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Abstract

We characterize the risk and return characteristics of yield farming investment strategies
on PancakeSwap, one of the largest automated market makers among the emerging ecosys-
tem of decentralized financial services. PancakeSwap provides opportunities for earning
passive income by pledging pairs of cryptocurrency tokens in liquidity pools and harvesting
governance tokens in yield farms, a practice called ‘yield farming.’ Yield farming gener-
ates performance through several components related to capital gains, trading fee revenue
and farm yields, and is exposed to impermanent losses that are driven non-linearly by dif-
ferential return performance in the underlying cryptocurrency token pairs. We find that
yield farming delivers positive Sharpe ratios that are comparable to those of other cryp-
tocurrency investments and the S&P 500 index. However, investment performance declines
significantly after accounting for transaction costs and price impact that is largest for farms
with the highest headline yields. leading possibly to negative risk-adjusted returns. We
furthermore find that flows to high-yield farms chase past performance and high yields and
predict negative future returns. These patterns are similar to investment behavior and
risk-return characteristics observed in traditional markets, despite the absence of financial
intermediaries. Since yield farming is easily accessible to retail investors, our analysis has
important implications for the current debate about the regulation of decentralized financial
services.
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“Right now, we just don’t have enough investor protection in crypto. Frankly, at this time,
it’s more like the Wild West.”

Chair Gary Gensler, Securities and Exchange Commission

1 Introduction

Decentralized finance (DeFi) is a rapidly growing segment of the emerging cryptocurrency
ecosystem. By operating through applications built on blockchains and executed through
smart contracts, DeFi intends to eliminate the influence of central financial intermediaries.
Figure 1 illustrates that the total value locked, a measure of aggregate capital investments
into DeFi applications, has been growing at an exponential pace over the last 2 years,
having recently surpassed $200 billion. Harvey, Ramachandran, and Santoro (2021) discuss
the implications of DeFi for the future of our financial system.

We study yield farming, a novel decentralized financial service that is accessible to both retail
and institutional investors. Yield farming is a modern version of securities lending whereby
investors earn passive income from the provision of digital liquidity. This investment activity
has gathered significant interest in the popular press because of the scale of promised returns.
Advertised interest rates are often several hundred percent and can be as high as as several
thousand percent (e.g., Oliver, 2021). Yield farming has also attracted regulatory interest
from the Securities and Exchange Commission, who consider it to be an unregulated and
complex investment strategy with hidden risks to unsophisticated investors (e.g., Gensler,
2021).

We provide the first assessment of yield farming performance using a novel hand-collected
data set sourced from Binance Smart Chain (BSC). BSC is a public blockchain launched
by Binance with the purpose of providing a centralized exchange that features high trade
execution speeds, lower congestion risks and lower trading fees than other comparable smart
contract applications. On BSC, Binance Coin (BNB) is the main medium of exchange for
trading purposes and for the payment of transaction costs that are known as gas fees.

Our data contains daily information on a cross-section of 219 yield farms that are active
on PancakeSwap between September 23, 2020 and September 5, 2021. PancakeSwap is
one of the most popular automated market makers, next to other similar platforms like
Uniswap and Sushiswap. It is also one of the largest automated market makers with 435,130
active users on October 24, 2021, compared to 47,730 active users recorded on Uniswap.
PancakeSwap is particularly useful for studying yield farming since it is one of the platforms
that lists yield farms in addition to liquidity pools. Studying yield farms is the centrepiece
of our work. Moreover, the number of active users in relation to total value locked suggests
that the yield farming space is populated by many retail investors, thereby emphasizing the
importance for investor protection.
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We first characterize the risk and return characteristics of yield farming strategies. Yield
farming is a mechanism for passively earning income by supplying digital liquidity. The
overall performance is earned through a chain of transactions that, taken together, form a
complex investment product.

Yield farmers first pledge pairs of cryptocurrency tokens in equal amounts to associated
liquidity pools for which they are rewarded with liquidity tokens. These liquidity tokens
certify the liquidity provision and represent a claim to a fraction of the aggregate liquidity
in the pool. When the liquidity tokens are redeemed, the fractional ownership of the pool
may change in value due to the constant product technology hardwired into the automated
market maker system. Thus, liquidity miners may face capital gains or losses, in addition
to fee revenue from the trading activity of third party investors in exchange for the liquidity
provision. Liquidity miners also face significant downside risk through impermanent losses.
This is realized as a loss function that is driven non-linearly by return differences among
the pair of cryptocurrency tokens associated with a pool.

Another key component of yield farming is the staking of liquidity tokens that are rewarded
for liquidity provision into yield farms. Each liquidity pool is associated with a unique yield
farm that promises an interest rate often exceeding several hundred percent. Yield farmers
earn that rate in proportion to the aggregate liquidity locked in a yield farm, which is paid
using PancakeSwap’s governance token Cake. This ultimately exposes yield farmers further
to exchange rate risk stemming from the variation in the value of Cake relative to the USD.

We explicitly show that yield farming is subject to non-trivial price impacts that are non-
linearly related to the amount of liquidity invested into a yield farming strategy. We for-
malize the price impact function and show that it is concave in the investment amount.
Besides the price impact, we also provide information on the magnitude and time variation
of gas fees charged for round trip costs in yield farming.

As a second step, we assess the empirical return performance of yield farming strategies and
compare them to other benchmark strategies in cryptocurrency markets and the S&P500
index. We take the perspective of U.S. investor who needs to buy digital assets using
the USD as a base currency and exchange all farm yields back to its local currency at
the prevailing exchange rates. We find that yield farming strategies appear to generate
attractive returns, with Sharpe ratios between 2 and 3. While such Sharpe ratios appear
extraordinarily large, they are similar to those for investments into the S&P500 index,
Bitcoin or Ethereum, and are partially explained by the extraordinary bull run in most
asset markets during our sample period.

Yield farming also generates Sharpe ratios that are larger than those of simple buy-and-
hold trading strategies in the underlying pairs of cryptocurrency tokens. It also generates
superior performance to a strategy that considers liquidity mining without yield farming.
Even though the joint investment activity is a strictly dominating strategy, not all investors
appear to stake their liquidity tokens into yield farms. This is suggestive evidence of investor
inertia and lack of investor sophistication.
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While we uncover positive investment performance without the consideration of transaction
costs, the performance becomes significantly weaker when we account for trading costs
(a.k.a. gas fees) and price impact. While gas fees shift the return performance linearly
downward for all yield farms, price impact is especially important for farms that advertise
large headline yields. This motivates our additional analysis on the relation between flows
and performance in yield farms.

As a last step, we study the relation between yield farming flows and performance. We
follow the mutual fund literature and define farm flows as the change in total value locked,
after accounting for growth in liquidity associated with return performance. We scale flows
by total value locked to make them comparable across yield farms. We find that farms
with high headline yields attract more flows and that positive return performance predicts
future flows. Moreover, we find that new flows are negatively correlated with future farm
performance.

Overall, our evidence is consistent with evidence from other asset markets that reflects re-
turn chasing behavior, whereby flows chase positive past performance. Our findings also
provide supportive evidence for patterns that are associated with reaching for yield. We
consider these findings to be intriguing since they typically arise in a setting with finan-
cial intermediaries, while yield farming is implemented in a decentralized market without
financial intermediaries.

Given the risks to retail investors associated with obfuscated investment strategies and
complex financial products, we believe that our evidence has important policy implications
for regulatory disclosure and investor protection.

2 Literature

Our work is most closely related to the emerging literature on decentralized finance. In Table
1, we compare a select number of studies that examine decentralized exchanges(DEX). To
our knowledge, this is the first empirical study of the risk and return characteristics of yield
farming strategies based on a novel hand collected data set.

In contrast to earlier studies, we focus on PancakeSwap, a smart contract platform operating
on the Binance Smart chain (BSC). BSC charges comparatively lower transaction costs
than Ethereum, the supporting blockchain for Uniswap and SushiSwap. Hence, yield farms
operating on BSC are more easily accessible to retail investors.

Several studies characterize the theoretical properties of automated market makers (AMM)
with the constant product model that has been adopted by major decentralized exchanges
(Angeris, Kao, Chiang, Noyes, and Chitra, 2019; Aoyagi, 2021). Lehar and Parlour (2021),
Park (2021) further examine strategic trading and liquidity provision in decentralized ex-
changes. Capponi and Jia (2021) underscore the investor trade-offs arising from the personal
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benefits of token investments and loss exposure associated with high token exchange rate
volatility. Relatedly, we explicitly characterize the impermanent-loss and price-impact func-
tions implicit in liquidity mining and yield farming. Han, Huang, and Zhong (2021) suggest
that trading on DEXs are informative about the decentralized consensus of cryptocurrency
value. Li and Mayer (2021) study the safe asset properties of stablecoins.

Yield farming is a complex and opaque investment strategy. Thus, we also relate to the lit-
erature on complex structured finance. For example, Henderson and Pearson (2011) suggest
that highly popular structured retail products (SRPs) deliver subpar performance for retail
investors in spite of high promised returns. Supply-based theories explain the popularity of
SRPs among retail investors by arguing that intermediaries exploit investors’ lack of finan-
cial sophistication (e.g. Célérier and Vallée, 2017; Egan, 2019; Ghent, Torous, and Valkanov,
2019; Henderson, Pearson, and Wang, 2020). Shin (2021) advocates a demand-based ex-
planation whereby investors extrapolate and aggressively chase past performance. In a
significant departure from that work, we study complex financial products offered through
smart contracts operating on a blockchain without centralized financial intermediaries who
may drive the security design or benefit from sales.

Yield farms promise passive income at impressive headline rates. This connects our work
to the literature on “reaching for yield,” i.e., investors’ propensity to buy riskier assets
to achieve higher yields. That phenomenon has been documented in the corporate bond
(Becker and Ivashina, 2015; Chen and Choi, 2021) and mutual fund market (Choi and
Kronlund, 2018). Bordalo, Gennaioli, and Shleifer (2016) show how investors’ salience bias
can lead to reaching-for-yield behavior when firms compete for consumer attention. Our
evidence suggests that reaching for yield may also exist in decentralized exchanges even in
the absence of financial intermediaries and related agency conflicts.

Our work adds to the developing literature of cryptocurrencies and blockchain technologies
(Harvey, 2016; Yermack, 2017; Biais, Bisiere, Bouvard, and Casamatta, 2019; Saleh, 2021;
Easley, O’Hara, and Basu, 2019), including initial coin offerings (e.g., Howell, Niessner,
and Yermack, 2020; Hu, Parlour, and Rajan, 2019; Lee, Li, and Shin, 2022), price ma-
nipulations(Gandal, Hamrick, Moore, and Oberman, 2018; Griffin and Shams, 2020; Cong,
Li, Tang, and Yang, 2021; Li, Shin, and Wang, 2021) and illegal activity (Foley, Karlsen,
and Putnins, 2019), equilibrium pricing of bitcoin (Biais, Bisiere, Bouvard, Casamatta, and
Menkveld, 2020; Pagnotta and Buraschi, 2018) and its adoption (Hinzen, John, and Saleh,
2020), and cryptocurrency valuation (Cong and He, 2019; Cong, Li, and Wang, 2021; Sockin
and Xiong, 2020).

