µ0 ⇔ µ̃σ(F ) = µ0, and σ (F ) D σ (D) implies µ̃σ(D) = µ0 ⇔ µ̃σ(F ) = µ0. Hence,

Pr
(
µ̃σ(S) = µ0|µ̃σ(D) = µ0

)
= 1, a contradiction.

Lemma 8. If the hierarchy H = (N,≥) is cyclic and N is a simple between set in H, then H is not

universally constructible.

Proof of Lemma 8. Since H = (N,≥) is cyclic and N is a simple between set, H must be a UNP.

Therefore Lemma 6 establishes that H is not universally constructible.

Lemma 9. If the hierarchy H is cyclic and not a crown, and every cycle in G (H) is a spanning

cycle, then H is not universally constructible.

Proof of Lemma 9. Suppose that H = (N,≥) is cyclic and not a crown, and that every cycle in

G (H) is a spanning cycle. We say an element n of N is maximal if there is no n ∈ N such that

n > n. We say an element n of N is minimal if there is no n ∈ N such that n > n.

Claim 8. There exist n and n in N that are maximal and minimal, respectively, such that n does

not cover n.

Proof of Claim 8. Suppose toward contradiction that every maximal element covers every minimal

element. Hence, G (H) is a complete bipartite graph of maximal and minimal elements. If there
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were only one maximal element or only one minimal element, there could not be a cycle. So, there

must be at least two of each. Take any N ′ ⊆ N consisting of exactly two maximal and two minimal

elements, and let H ′ = (N ′,≥). H ′ is a crown and therefore is cyclic. Moreover, H ′ is clearly

closed, so that by Lemma 3, the nodes in H ′ are part of a cycle in G (H) as well. Since every cycle

in G (H) is a spanning cycle, we must have N = N ′, and thus H is a crown subhierarchy, and we

have reached a contradiction. ♦

By Claim 8, we can find n and n in N that are maximal and minimal, respectively, such that n

does not cover n. By Lemma 5, there are two distinct undirected paths P and Q in G (H) from n

to n such that the union of the nodes in the two paths is N and the intersection of the nodes in the

two paths is {n, n}. As a result, H is a UNP. Lemma 6 therefore implies that H is not universally

constructible.

Proof of Theorem 1: Only if. Suppose G(H) is not a forest, i.e., it contains a cycle. Since N is

finite, H contains a subhierarchy H ′ = (N ′,≥) that is an MCC of H. By Lemma 4, either (i)

N ′ is a simple between set in H, or (ii) every cycle in G (H ′) is a spanning cycle. Consider case

(i). Because H ′ is closed and N ′ is a simple between set in H, N ′ is also a simple between set in

H ′. Thus, Lemma 8 implies that H ′ is not universally constructible. Now consider case (ii). If

H ′ is not a crown, then Lemma 9 implies that is not universally constructible. If H ′ is a crown,

Lemma 7 implies it is not universally constructible. Therefore, by Lemma 2, H is not universally

constructible.
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