Makarov and Schoar (2019, 2020) document arbitrage opportunities across centralized cryp-
tocurrency exchanges. The apparent price dispersions have been related to explanations
including noise traders (Krückeberg and Scholz, 2020; Dyhrberg, 2020), liquidity frictions
(Kroeger and Sarkar, 2017), settlement latency (Hautsch, Scheuch, and Voigt, 2019), risk
premiums (Borri and Shaknov, 2021), restrictions to cross-border capital flows (Yu and
Zhang, 2018; Choi, Lehar, and Stauffer, 2018). Augustin, Rubtsov, and Shin (2021) docu-
ment an increase in bitcoin’s price efficiency following the introduction of bitcoin futures.
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3 Institutional background

We first provide background information on decentralized finance, yield farming, the Bi-
nance Smart Chain, and PancakeSwap. We then discuss why PancakeSwap is especially
useful for the study of yield farming.

3.1 Decentralized finance and cryptocurrency yield farming

Decentralized finance (DeFi) corresponds to an emerging ecosystem of protocols and fi-
nancial applications built on blockchain technology with programmable capacities, such
as Ethereum and Binance Smart Chain. Smart contracts on the blockchain execute all
transactions automatically, without third-party intervention.

According to DeFi Llama1, a public dashboard which provides data on DeFi, the total
dollar value locked (TVL) in decentralized financial services is $205.76 billion as of October
11, 2021. This represents a dramatic increase from less than $1 billion in February 2020.

Yield farming is a way of earning income as compensation for providing liquidity to liquidity
pools. Holders of cryptocurrency tokens earn rewards by locking tokens up in liquidity pools,
which issue claims to the pledged tokens. These new claims, called ‘LP tokens’ or ‘flip
tokens’, can be pledged to yield farms that promise yield enhancements. That additional
passive income is paid to yield farming investors using the platform’s governance token.

To an extent, yield farming is a decentralized variant of securities lending, although the chain
of transactions is more complex. The main reason underlying its popularity is the critical
need for platform owners to incentivize liquidity provision to ensure a platform’s long-term
success. In a decentralized exchange, a more liquid pool implies a smaller price impact per
trade, which is desirable for traders. In a lending pool, a larger amount of liquidity in a pool
may drive down the borrowing interest rate, which could attract larger groups of borrowers.
Yield farming is a useful tool to encourage the injection of such liquidity.

Headline rates and promised investment rates in yield farms can be large. Annual yields
north of 100% are commonly observed. There exists, however, significant cross-sectional
heterogeneity in promised yields across the farms, as we show in Figure 2.

Yield farming strategies appear to be complex. The total return performance from yield
farming has four components: the realized yield, capital gains from pairs of cryptocurrencies,
fees from trading volume in liquidity pools and yield farms, and impermanent losses driven
by the relative price change of cryptocurrency pairs locked in liquidity pools. Thus, the
complexity of yield farming strategies resembles obfuscated investment strategies observed

1https://defillama.com/home. See also Figure 1.
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in complex structured derivative products (e.g. Henderson and Pearson, 2011; Célérier and
Vallée, 2017; Egan, 2019; Henderson, Pearson, and Wang, 2020; Shin, 2021).

We focus our analysis on yield farms listed on PancakeSwap, a popular automated market
maker that ranks second in the league tables of decentralized exchanges offering cryptocur-
rency lending services. Transaction costs in PancakeSwap are significantly lower than in
other popular decentralized exchanges like Uniswap. This lowers the barriers to entry for
retail investors, who are active investors in yield farms .

The combination of low barriers to entry, a large number of service providers, and complex
investment strategies promising high returns with significant downside risk raises concerns
about the protection of retail investors in cryptocurrency markets. These concerns are
underscored by the aggressive stance recently taken by the U.S. Securities and Exchange
Commission, who have become increasingly vocal about enhanced regulatory scrutiny of
decentralized financial services. Our work is intended to inform this ongoing debate by
means of assessing the risk and return characteristics of yield farming strategies.

3.2 Binance Smart Chain

Binance Chain was launched by Binance in April 2019. Its main goal is to allow for faster
decentralized trading. The largest and most well-known decentralized application on the
Binance Chain is Binance DEX. Despite its success in DEX trading, Binance DEX embeds
several limitations that limit its flexibility. For example, to guarantee high throughput, the
application does not support smart contracts, which require excess computational resources.
This can, therefore, easily congest the entire network.

Binance Smart Chain (BSC) is a public blockchain running in parallel to the Binance Chain.
Distinctive features of BSC include smart contract functionality and compatibility with the
Ethereum Virtual Machine (EVM). BSC was launched with the purpose of maintaining
the high throughput of Binance Chain while still allowing for smart contracts within the
ecosystem.

In the BSC ecosystem, Binance Coin (BNB) is used as the basic medium of exchange,
similar to the role played by Ether (ETH) in the Ethereum network. End users pay their
transaction fees in BNB and use BNB to trade cryptocurrencies on the many decentralized
exchanges deployed on BSC.

The primary advantages of BSC are its high throughput rate and low transaction fees. BSC
updates its blocks approximately every 3 seconds, using a variant of the Proof-of-Stake
consensus algorithm. More specifically, it employs Proof-of-Staked Authority (or PoSA), in
which participants stake BNB to become validators of the blocks. As of September 5, 2021,
the platform’s 21 active validators play an important role in keeping the network running.
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According to the CEO of Binance, Changpeng Zhao2, BSC allows for a maximum of 300
transactions per second. In contrast, Ethereum processes up to a maximum of 16 transac-
tions per second. The current version of BSC is thus about 20 times faster than Ethereum.

BSC transaction fees are also cheaper than those of Ethereum. As of September 5, 2021,
the average transaction fee charged by BSC is $0.399, whereas the average transaction fee
charged by Ethereum is $5.842. In fact, the difference in fees widens significantly when the
Ethereum network becomes congested. For example, the average Ethereum transaction fee
was $71.72 on May 19, 2021, whereas the maxium daily average transaction fee of BSC was
$1.08 on May 11, 2021.3

These advantages make BSC one of the strongest competitors to Ethereum. As of October
9, 2021, total transactions on BSC have outpaced those on Ethereum, despite Ethereum pre-
ceding BSC by almost 4 years.4 Binance Coin is currently the third largest cryptocurrency
in terms of market capitalization, following Bitcoin and Ethereum.

Another important feature of the BSC is its EVM-compatibility. This implies that the
chain can benefit from the rich universe of Ethereum tools and DApps. For example,
project developers can easily transition their projects between Ethereum and BSC. The
growth of PancakeSwap is in part spurred by the popularity of Uniswap, which is built on
the Ethereum blockchain. This is because a significant part of Uniswap’s source code was
directly ported to BSC to build an initial version of PancakeSwap.

3.3 PancakeSwap

PancakeSwap is the largest decentralized exchange built on the Binance Smart Chain. Un-
like traditional financial markets employing market-maker systems based on limit order
books, PancakeSwap employs a new system called automated market maker (AMM), im-
plemented through smart contracts. For details on the mechanism of AMMs and their
pricing schedules, see, for example, Lehar and Parlour (2021).

In PancakeSwap, multiple liquidity pools are deployed to facilitate trading of pairs of cryp-
tocurrencies. Investors deposit an equal dollar amount of two cryptocurrencies into a liq-
uidity pool, and thereby become liquidity providers. In exchange for the liquidity provision,
the liquidity provider receives LP tokens to certify their liquidity provision. In return for
their liquidity provision, liquidity providers receive a fixed proportion of trading volume
registered in a pool. Third-party trades on PancakeSwap are charged a fee proportional to
0.25% of the trading volume, of which 0.17% is added to the liquidity pool associated with
the corresponding cryptocurrency pair.

2https://twitter.com/cz_binance/status/1361596039698944000.
3https://ycharts.com/indicators/ethereum_average_transaction_fee and https://ycharts.com/

indicators/binance_smart_chain_average_transaction_fee_es
4Ethereum launched on July 2015, whereas Binance Smart Chain launched on April 2019.
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In addition to the income generated from trading fees, liquidity providers can earn additional
passive income if the liquidity pool has a corresponding yield farm. Such income, called
farm yield, is earned by staking the LP tokens to the corresponding yield farm. Farm yields
are paid in PancakeSwap’s governance token.

PancakeSwap migrated from version 1 (v1) to version 2 (v2) on April 24, 2021. This
transition was implemented to enhance the platform’s technological and security features.
Both versions have co-existed since then. We study yield farming for both versions.

In PancakeSwap, the CAKE token serves as the governance token for the Decentralized
Autonomous Organization (DAO), where token holders can cast votes to influence the
future development of the platform.

3.4 PancakeSwap as an ideal laboratory to study yield farming

Numerous decentralized trading venues offer passive income opportunities through yield
farming. Among many DeFi platforms, Uniswap and PancakeSwap consistently lead the
league ranks in terms of their trading activity. The key difference between these two plat-
forms is that Uniswap runs on the Ethereum blockchain, while PancakeSwap runs on the
Binance Smart Chain.

Several features of PancakeSwap make it particularly appealing for the study of yield farm-
ing. First, and most importantly, Uniswap does not offer yield farms: Liquidity providers
in Uniswap liquidity protocols receive a fixed fraction of trading volume as their passive
income. However, liquidity providers cannot stake their LP tokens in farms in Uniswap to
earn additional income through yield farming.

Second, PancakeSwap is one of the largest decentralized exchanges. In Table 2, we report the
daily trading volume for the ten largest decentralized exchanges as of October 9, 2021. The
largest DEX is dYdX, which is specialized in derivatives trading. Augustin, Rubtsov, and
Shin (2021) discuss the market for regulated and unregulated cryptocurrency derivatives.

The second largest DEX is PancakeSwap (v2) with a 24-hour trading volume of $1,185.34 on
October 9, 2021. PancakeSwap (v2) is followed by Uniswap (v3), 1inch Liquidity Protocol,
Uniswap (v2), and SushiSwap. The trading volume on PancakeSwap (v2) is comparable to
the combined trading volumes of Uniswap (v3) and Uniswap (v2). While the rank tables
vary over time, PancakeSwap is among the leading DEXs focused on spot trading.

Third, the low transaction cost and high transaction speed of Binance Smart Chain make
PancakeSwap easily accessible to retail investors. As discussed in Section 3.2, transaction
costs of the Binance Smart Chain are an order of magnitude lower than those of Ethereum.
Yet, the transaction speed of Binance Smart Chain is faster than that of Ethereum. Ac-
cording to DappRadar5, PancakeSwap registered 435,130 active users on October 24, 2021,

5DappRadar: https://dappradar.com/rankings
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in contrast to 47,730 active users recorded for Uniswap. The number of active users is high-
est for PancakeSwap among all decentralized applications built on all blockchains tracked
by DappRadar. In light of the growing concern about the risks of complex yield farming
strategies for retail investors, our study has policy implications for investor protection.

Fourth, PancakeSwap features a large cross-section of yield farms. This provides important
variation to help understand the risk and return characteristics of yield farms. We study
219 unique yield farms created as of September 5, 2021.

4 Conceptual framework

Yield farming enables investors to earn passive income off their cryptocurrency holdings by
making tokens available for trading in decentralized markets called farms. Conceptually,
this is akin to a modern version of securities lending with the distinctive feature that
smart contracts operating on permissionless blockchains automatically execute transactions
without involvement of financial intermediaries. In practice, the yield farming process is
more complex than traditional securities lending and involves a chain of transactions that,
linked together, deliver returns from “farming for yields.”

Formally, yield farming involves two independent investment decisions. First, an investor
can earn passive income by providing liquidity to a liquidity pool. There is a large menu
of liquidity pools that operate within a decentralized trading platform like PancakeSwap.
Liquidity providers receive liquidity tokens (a.k.a. LP tokens or flip tokens) in exchange for
their liquidity provision.

Second investors can stake LP tokens into a yield farm to earn additional passive income.
That income is paid in the form of the cryptocurrency token that makes up the base currency
of the initial liquidity pool.

The total yield farming return between day t and t+ h, Rt,t+h, is thus equal to:

Rt,t+h = R`t,t+h +Rft,t+h, (1)

where R`t,t+h and Rft,t+h define the returns from liquidity provision and the staking of LP
tokens into a yield farm, respectively.

4.1 Liquidity Provision

Liquidity pools are defined in terms of pairs of cryptocurrency tokens. For example, one of
the most popular liquidity pools on PancakeSwap is an automated market for buying and
selling ETH and the cryptocurrency token BNB. To provide liquidity to the ETH/BNB
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pool, a liquidity provider needs to deposit ETH and BNB in equal amounts, taking into
account their current market prices. For example, if the price of one ETH corresponds to
10 BNB, an investor would need to deposit 10 BNBs for each unit of ETH.

The pools’ aggregate liquidity Lt is characterized by the aggregate token valuation, de-
fined by the number of ETH and BNB tokens, αAt and αBt , and their prices, PAt and PBt ,
respectively:

Lt = αAt · PAt + αBt · PBt . (2)

Returns to liquidity provision are derived from two sources: growth in the value of the
liquidity pool and fee revenue earned from third party trading activity in the pool, that is:

R`t,t+h =
Lt+h
Lt

+ Trading Fee Returnt,t+h

=
αAt+h · PAt+h + αBt+h · PBt+h

αAt · PAt + αBt · PBt
+ Trading Fee Returnt,t+h.

(3)

Intuitively, growth in the value of the liquidity pool is similar to a traditional price return.
The key difference is that the number of shares αit is neither constant nor based on the
initial investment. Instead, it is time-varying and determined by the trading activity in the
liquidity pool. This feature arises because of the constant-product technology hardwired
into liquidity pools. See Lehar and Parlour (2021) for details.

In exchange for their liquidity provision, investors receive LP tokens to certify their partial
ownership in the pool. While the fractional ownership stays constant over time, the pool’s
liquidity value may change when end users independently buy and sell ETH and BNB. The
terms of trade for end users are such that the product of the quantities available in the pool
is equal to a constant k:

k = αAt α
B
t = αAt+hα

B
t+h. (4)

This implies that the fractional claim to the liquidity pool is constant over time. However,
the number of units of ETH and BNB represented by this claim will change as a result of
variation in the pool’s composition arising from trading activity by end users. Thus, when
a liquidity provider decides to redeem their liquidity tokens in exchange for ETH and BNB,
the number of tokens they receive from redemption may differ from those initially deposited
(i.e., αit+1 6= αit) despite the same fractional claim to the liquidity pool.

A second feature of the constant-product technology is that the products of price and
quantity have to equalize across assets, that is, for all t:

αAt P
A
t = αBt P

B
t . (5)

A consequence of the constant-product technology is that the returns to liquidity provision
have two distinct components. Investors are exposed to capital gains/losses resulting from
joint changes in the tokens’ prices and in the pool’s liquidity, since this leads to fluctuations
in the composition of tokens that an investor can claim using the liquidity token. In addition,
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investors are exposed to impermanent losses, which depend on the relative returns of both
ETH and BNB (i.e., changes in the ratio of token prices). To formalize our discussion, the
return from liquidity growth can be expressed as:

Lt+h
Lt

=

(
1

2
RAt,t+h +

1

2
RBt,t+h

)
︸ ︷︷ ︸

capital gain

− 1

2

(√
RAt,t+h −

√
RBt,t+h

)2

︸ ︷︷ ︸
impermanent loss

, (6)

where RAt,t+h = PAt+h/P
A
t and RBt,t+h = PBt+h/P

B
t denote the gross returns of tokens A and

B, corresponding to ETH and BNB in our example. In Appendix B.1, we explicitly show
how the above expression is obtained from the initial liquidity provision that starts with a
nominal dollar investment.

Intuitively, the impermanent loss corresponds to the difference between the return from
liquidity provision and the return from a buy-and-hold strategy (without pledging the
cryptocurrency tokens to a liquidity pool). Impermanent losses depend non-linearly on
the relative difference in token returns. Importantly, they are strictly negative and expose
investors to significant upside and downside risk analogous to a short volatility exposure
(Aigner and Dhaliwal, 2021). See Appendix B.1 for additional discussion.

The total return from liquidity provision may nonetheless exceed that of a simple buy-
and-hold strategy due to the additional income generated from trading fees. As of August
14, 2021, PancakeSwap charges a trading cost equivalent to 25 basis points (bp) of trading
volume. Part of that (17bp) is passed on to liquidity providers as a fraction c of total trading
volume Vt,t+h observed over two consecutive time periods t and t + h and proportional to
the initial fractional dollar investment It/Lt in the liquidity pool. Since the return from
trading fees depends on the initial investment, the total fee return is characterized as

Trading Fee Returnt,t+h = c · ((It/Lt)Vt,t+h) /It = c · Vt,t+h/Lt. (7)

4.2 Yield farming

A second passive source of income is generated by staking the liquidity tokens in yield farms
which promise a yield yt. That income is paid in terms of the platforms’s governance token,
which corresponds to Cake in the case of PancakeSwap.

The annualized yield is implicitly defined through a complicated function that depends
on (a) the number of Cake tokens created through the validation of a new block on the
blockchain; (b) the total number of Cake tokens redistributed for staking Mt; (c) a farm-
specific multiplier mt which defines the number of Cake tokens allocated to the farm with
the creation of a new block; (d) the total liquidity staked to the farm Lstakedt ; and (e) the
price of Cake PCaket .

The creation of new Cake tokens through blockchain validation corresponds to a rate of
approximately 40 Cake tokens for each three second period. Thus, assuming that 28,800
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blocks are created each day, the annualized promised yield from staking liquidity tokens to
a yield farm is given by:

yt =

(
365× 28, 800× 40×mt

Mt

)(
PCaket

Lstakedt

)
. (8)

Cake tokens may be allocated to other purposes than yield farming. Therefore, the aggregate
multiplier does not have to correspond to the sum of all multipliers across yield farms on a
platform like PancakeSwap, i.e., M 6=

∑
km

k, where k corresponds to the number of farms.
Note that we explicitly write out the price of the Cake reward for yield farming, PCaket ,
because one of the token pair in the liquidity pools does not have to be Cake. Realized
farm yield between t and t+ h is thus defined as

PCaket+h

h∑
n=1

(
yt+n−1

PCaket+n−1

)(
1

365

)
. (9)

4.3 Aggregation

Aggregating across all components allows us to decompose the total (h− period) return to
yield farming strategies into four components associated with token capital gains, imper-
manent losses, revenues from trading fees, and realized farm yields:

Rt,t+h =

(
1

2
RAt,t+h +

1

2
RBt,t+h

)
︸ ︷︷ ︸

capital gain

− 1

2

(√
RAt,t+h −

√
RBt,t+h

)2

︸ ︷︷ ︸
impermanent loss

+ c · Vt,t+h/Lt︸ ︷︷ ︸
trading fee revenue

+PCaket+h

h∑
n=1

(
yt+n−1

PCaket+n−1

)(
1

365

)
︸ ︷︷ ︸

realized farm yield

. (10)

4.4 Impact of trading frictions

In practice, yield farming involves a chain of transactions that, taken together, may involve
sizable transaction costs. Table A.1 breaks down the chain of transactions for a hypothetical
yield farming strategy. We provide additional details in Appendix B.2.

Harvesting yields at PancakeSwap involves a chain of 12 transactions (excluding step 1 and
14 in Table A.1 that are unrelated to the yield farmer’s transactions). A full round-trip
transaction involves three types of costs associated with gas fees, trading fees, and price
impact. These costs may significantly lower the returns from yield farming.

Gas fees correspond to transaction costs associated with the use of BSC’s computational
resources for trade execution. Among the set of 12 transactions, yield farmers have to
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pay gas fees for 10 of them. The average gas fee for a round-trip of an yield farming in
PancakeSwap is estimated to be $3.28 in our sample period.

Gas fees are especially detrimental to smaller retail investors since the flat fee is more costly
for small stake investments and frequent rebalancing. In addition, since the gas fee applies
to each yield farm, it reduces the benefits of diversifying systematic risk across several yield
farms. An initial $1,000 investment will thus lose about 33 bps in a round-trip transaction
due to gas fees alone, and 33 bps per week for weekly rebalancing. That consideration
is important for retail investors who have a tendency to rebalance too frequently Odean
(1999). A diversification strategy across 10 farms would incur a per period cost of 10×3.28
= $32.8, which, for a $1,000 investment, is more than the typical performance fee owed to
a hedge fund, excluding any consideration for hurdle fees or water marks.

Gas fees thus encourage larger and more concentrated investments, which may not be
appropriate for financially unsophisticated investors. In our analysis, we consider investment
sizes of $5,000, $10,000, $100,000 and $1,000,000. This allows us to consider cases where
gas fees do not wash out all potential yield farm returns.

Investors also incur trading fees. PancakeSwap charges a fee of 0.25% (proportional to
trading volume) for each transaction. Since yield farmers need to buy and sell tokens in
intermediate steps, they will lose at least an additional 0.50% of their initial investment for
a round-trip transaction. See Appendix B.2 for more details.

The third transaction cost arises through price impact. To quantify price impact, we assume
that yield farmers invest an amount It corresponding to a constant fraction f of the liquidity
pool value Lt, i.e. It = f ·Lt. Equation (6) provides the return to liquidity provision without
frictions. With price impact and ignoring trading fees, the return to liquidity provision is
impacted as follows:

λ(f)

[(
1

2
RAt,t+h +

1

2
RBt,t+h

)
− 1

2

(√
RAt,t+h −

√
RBt,t+h

)2
]
, (11)

where λ(f) is the price impact function. We illustrate in Panels (a) to (c) of Figure 3 how
price impact relates to investment size. Considering both trading fees and price impact, the
return to liquidity provision reduces to:

(1− 0.0050)λ(f)

[(
1

2
RAt,t+h +

1

2
RBt,t+h

)
− 1

2

(√
RAt,t+h −

√
RBt,t+h

)2
]
.

We emphasize another indirect channel through which yield farming performance is nega-
tively affected. Equation (8) suggests a negative relation between the aggregate liquidity
in a yield farm and the offered farm yield. We provide empirical support for that pattern
in Figure 4. Since liquidity provision increases the size of a farm, it mechanically decreases
the offered farm yield. Hence, too much liquidity provision can be a self-defeating strategy.
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4.5 Yield farm flows

In our analysis, we examine flows into yield farms. To measure net inflows of liquidity,
we, therefore, follow the mutual fund literature (e.g., Sirri and Tufano, 1998; Coval and
Stafford, 2007) and define the measure flowt,t+h over an h-period trading horizon

Flowt,t+h =
Lt+h − Lt ×R∗t,t+h

Lt
, (12)

where R∗t,t+h corresponds to the yield farm return defined in Equation (10) net of the realized

farm yield, that is R∗t,t+h =
(

1
2R

A
t,t+h + 1

2R
B
t,t+h

)
− 1

2

(√
RAt,t+h −

√
RBt,t+h

)2
+ c · Vt,t+h/Lt.

We exclude the realized farm yield term in our flow definition because it does not affect the
size of next period’s liquidity pool, unlike capital gains, impermanent losses and trading fees.
The reason is that the farm yield is paid in Cake rather than using the base cryptocurrency
of th liquidity pool or yield farm.

5 Data

We assemble a novel data set of historical yield farm data, including token prices, liquidity
staked to liquidity pools/yield farms and the corresponding token shares, the time-varying
value of liquidity tokens that represent claims to token shares, as well as the yield farm
multipliers. We obtain these data by tracing all transactions on the Binance smart chain,
which forms the underlying plumbing of the PancakeSwap trading platform. We combine the
yield farm data with price and volume data from Binance Smart Chain and cryptocurrency
return factors constructed as in Liu, Tsyvinski, and Wu (2019).

5.1 Farm data

We collect information on all yield farms stored in PancakeSwap’s main staking contract
from the beginning of its existence on September 23, 2020 to September 5, 2021. We first
extract from the main staking contract the contract addresses of all liquidity pools that
have a yield farm associated with them. We then reconstruct from the blockchain the time
series of each yield farm’s multiplier at a daily frequency.

An important consideration in our study is the migration from PancakeSwap v1 to Pan-
cakeSwap v2 on April 24, 2021, when the platform upgraded the technological and security
features of its smart contract design. At the time of the switch, liquidity providers in ver-
sion 1 were encouraged to withdraw their liquidity and redeposit it in the corresponding
liquidity pool that was transitioned to version 2. Migrating one’s liquidity was considered
to be a dominant strategy since the new version would pay higher rewards, and failure to
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migrate could lead to higher transaction costs. Both versions have co-existed since then.
Interestingly, we observe that not all liquidity providers have migrated to the new version.
Since each liquidity pool is uniquely linked to one pair of cryptocurrency tokens, we could
easily identify the contract address of each matching liquidity pool in PancakeSwap v2.

To measure a farm’s yield, we use information on the cryptocurrency shares provided to
each liquidity pool (αit), the aggregate liquidity in each pool (Lt), and the total amount of
liquidity tokens staked in each farm (Lstakedt ). We collect information on cryptocurrency
shares using the tokens’ balances in each pool. Given the tokens’ prices, a pool’s aggregate
liquidity is computed as the aggregate dollar value of a token pair, say, Lt = PAt α

A
t +PBt α

B
t .

We further collect each pool’s aggregate supply of liquidity tokens and the number of such
tokens staked to the yield farms. The aggregate liquidity staked to a farm is then given
by a pool’s aggregate liquidity times the fraction of liquidity tokens that have been staked,
Lstakedt = (# staked LP tokens/Aggregate # of LP tokens) · Lt.

Given the novelty of our yield farm data and the lack of reliable information providers, we
implement several accuracy checks to vet the data reliability. The most important input to
our study is the farm yield described in Equation (8). We verified its accuracy by collecting
offered farm yields from PancakeSwap’s homepage6 at midnight Greenwich Meridian Time
(GMT) on October 11, 2021. We manually verified that the multipliers collected from the
main staking contract are identical to those advertised on PancakeSwap’s web interface.
Then, we verified that our imputed farm yields align with those that are publicly listed.

In Figure A.3, we report the relation between our imputed farm yields based on Equation
(8) on the y-axis and those listed by PancakeSwap on the x-axis. All observations are nearly
perfectly aligned with the (red dashed) 45-degree line. A linear projection of the imputed
farm yields on the listed farm yields obtains a slope coefficient of 1.002 with an R2 of 1.00.
This is strong supportive evidence for the validity of our data building procedure.

5.2 Price, trade, and gas fee data

We obtain daily price (P it ) and trading volume (Vt,t+h) information for each farm. We source
gas fee data from a proprietary data provider specialized in blockchain data services covering
Bitcoin, Ethereum, Binance Smart Chain, among others. For a pair of cryptocurrency
tokens in a liquidity pool, one typically serves as the numeraire, while the other is considered
a token of interest. For example, in the ETH-BNB pool, ETH is the token of interest and
BNB is the numeraire. In each liquidity pool, the price of the token of interest (e.g. ETH)
is taken to be the most recent end-of-day price in GMT, where the price is expressed in
terms of the numeraire token (e.g. BNB).

To find the prices of the numeraire tokens, we proceed in several steps. Table A.2 lists
all numeraire tokens in the 219 liquidity pools and yield farms in our study. Among the

6https://pancakeswap.finance/farms
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10 numeraire tokens, 4 are stablecoins pegged to the U.S. dollar: Binance USD (BUSD),
TerraUSD (UST), Binance-Peg Tether (USDT), and Binance-Peg USD Coin (USDC). We
collect their prices from CoinMarketCap for conversion. We infer the U.S. dollar value of the
remaining numeraire tokens (e.g., Binance-Peg Ethereum (ETH)) from related token pairs
of other liquidity pools in PancakeSwap. For example, we obtain the price of Binance-Peg
Ethereum (ETH) in terms of Binance Coin (BNB) as numeraire, and the price of Binance
Coin (BNB) in terms of Binance USD (BUSD) as numeraire. Using this approach, we can
back out the price of Binance-Peg Ethereum (ETH) in Binance USD (BUSD) and convert
it to U.S. dollars using the price of Binance USD in U.S. dollars from CoinMarketCap.

If there are no transactions on a given day, we use price information from the previous
trading day instead. The daily trading volume of a pool is defined as the daily sum of
trades across all cryptocurrencies in a given pool, measured in U.S. dollars.

We consider the impact of gas fees on the performance of yield farming strategies. Different
functions executed by smart contracts incur different gas fees. To accurately impute the
gas fees in the yield farming process, we first identify the chain of transactions that incur
gas fees in a round-trip cost (see Table A.1). We then compute the average daily gas fee
in U.S. dollars for each transaction in the chain. In a last step, we compute the gas fee for
one round-trip cost by summing the average gas fee across all corresponding transactions.

5.3 Yield farmers data

We collect transaction data for each of the LP tokens through BscScan7, a freely-accessible
utility for searching data on the BSC. From these transaction logs, we then reconstruct the
holding information of each wallet for each token. Transactions in which a user deposits
cryptocurrency into a certain liquidity pool and receive LP tokens are represented as a LP
token transfer from the null address to the wallet address of the user. Transactions in which
a user stakes/unstakes their LP tokens in a yield farm are represented as a token transfer
to/from the main staking contract. Transactions in which a user redeems their LP tokens
at a liquidity pool in exchange for underlying tokens are represented in the data as a LP
token transfer to the address of the LP token itself.

After collecting the above transaction data for all farms on PancakeSwap, we further re-
fine the scope of our data in a few ways. First, we restrict our attention only to the
accounts active in our sample period. Second, we eliminate wallet addresses belonging to
non-PancakeSwap smart contracts, which may be a yield aggregator or an automated passive
strategy. Finally, we omit wallet addresses that have transacted LP tokens with other, non-
PancakeSwap smart contracts. These addresses employ staking on PancakeSwap as part
of multi-platform investment strategies, which are beyond the scope of our current study.
With the above refinements, we are left with 1,957,867 transactions made by 252,490 unique

7https://bscscan.com/
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wallets active on PancakeSwap throughout our sample period. For accounts with a positive
LP token balance at the end of our sample period, we make the standard assumption that
these positions are exited on the last day of our sample. For each transaction, we match
the price and offered yield of the LP token to the nearest end-of-day price by block height
difference.

We compute several farmer-level measures of yield farming behavior. First, we compute
No. Farms, the number of liquidity pools that each wallet interacts with. Second, we
define Efficiency as Time Staked/Time in Liquidity Pool where Time Staked and Time in
Liquidity Pool refer to the length of time for which the user has staked their LP tokens in
a yield farm and the length of time for which the user has provided liquidity, respectively.
We average this measure across liquidity pools. Third, we define Staked Balance and LP
Balance as the time-weighted average balance for staking and liquidity provision. The
prices used in these calculations are the nearest end-of-day price from the beginning of each
holding period, and the weights are the length of each holding period. Finally, we define
Offered Farm Yield of an yield farmer, as the time-weighted average of the offered yield at
the beginning of each holding period. In order to guarantee that our results are not driven
by very small investors, we choose farmers whose LP Balance is larger than $10. With this
restriction, we are left with 207,699 unique farmers.

One caveat is that yield farmers may own and use multiple wallets. Hence, measures such
as No. Farms, Staked Balance, and LP Balance could be underestimated. We believe that
it is unlikely for yield farmers to systematically use multiple wallets for yield farming: there
are no monetary benefits of doing this, and managing multiple wallets may add additional
effort costs towards implementing yield farming strategies. We are also in the process of
applying several wallet clustering algorithms to our sample in order to allay this concern.

5.4 Cryptocurrrency factors

Liu, Tsyvinski, and Wu (2019) document that a three-factor model using the cryptocurrency
equivalents of the market, size and momentum factors are useful for explaining the cross
section of expected cryptocurrency returns. We replicate these factors using their approach.

We obtain the cross-section of daily closing prices for cryptocurrencies from Coinmarketcap’s
historical API endpoint. For each cryptocurrency, prices are calculated using a volume-
weighted average of prices reported from each of the markets for which Coinmarketcap has
data. Our risk-free rate is from the St. Louis Fed’s one-month constant maturity rate.

We exclude from our sample coins without trading volume data, coins with less than $1
million in market capitalization at the time of portfolio formation, and coins without price
data for the following day. To control for potential outliers, we winsorize the market capi-
talization at the 1st and 99th percentiles during portfolio formulation.
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For all three factors, we form portfolios at the end of the prior day and consider a one-day
holding period before re-balancing at the end of the day. All returns are measured in terms
of U.S. dollars. The excess cryptocurrency market return is constructed for a value-weighted
portfolio of all coins with data on the portfolio formation day (prior to applying the filters),
minus the risk-free rate at a daily frequency.

The excess cryptocurrency size factor is constructed as a zero-investment, long-short strat-
egy with a long position defined as the value-weighted portfolio of coins in the bottom
quintile of market capitalizations on the portfolio formation day, and a short position in
the respective top quintile. For the cryptocurrency momentum factor, we further exclude
coins for which the three-week price history is unavailable. The momentum factor is then
constructed as a zero-investment, long-short strategy with a long position defined as the
value-weighted portfolio of coins in the top quintile of three-week momentum on the port-
folio formation day, and a short position in the respective bottom quintile.

In Appendix C.1, we describe our successful replication of Liu, Tsyvinski, and Wu (2019),
suggesting that our cryptocurrency factors are reliably estimated.

6 Evidence

We first provide an overview of the data. We then describe the trading behavior of yield
farmers and examine the risk and return characteristics of yield farming strategies. We end
with a discussion on the interpretation of the evidence and the limitations of our analysis.

6.1 Descriptive overview

We illustrate in Panel (a) of Figure 5 the number of active farms during our sample period.
We consider a farm to be active if the farm yield multiplier is nonzero, which means that
liquidity providers staking LP tokens in the farm earn non-negative passive income.

We identify 219 unique active yield farms during our sample period, among which 110 farms
co-exist both in both versions of PancakeSwap. The remaining 109 farms are active in only
one of both versions. The total number of active farms at any period increases quickly from
inception of PancakeSwap to a peak of 160 farms in July 2021.

In Panel (b) of Figure 5, we plot the the Total Value Locked (TVL) in all active farms,
i.e., the aggregate amount of liquidity deposited for yield farming. Yield farming at Pan-
cakeSwap has experienced extraordinary growth, with TVL surpassing $7 billion in May
2021. Analogously to the boom and bust cycles experienced by Bitcoin and other cryp-
tocurrency markets, TVL dropped sharply following its peak and experienced renewed mo-
mentum after the drop in aggregate liquidity.

18

Electronic copy available at: https://ssrn.com/abstract=4063228



In Figure 6, we provide a histogram of yield farm duration. We define the duration of a
yield farm to be the period during which the farm offers a non-negative passive income to
yield farmers, that is, the farm’s multiplier is strictly positive. We find a significant amount
of heterogeneity for the life span of yield farms. The mean (median) duration is 130.22
(111) days with a standard deviation of 84.88 days. Some farms have very short durations.

Each yield farm features a unique pair of cryptocurrency tokens. We report in Table 3 the
ten largest yield farms in terms of their TVL as of September 5, 2021. The largest farm
is associated with CAKE-BNB and recorded TVL of $931.72 million in its pool. The 10th
largest farm is associated with USDC-USDT, which started on June 28, 2021, and recorded
TVL of $103.29 million by the end of our sample period.

There is a significant amount of heterogeneity in the yields that are offered by the ten largest
farms reported in Table 3, ranging from 5.82% for USDC-BUSD to 34.90% for CAKE-BNB.
These headline yields look attractive on an annualized basis.

In Panel (a) of Figure 2, we plot the time-variation in the median farm yield together with
its cross-sectional distribution. In Panel (b), we report the same evidence from November
1, 2020 onwards, due to extreme yields offered during the initial phases of yield farming.
These figures highlight significant fluctuations in the median farm yield, which is often
higher than 100%. In addition, there is significant variation in dispersion of farm yields, as
is underscored by the fluctuations in the interquartile range of the yield farm distribution.
Such rich variation in yields across farms and across time provides an opportunity to better
understand the drivers of cross sectional variation in the risk and return characteristics of
yield farming strategies and the performance of liquidity provision.

In Table 4, we report the summary statistics of the return performance associated with
yield farming strategies. In Panel A, we focus on annualized returns computed for a daily
trading horizon. The average (median) return to yield farming is 147.7% (193.16%) during
our sample period. This is the average return across the 219 unique yield farms, which
have a duration that is about 129 days, on average. Returns to yield farming are volatile
with a standard deviation that is on average 125.89%. Yield farming generates a return
performance that is negatively skewed (-0.3061), fat-tailed (7.6484) and weakly negatively
serially correlated with a first-order autocorrelation coefficient of -0.0999.

In Panel B of Table 4, we provide the same statistics for a weekly trading horizon. the
average yield farm has a duration of 20 weeks. The key difference at the weekly frequency
is that yield farming performance is weakly positively serially correlated (AC1 coefficient of
0.0407), less negatively serially correlated and less fat tailed.

We also provide information about the returns to liquidity provision that excludes the
staking of liquidity tokens into yield farms (liquidity mining). The returns to liquidity
mining alone are significantly smaller with average (median) annualized returns of 19.44%
and 6.30% (57.53% and 53.48%) at the daily and weekly frequency, respectively.
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Another useful comparison is the return performance of a simple buy-and-hold strategy
that invests into the pair of cryptocurrency tokens associated with a pool. This comparison
is useful because investors face a choice of directly investing into a pair of cryptocurrency
tokens or stake them to a liquidity pool. At the daily (weekly) frequency, a buy-and-hold
strategy earned on average 49.10% (37.59%) on an annualized basis during our sample pe-
riod. Thus, buy-and-hold strategies earn on average about a third of the return performance
of a yield farming strategy, before considering the costs associated with each strategy.

The returns to yield farming may seem extraordinarily large at first. This is driven by
our sample period that overlaps with a strong bull market in asset markets in general, and
for cryptocurrencies in particular. We illustrate this by comparing the return performance
of yield farming strategies to other well-known strategies and list that information under
“benchmark strategies” in Table 4.

During the same period, Bitcoin and Ethereum earned an average of 168.72% and 266.41%
on an annualized basis for a daily trading horizon. In comparison, the cryptocurrency
market factor of Liu, Tsyvinski, and Wu (2019) earned 186.27% at the daily frequency,
and the S&P 500 index recorded a performance of 31.70%.8 We also find that the average
return for MVIS CryptoCompare Digital Assets 10 (100) index is 227.95% (219.20%) on an
annualized basis for a daily trading horizon.

6.2 Evidence of lack of investor sophistication

6.2.1 Evidence from yield farmers data

Several features of the yield farming infrastructure at PancakeSwap enable us to infer infor-
mation about the activities of its participants. In this subsection, we provide some evidence
consistent with cross-sectional variation in sophistication across yield farmers.

First, PancakeSwap migrated to a new version on April 24, 2021 when it upgraded the
technological and security features of its smart contract design. Since then, liquidity pools
and yield farms associated with a particular pair of cryptocurrency tokens have coexisted on
both old and new platforms. Liquidity providers were strongly encouraged to switch their
liquidity provision from version 1 to version 2, but had to trigger the switch themselves.

In Figure 7, we show that a significant amount of liquidity remains in the liquidity pools
associated with the old version. This is puzzling since the switch to the new version is
considered to be a strictly dominant investor strategy. Migrating liquidity to the new
version delivers higher rewards for staking the same tokens as in version 1, alongside lower
transaction costs. This is likely a sign of investor inertia or inattention.

8We present detailed statistics for the construction of all cryptocurrency factors of Liu, Tsyvinski, and
Wu (2019) in Tables A.3 and A.4.
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Second, returns to yield farming involve several independent transactions. Investors first
need to provide liquidity to liquidity pools. The liquidity tokens that certify the liquidity
provision then need to be independently staked to a yield farm. Combining both transac-
tions is a strictly dominant strategy compared to liquidity provision alone. However, we
show in Figure 8 that the number of LP tokens staked in yield farms is significantly lower
than the aggregate amount of LP tokens minted to certify liquidity provision.

We would expect the staking ratio to be equal to one at all times. However, the median
ratio is below one most of the time. The 10th (25th) percentile of the distribution even
drops to as low as 30% (85%). This is further evidence that supports the lack of investor
sophistication in this market. However, we caveat this interpretation with the possibility of
investors staking their LP tokens in third-party yield farm aggregators. While we currently
do not have access to this information, we are in the process of collecting it.

In order to better understand this phenomenon of forgoing farming opportunities, we look to
the trading data for individual yield farmers. Table 7 Panel A shows farmer-level summary
statistics. The average yield farmer invests in 1.81 farms and provides $6,959 of liquidity.
However, Staked Balance, the dollar value of LP tokens staked in yield farms, is substan-
tially lower than LP Balance, the provided liquidity. This suggests that a significant profit
generated from farming is lost for investors who miss the farming opportunities possibly due
to the complex nature of trading strategies. Consistent with this finding, Efficiency is 0.82,
which implies that the length of time that the average yield farmer keeps his/her LP tokens
in a farm is significantly lower than the length of time that he/she keeps corresponding
liquidity in a liquidity pool.

In Panel B of Table 7, we decompose the farmers into two groups depending on Efficiency
using 0.98 as a threshold. Interestingly, we find that a large number of farmers do not meet
this efficiency requirement. 60,514 farmers’ Efficiency measures are less than or equal to
0.98. Although the average LP Balance of the low efficiency group is lower than that of the
high efficiency group, we find that average LP Balance of the low efficiency group remains
economically significant ($3,099). Their average efficiency is also remarkably low (0.40),
and their Offered Farm Yield is relatively high (140%). Overall, the results suggest that a
large number of yield farmers miss a substantial amount of revenue from farming.

In Panel C, we decompose the farmers into quintiles based on their average LP Balance. We
observe that LP Balance is positively correlated with Efficiency, suggesting that smaller
yield farmers are more likely to miss their farm yields, which range from 131% to 153%
across quintiles. Nevertheless, we still observe a significant fraction of yield farmers missing
farm yields, even in the top quintile. Another interesting observation is that differences in
average LP Balance are substantial across quintiles. For instance, the average LP Balance
of quintile 1 is only $25.55, whereas that of quintile 5 is $33709. This suggests that there
exists significant cross-sectional dispersion in average investment sizes among users of Pan-
cakeSwap. Both very large and small investment sizes could be concerning because they
may generate sub-optimal performance, as illustrated in Section 6.4.
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6.2.2 Additional suggestive evidence

There exists additional evidence suggesting that a significant fraction of yield farmers are
not sophisticated. First, there is suggestive evidence that many investors in PancakeSwap
are small retail investors. According to DappRadar9, PancakeSwap registered 435,130 active
users on October 24, 2021, in contrast to 47,730 active users recorded for Uniswap. The
number of active users on PancakeSwap is the largest among all decentralized applications
built on all blockchains tracked by DappRadar. The trading volume in PancakeSwap was
about $1.2B on October 24, which implies that the average yield farmer in PancakeSwap
traded $2,757.

In addition, survey results suggest that a significant fraction of yield farmers are not sophis-
ticated. CoinGecko, a major cryptocurrency data provider, surveyed 1,347 cryptocurrency
investors regarding yield farming in August 2020. (CoinGecko, 2020) Interestingly, a sig-
nificant fraction of yield farmers seem to be overconfident and unsophisticated. According
to the survey, 79% of yield farmers claim to understand the associated risks and rewards of
yield farming to a reasonable extent. However, about 40% of yield farmers report that they
could not read smart contracts to verify potential vulnerabilties or scams of the yield farms.
In addition, 33% of yield farmers do not know what the impermanent loss is, implying that
they are taking risks that they are unaware of.

6.3 Performance of yield farming strategies without transaction costs

In Table 5, we decompose yield farming returns into their four components: capital gains,
impermanent losses, trading fees, and farm yields. We first focus on the full sample results.

Farm yields contribute the most to yield farming performance, with an average daily log
return of 153.92%. Capital gains are the second largest contributor, with an annualized
daily log return that is 38.29% on average. This is comparable to the return performance
of the S&P500 index during that period.

We note that capital gains are significantly more volatile than farm yields, and that they
have more extreme negative and positive outcomes. The annualized standard deviation
is 124.73%, compared with 3.08% for farm yields, and the wider interquartile range for
capital gains reflects the greater kurtosis of 7.72, compared to a a distribution that is much
less fat-tailed for farm yields. The persistence of returns is also different across these two
components. While capital gains exhibit weak negative serial correlations, farm yields are
persistent with a first order autocorrelation coefficient of 0.7625.

The annualized daily impermanent loss is −41.08% on average. In addition, the distribution
is negatively skewed and exhibits the largest excess kurtosis among all four components, a

9DappRadar: https://dappradar.com/rankings
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value of 49.48. This reflects investors’ negative exposure to correlation risk, since imper-
manent losses are exponentially sensitive to the return divergence between the underlying
pairs of cryptocurrency tokens.

The annualized daily trading fee is 11.36%, on average, making it the least important
contributor to yield farming performance. Despite the lower volatility (standard deviation
of 0.72%), trading fees can become important, as demonstrated by the positive skewness
(2.9542) and kurtosis (18.4164).

In Table 5, we report similar statistics for yield farms, sorted into terciles by the magnitude
of their average in-sample offered yield. This sorting exercise reveals a negative relationship
between the headline yields and capital gains performance.

In farms with low headline yields (Tercile 1), capital gains are significantly larger than farm
yields (152.12% vs. 51.20%). On the other hand, in farms with high headline yields, capital
gains are highly negative, on average (−84.18%), while farm yields deliver an annualized
daily return of 271.96%. Trading fees and impermanent losses appear similar across all
three terciles.

In Panel B of Table 5, we report the decomposed annualized return performance for weekly
trading horizons. The patterns are broadly similar to those of daily trading horizons.

In Table 6, we perform a variance decomposition. This helps better understand the pro-
portion of variation in the aggregate return series explained by each of the four return
components arising from capital gains, impermanent losses, trading fees, and farm yields.
For the variance decomposition, we split the covariance terms equally for each component.
We report the variance decomposition for the overall population, and for each tercile of the
population sorted by their average offered yield throughout the sample period.

Consistent with the large standard deviations observed for capital gains in Table 5, capital
gains dominate the overall variation of the raw yield farming performance. The proportion
of variation explained by capital gains is close to 100%. This is true at both the daily and
weekly trading horizons.

We assess the value-weighted performance of yield farming strategies in Table 8, using the
pools’ aggregate liquidity as weighting factors. We take the perspective of a U.S. investor
who starts from an initial hypothetical $1 USD investment and ignore all transaction costs.
We compute returns in excess of the three-month U.S. Treasury bill secondary market rate.
We focus on the daily trading frequency in Panel A.

We find that, without transaction costs, yield farming was highly profitable during our
sample period. The average value-weighted excess return delivered an annualized return of
237.12%. This is significantly larger than the returns to a strategy that focuses only on
liquidity mining (185.98%), and larger than a buy-and-hold strategy in the same pairs of
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cryptocurrency tokens associated with the liquidity pools (196.28%). All three strategies
deliver negatively skewed performances, with a non-trivial amount of excess kurtosis.

To assess risk-return trade-offs, we standardize the return performance by the annualized
standard deviations and compute Sharpe ratios for all investment strategies. These mea-
sures suggest a lucrative risk-return trade-off, with values ranging from 2.38 for buy-and-
hold strategies to 2.89 for yield farming.

While Sharpe ratios may appear extraordinarily large, they are comparable to similar mag-
nitudes recorded during our sample period for benchmark trading strategies. For example,
an investment in the S&P 500 Index delivered a Sharpe ratio of 2.37 during the same period.
Sharpe ratios for other comparable investments range from 1.97 for the cryptocurrency mar-
ket factor of Liu, Tsyvinski, and Wu (2019) to 2.41 for an investment in Ethereum. It is
important to note that, for reasons of simplicity and clarity, we do not account for autocor-
relation in our annualization of return volatility. At a weekly measurement frequency, for
instance, yield farming strategies have large and positive autocorrelation coefficients. Cor-
recting for them will increase the annualized standard deviation, and thereby decrease our
reported Sharpe ratios for yield farming strategies. Since these coefficients are much larger
for yield-farming strategies at a weekly frequency compared to our benchmarks, the overall
effect of the correction will worsen the relative performance of yield farming strategies.

We also report alphas estimated using the three-factor cryptocurrency return model of Liu,
Tsyvinski, and Wu (2019). Their framework suggests that a three-factor model with cryp-
tocurrency market, size, and momentum factors can price the cross-section of cryptocur-
rency returns. Thus, we assess the risk-adjusted performance of yield farming performance
relative to this three-factor cryptocurrency benchmark. We find that the alpha for yield
farming investments is on average 137.78%. Because of the short and volatile sample period,
this alpha is estimated with a t-statistic of only 1.86.

6.4 Performance of yield farming strategies with transaction costs

The evidence suggests that yield farming delivers attractive returns, with high risk adjusted
returns and Sharpe ratios. We question whether these returns are realistically attainable,
despite the positive bull run observed during our sample period. An important insight of
our study is the careful examination of trading fees and the price impact implicit in staking
cryptocurrency pairs to liquidity pools and in harvesting farm yields.

In Table 9, we document the performance of yield farming strategies, accounting for gas
fees, trading fees and price impact. We then compare these results to the frictionless
benchmark. We add the information ratio using the best fit from the three-factor model of
Liu, Tsyvinski, and Wu (2019) as a benchmark portfolio to compute tracking errors.

Despite the significantly lower transaction costs recorded on BSC compared to Ethereum,
gas fees significantly lower the return performance. This is because the multiplicity of
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transactions that are needed for a round-trip transaction can accumulate to non-trivial
amounts, especially with frequent rebalancing.

In Panel A of Table 9, we show the performance of yield farming strategies after accounting
for transaction cots. We consider initial investments ranging from $5,000 to $1,000,000.10

The impact of gas fees and trading costs is especially harmful for small size investments,
since they are based on flat dollar amounts. When the investment size is too small, the fixed
transaction costs reflect a large proportion of the investment so that they absorb a large
fraction of the positive return performance. This incentivizes larger investment amounts to
reduce the dollar cost basis. However, amounts of $100,000 or more may not be an option
for unsophisticated retail investors and we find that a large proportion of investors invest
less than $1,000 in farms in Section 6.2.

On the other hand, when the investment size is too large, there is too much capital relative to
the liquidity provision ability of a pool. Thus, when swapping to get the tokens, the slippage
from illiquidity is too high. We previously discussed that larger investments endogenously
also lead to lower farm yields, thereby putting further downward pressure on the investment
performance. Across the board, we notice that the risk-adjusted performance becomes
negative, as suggested by the negative alphas and information ratios, regardless of the
investment size.

These observations also have implications for diversification. A portfolio of fewer yield
farms would save more on fixed transaction costs, but would be more exposed to illiquidity
(slippage) when opening/closing positions, due to higher idiosyncratic risk. In contrast,
holding a more diversified portfolio of farms would cost more but would lower potential
losses from illiquidity (slippage) when opening/closing positions.

To shed more light on the precise mechanism of these trade-offs, we plot in Figure 10 the
hypothetical return performance of two diversified yield-farming investment strategies as
a function of investment size. We consider both a value-weighted and an equal-weighted
strategy, whereby the value-weighted (equal-weighted) portfolio consists of all yield farm
returns, beginning on October 20, 2020 and re-balancing every seven days thereafter until
September 5, 2021.

In Panels (a.1), (a.2) and (a.3), we observe a non-monotonic relation between investment size
and return performance in PancakeSwap. For small investment sizes, returns are negative
and volatile, leading to negative Sharpe ratios. The same phenomenon appears for larger
investments sizes close to $10 million. Maximum Sharpe ratios are attained for investment
amounts ranging between $100,000 and $1 million for value-weighted and equal-weighted
portfolios, respectively.

10Note that the average return may be less than -100% because the average return is computed based on
log rather than arithmetic returns.
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Our analysis in Table 9 shows that, besides the drop in yield farming performance, the
impact on performance is dependent on the farm yield distribution. In particular, we
observe the greatest reduction in yield farm performance for farms that offer the highest
headline yields (tercile 3). That impact is especially pronounced for large investments
such as $100,000 and $1,000,000. This important observation leads us to further assess
the relation between flow and performance, since there is important evidence from other
asset markets that suggest investors reach for yield (e.g., Becker and Ivashina, 2015; Choi
and Kronlund, 2018; Chen and Choi, 2021; Bordalo, Gennaioli, and Shleifer, 2016) and
consequentially pursue investment strategies with large headline rates (e.g., Henderson and
Pearson, 2011; Célérier and Vallée, 2017; Egan, 2019; Henderson, Pearson, and Wang, 2020;
Shin, 2021).

In Panel B of Table 9, we report the yield farming performance when we account for trading
frictions at a weekly trading horizon. The impact on performance is naturally less dramatic,
since portfolio re-balancing happens seven times less frequently. However, we observe the
same pattern in that the biggest price impact is suffered by the farms with the highest
headline rates and for large investments. Most importantly, we observe that Sharpe ratios
are in general lower than those of benchmark indexes such as the S&P 500 Index and MVIS
10 Index.

Since we study yield farming at PancakeSwap, we believe our results to be conservative.
We show in Figure 9 the average gas fee incurred in yield farming at PancakeSwap and at
SushiSwap, one of the largest DEX yield farms in Ethereum as of September 5, 2021. For
PancakeSwap, the average cost to enter (exit) yield farming over all days is $1.39 ($1.89).
For SushiSwap, the average cost to enter (exit) over all days is $109.12 ($164.34). Thus,
any impact from transaction costs will likely be amplified for alternative studies based on
SushiSwap.

We go through the similar data collection process to construct the performance of SushiSwap-
based yield farming strategies. Consistent with our intuition, in Panel (b) of Figure 10, we
find that the performance of yield farming strategies in SushiSwap is poor. Both maximum
average return and maximum Sharpe ratio of SushiSwap-based yield farming strategies are
significantly lower than those of PancakeSwap-based strategies. For example, the maxi-
mum Sharpe ratio is lower than 1.5 and the Sharpe ratio is particularly low when the size
of investment is low due to high gas cost. The maximum Sharpe ratio is attained at the
investment size of $4-5 million and even at this size of investment, the Sharpe ratio is lower
than that of S&P 500 (2.4).

6.5 The relation between farm flows and performance

In light of the observation that price impact is largest for farms with high headline yields, we
assess the relation between farm flows and performance. To compute farm flows, we closely
follow the mutual fund literature and estimate them using the time series variation in each
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pool’s aggregate liquidity Lt and the per period farm growth due to return performance
Rt,t+h (e.g., Sirri and Tufano, 1998; Coval and Stafford, 2007). We provide a detailed
description in Section 4. We aggregate flows at the daily frequency to obtain weekly flows.
In Table 10, we report the results from a regression of farm flows on offered farm yield (yjt ),
lagged farm flows, and past performance of a yield farming strategy. Specifically, we regress

Flowjt,t+7 = a+byjt +

K∑
k=1

ck ·Flowjt−7k,t−7(k−1) +

H∑
h=1

dkR
j
t−7h,t−7(h−1) +e>Xt+fj+εjt , (13)

including pool fixed-effects and common crypto market factors Xt as control variables.

The first notable observation is that yield farmers seem to reach for high yields. The
coefficients for Offered Farm Yield are about 0.0149 in columns (1) and (3), both of which
are statistically significant at the 5% level. The magnitude is economically significant as
well. A one-standard-deviation increase in Offered Farm Yield is associated with a 0.012
(1.2%) increase in one-week ahead Flow. The effect becomes even more significant, both
statistically and economically, once we add farm fixed effects to control for farm-specific
characteristics, such as underlying tokens in the pool. The coefficient is 0.0973 (0.114) in
column (4) ((6)) and it is statistically significant at the 1% level. Under these specifications,
a one-standard-deviation increase in Offered Farm Yield is associated with 0.077-0.091
(7.7% - 9.1%) increase in Flow. This is an economically significant magnitude.

High yield seeking behavior is observed in many other financial markets (Henderson and
Pearson, 2011; Becker and Ivashina, 2015; Bordalo, Gennaioli, and Shleifer, 2016; Célérier
and Vallée, 2017; Choi and Kronlund, 2018). A vast majority of this line of research em-
phasizes the role of intermediaries as the source of the reaching-for-yield phenomenon. In
contrast, yield farming operates through smart contracts on decentralized markets without
financial intermediation. Our evidence suggests that reaching for yield may also exist in
decentralized finance. This is of interest since our results imply that reaching for yield
can arise even in the absence of financial intermediaries and related agency conflicts or
competing incentives.

Another important finding is that yield farmers chase past performances of yield farming
strategies. The one-week ahead Log return is a strong predictor of next week’s Flow, similar
to what is observed for mutual funds (e.g. Brown, Harlow, and Starks, 1996; Chevalier and
Ellison, 1997; Berk and Green, 2004; Sirri and Tufano, 1998). This is similarly intriguing in
the absence of financial intermediation and agency frictions, since financial intermediaries
are often cited as important drivers of the positive relation between flows and past returns
(e.g. Chevalier and Ellison (1997); Berk and Green (2004)).

Finally, Figure 11 highlights a notable relationship between past Flow and future perfor-
mance of yield farming strategies. Although superior past returns and high offered yields
can generate high inflows of liquidity, high inflows do not lead to better performance of yield
farming strategies. In fact, higher inflows predict lower returns from yield farming strategies
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in the next 2-3 weeks. This explains a lack of persistence in yield farming returns.11 Berk
and Green (2004) propose a model with rational learning and decreasing returns-to-scale
to justify the lack of persistence. In this model, to generate decreasing return-to-scale, it
is crucial to assume that the cost of managing a fund of a certain size is increasing, convex
function with respect to the size of the fund. In yield farming, while higher Flow does not
increase any managial costs, it mechanically drives down offered farm yields, due to the
logic implemented in a smart contract, which can eventually lead to under-performance in
the long run.

7 Conclusion

We provide the first characterization of yield farming, a novel decentralized financial service
available to retail investors in the cryptocurrency ecosystem. Using a novel hand-collected
data set on 219 yield farms from PancakeSwap, an automated market maker operating on
the Binance Smart Chain, we also assess the yield farming return performance and describe
the associated risks.

While yield farming appears to deliver positive investment performances during our sam-
ple period that is comparable to other standard investment strategies, Sharpe ratios are
significantly reduced after accounting for transaction fees and price impact. With daily re-
balancing, risk-adjusted returns become negative. Investors are also exposed to large losses
that are driven by the return differential of underlying cryptocurrency pairs associated with
yield farms.

We uncover a non-monotonic trade-off between investment size and return performance.
Small trades are penalized by high nominal transaction costs and low liquidity is associated
with volatile returns. Large trades are less penalized by excessive gas fees, but too much
liquidity provision may lead to price impact and slippage that hurts investors and amplifies
volatility. We find that maximum and non-negative Sharpe ratios arise for investment sizes
between $100,000 and $1 million. Thus positive yield farming performance may not be
attainable to small retail investments.

Importantly, we find that the price impact is larger for farms that offer higher yields. Our
analysis suggests that this is because flows into farms chase past positive performance.
However, this leads to greater price impact that ultimately lowers excess returns.

Our analysis helps understand the risk and return characteristics of yield farming. Since
this is a complex investment strategy that is easily accessible to retail investors and sub-
ject to significant downside risks, we believe that our findings are helpful to regulators in
determining the need for better risk disclosure and investor protection.

11In an untabulated study, we regress the one-week ahead yield farming return on past one-week return
with farm fixed effects and find a regression coefficient of 0.0084 that is statistically insignificant, which
implies that yield farming performance is not persistent.
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Célérier, Claire, and Boris Vallée, 2017, Catering to Investors through Security Design: Headline

Rate and Complexity, Quarterly Journal of Economics 132, 1469–1508.

Chen, Qianwen, and Jaewon Choi, 2021, Reaching for Yield and Bond Returns, Working paper.

Chevalier, Judith, and Glenn Ellison, 1997, Risk Taking by Mutual Funds as a Response to Incen-

tives, Journal of Political Economy 105, 1167–1200.

29

Electronic copy available at: https://ssrn.com/abstract=4063228



Choi, Jaewon, and Mathias Kronlund, 2018, Reaching for Yield in Corporate Bond Mutual Funds,

Review of Financial Studies 31, 1930–1965.

Choi, Kyoung Jin, Alfred Lehar, and Ryan Stauffer, 2018, Bitcoin Microstructure and the Kimchi

premium, Working Paper.

CoinGecko, 2020, Yield Farming Survey 2020, CoinGecko.com.

Cong, Lin William, and Zhiguo He, 2019, Blockchain Disruption and Smart Contracts, The Review

of Financial Studies 32, 1754–1797.

Cong, Lin William, Xi Li, Ke Tang, and Yang Yang, 2021, Crypto Wash Trading, Working paper.

Cong, Lin William, Ye Li, and Neng Wang, 2021, Tokenomics: Dynamic adoption and valuation,

Review of Financial Studies 34, 1105–1155.

Coval, Joshua, and Erik Stafford, 2007, Asset fire sales (and purchases) in equity markets, Journal

of FInancial Economics 86, 479–512.

Dyhrberg, Anna Haubo, 2020, One Coin, Many Markets - How Market Frictions A ect Arbitrageurs,

.

Easley, David, Maureen O’Hara, and Soumya Basu, 2019, From Mining to Markets: The Evolution

of Bitcoin Transaction Fees, Journal of Financial Economics 134, 91–109.

Egan, Mark, 2019, Brokers versus Retail Investors: Conflicting Interests and Dominated Products,

Journal of Finance 74, 1217–1260.

Foley, Sean, Jonathan R Karlsen, and Talis J Putnins, 2019, Sex, Drugs, and Bitcoin: How Much

Illegal Activity Is Financed through Cryptocurrencies?, The Review of Financial Studies 32,

1798–1853.

Gandal, Neil, JT Hamrick, Tyler Moore, and Tali Oberman, 2018, Price Manipulation in the Bitcoin

Ecosystem, Journal of Monetary Economics 95, 86–96.

Gensler, Gary, 2021, Remarks Before the Aspen Security Forum, Remarks by Chairman Gary

Gensler at the Annual Aspen Security Forum.

Ghent, Andra C., Walter N. Torous, and Rossen I. Valkanov, 2019, Complexity in Structured Fi-

nance, Review of Economic Studies 86, 694–722.

Griffin, John M, and Amin Shams, 2020, Is Bitcoin Really Untethered?, Journal of Finance 75,

1913–1964.

Han, Jianlei, Shiyang Huang, and Zhuo Zhong, 2021, Trust in DeFi: An Empirical Study of the

Decentralized Exchange, Working paper.

30

Electronic copy available at: https://ssrn.com/abstract=4063228



Harvey, Campbell R, 2016, Cryptofinance, Working paper.

Harvey, Campbell R, Ashwin Ramachandran, and Joey Santoro, 2021, DeFi and the Future of

Finance, Working paper.

Hautsch, Nikolaus, Christoph Scheuch, and Stefan Voigt, 2019, Limits to Arbitrage in Markets with

Stochastic Settlement Latency, SSRN Working Paper 3302159.

Henderson, Brian J, and Neil D Pearson, 2011, The Dark Side of Financial Innovation: A Case Study

of the Pricing of a Retail Financial Product, Journal of Financial Economics 100, 227–247.

Henderson, Brian J, Neil D Pearson, and Li Wang, 2020, Pre-trade hedging: Evidence from the

Issuance of Retail Structured Products, Journal of Financial Economics 137, 108–128.

Hinzen, Franz J, Kose John, and Fahad Saleh, 2020, Bitcoin’s Fatal Flaw: The Limited Adoption

Problem, NYU Stern School of Business.

Howell, Sabrina T, Marina Niessner, and David Yermack, 2020, Initial Coin offerings: Financing

Growth with Cryptocurrency Token Sales, Review of Financial Studies 33, 3925–3974.

Hu, Albert S, Christine A Parlour, and Uday Rajan, 2019, Cryptocurrencies: Stylized Facts on a

New Investible Instrument, Financial Management 48, 1049–1068.

Kroeger, Alexander, and Asani Sarkar, 2017, The Law of One Bitcoin Price?, New York Fed Working

Paper.
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Figure 1: Growing Popularity of Decentralized Finance

In this figure, we plot the total value locked (TVL) of all decentralized finance platforms
in billions of dollars, as reported by DeFiLlama. The figure starts on January 1, 2020 and
ends on September 5, 2021.
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Figure 2: Offered Farm Yields

In this figure, we plot the annualized farm yields offered to yield farmers. In Panel (a), we
provide the historical annualized offered farm yields during the period between September
23, 2020 and September 5, 2021. In Panel (b), we restrict our sample period to extend from
October 20, 2020 to September 5, 2021. The solid blue line indicates the median annualized
offered farm yield. Dark and light shaded areas represent the interquartile range, as well as
the 10th and 90th percentiles of the yield farm distribution, respectively.

(a)

(b)
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Figure 3: Model-Implied Price Impact due to Yield Farming

In this figure, we illustrate how the size of investment in yield farming creates price impact,
which affects returns from yield farming. The parameter f defines the relative ratio of the
size of the investment to the size of the liquidity pool, i.e. investment/size of liquidity pool
(It/Lt). Consider two cryptocurrencies A and B in a liquidity pool with token B being
the numeraire token such as BNB or BUSD. Panel (a) shows the relation between f and
the price impact on token A when purchasing token A for providing liquidity (together
with token B) to a pool. The y-axis plots the multiple to the current price of token A in
U.S. dollars. A value of 2 implies that a yield farmer would have to pay twice the current
market price of token A to acquire it for liquidity provision. Panel (b) plots the relation
between f and the price impact on token A when selling it after liquidity withdrawal from
the pool. Panel (c) plots the impact of investment size on gross returns from capital gain
and impermanent loss. For example, λ(f) = 0.5 implies that the gross return of capital
gain and impermanent loss is halved by the price impact.

(a) (b)

(c)
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Figure 4: Liquidity and Offered Farm Yield

In this figure, we show the relation between a yield farm’s offered yield and its aggregate
liquidity. The x-axis corresponds to the logarithm of size of liquidity in the yield farm in
units of $1 million. The y-axis corresponds to the logarithm of one plus the annualized
offered farm yield measured in decimal units. (For example, 50% of the annualized farm
yield is 0.5 in decimal units.) The blue dots are observations measured at a daily frequency.
The red dashed line plots the best linear fit obtained by regressing the logarithm of (1 +
annualized offered farm yield) on the logarithm of the size of liquidity in the yield farm.
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Figure 5: Number of Active Yield Farms and Total Value Locked in PancakeSwap

In this figure, we plot the number of active farms and Total Value Locked (TVL) in the
sample period between September 23, 2020 (beginning of yield farming at PancakeSwap)
and September 5, 2021, at a weekly frequency. In Panel (a), we provide the time series of
active farms during our sample period. We define active farms as farms whose multipliers
are larger than 0, implying that investors who stake LP tokens in these farms receive non-
negative yields. In Panel (b), we plot TVL of active farms, or the amount of liquidity
deposited for yield farming. The vertical axis is in millions of USD.

(a)

(b)
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Figure 6: Duration of Yield Farms

In this figure, we plot a histogram of yield farm durations (in terms of days) during our
sample period starting on October 20, 2021 and ending on September 5, 2021. The duration
of a yield farm is defined as the number of days during which a farm’s yield multiplier is
positive. Thus, we consider a yield farm to be active/alive as long as staked LP tokens
generate non-zero passive income for yield farmers.
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Figure 7: Remaining liquidity in PancakeSwap v1 after the launch of PancakeSwap v2

In this figure, we plot total value locked in liquidity pools of yield farms at PancakeSwap
v1 whose new counterpart yield farms are available in PancakeSwap v2. On April 24,
2021, farms corresponding to liquidity pools in PancakeSwap v1 stopped providing farm
yields. Instead, PancakeSwap encouraged farmers to move to corresponding counterpart
farms available in PancakeSwap v2 so that the existing yield farmers could continue to earn
farm yields. The blue lines in Panels (a) and (b) are total value locked in the liquidity
pools whose new counterpart yield farms are available in PancakeSwap v2. The red dashed
lines in Panels (a) and (b) indicate the date on which PancakeSwap v2 was launched. The
sample period in Panel (a) is from October 20, 2020 to September 5, 2021, whereas Panel
(b) focuses on the period since PancakeSwap v2 was launched.

(a)

(b)
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Figure 8: Staking Ratio of LP Tokens

In this figure, we plot the ratio of LP tokens staked in active yield farms listed in Pan-
cakeSwap, relative to the total number of LP tokens distributed as rewards for liquidity
provision in the liquidity pools. Thus, the LP staking ratio is defined as the number of LP
tokens of a liquidity pool staked in its corresponding farm, divided by the total number of
outstanding LP tokens for the liquidity pool. The solid blue line indicates the median an-
nualized offered farm yield. Dark and light shaded areas represent the interquartile range,
as well as the 10th and 90th percentiles of the yield farm distribution, respectively.
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Figure 9: Average Gas Fee to Enter and Exit a Yield Farming Position

In this figure, we compute the average gas fee paid by users on PancakeSwap (Panel (a))
and SushiSwap (Panel (b)) to enter (exit) a yield farming position on each day since the
inception of the respective platform. For one round of yield farming, the total gas fee paid is
the entry fee on the portfolio formation day, plus the exit fee on the last day of the holding
period. For PancakeSwap, the average cost to enter (exit) over all days is $1.39 ($1.89).
For SushiSwap, the average cost to enter (exit) over all days is $109.12 ($164.34).
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Figure 10: Investment Size and Investment Performance

In this figure, we plot the hypothetical performance of two diversified yield-farming in-
vestment strategies in PancakeSwap and SushiSwap as a function of investment size. In
Panel (a) and Panel (b), we present the results regarding PancakeSwap and SushiSwap,
respectively. The Value-Weighted (Equal-Weighted) investment strategy consists of a value-
weighted (equal-weighted) portfolio of all yield farm returns, beginning on October 20, 2020
and re-balancing every seven days thereafter until September 5, 2021. In all figures, the
x-axis is the investment size on a logarithmic scale. The y-axis in the first panel is the annu-
alized average return. The y-axis in the second panel is the annualized standard deviation
of returns. The y-axis in the third panel is the annualized Sharpe ratio of returns. More
details for specific investment sizes can be found in Table 9.
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(b)
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Figure 11: Relationship between Return on Yield Farming and Flow to Yield Farms

In this figure, we plot the correlation between log returns on yield farming and flows to a
farm. Return on yield farming and flow to a farm are defined in Section 4. The x-axis is the
week difference (w) between the timing of returns and flows. If w is positive, the timing of
the flow is w weeks after that of the return. If w is negative, the timing of return is w weeks
after that of the flow. The blue bar plots the correlation coefficients for the two variables
and the red error bar plots the 95% confidence interval for the estimated correlation.
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Table 1: Literature on Decentralized Finance and Decentralized Exchanges

This table summarizes a selection of key academic studies that focus on decentralized exchanges (DEXs) within the emerging
ecosystem of decentralized finance. We indicate whether the study is primarily of empirical or theoretical nature, and list the
decentralized platforms studied in each paper: Uniswap, SushiSwap, PancakeSwap. We also emphasize whether the study
focuses on liquidity mining/provision and market making, strategic trading and hedging or yield farming.

Theory vs. Empirical DEX Activity
Liquidity Provision/ Strategic Trading/ Yield

Study Theory Empirical Uniswap SushiSwap PancakeSwap Market Making Hedging Farming
Angeris, Kao, Chiang, Noyes, and Chitra (2019) X X X
Aoyagi (2021) X X X
Aoyagi and Ito (2021) X X X X
Neuder, Rao, Moroz, and Parkes (2021) X X X X
Park (2021) X X X X
Lehar and Parlour (2021) X X X X X
Han, Huang, and Zhong (2021) X X X
Capponi and Jia (2021) X X X X X
This study X X X X
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Table 2: Top 10 Cryptocurrency Decentralized Exchanges

In this table, we report information regarding the 10 largest cryptocurrency decentralized
exchanges in terms of daily trading volume as of October 9, 2021. For each exchange, we
provide information on the daily trading volume (in $ million), the market share (in %),
the number of markets at the exchange, the exchange type (swap, aggregator, order book,
...), whether spots or derivatives are traded on a DEX, and the month/year in which the
exchange was launched. Source: https://coinmarketcap.com/rankings/exchanges/dex/.

Rank DEX Daily Volume Mkt Share # Markets Type Spot Launch
($ million) (%) /Derivatives Date

1 dYdX $1,756.41 25.05% 13 Orderbook Derivatives Apr 2019
2 PancakeSwap (V2) $1,185.34 16.90% 1667 Swap Spot Apr 2021
3 Uniswap (V3) $789.82 11.26% 627 Swap Spot May 2021
4 1inch Liquidity $515.69 7.35% 26 Swap Spot Dec 2020

Protocol
5 Uniswap (V2) $287.57 4.10% 1556 Swap Spot Nov 2018
6 Sushiswap $278.78 3.98% 387 Swap Spot Sep 2020
7 Honeyswap $220.18 3.14% 66 Swap Spot Jul 2020
8 MDEX $206.81 2.95% 140 Swap Spot Jan 2021
9 QuickSwap $96.52 1.38% 330 Swap Spot Oct 2020
10 Raydium $93.89 1.34% 112 Swap Spot Feb 2021
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Table 3: Top 10 Yield Farms in PancakeSwap

In this table, we report information regarding top 10 farms in terms of total value locked
(TVL) as of the end of our sample period, September 5, 2021. For each farm defined by a
unique cryptocurrency pair, we provide information on the start date of a farm, annualized
offered farm yield (in %), and total value locked (TVL, in $ million).

Farm Cryptocurrency Start Date TVL Offered Farm Yield
Rank Pairs ($ million) (%)
1 CAKE-BNB 23-Sep-2020 931.72 34.90%
2 BUSD-BNB 23-Sep-2020 506.74 18.06%
3 USDT-BUSD 1-Oct-2020 285.28 7.15%
4 USDT-BNB 13-Oct-2020 278.04 17.51%
5 ETH-BNB 6-Oct-2020 250.73 8.14%
6 BTCB-BNB 6-Oct-2020 169.60 12.07%
7 USDC-BUSD 12-Jan-2021 140.96 5.82%
8 MBOX-BNB 8-Jun-2021 122.68 6.62%
9 BTCB-BUSD 29-Apr-2021 114.71 17.69%
10 USDC-USDT 28-Jun-2021 103.29 7.86%
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Table 4: Summary Statistics

In this table, we report summary statistics on the return characteristics from yield farming and alternative investment
strategies. The sample period is October 20, 2020 to September 5, 2021. The sample includes 219 unique liquidity pools
associated with 219 unique yield farms. In Panel A, we report the cross-sectional average daily mean (Mean), median
(Median), 25th (p25) and 75th (p75) percentiles of the log return distribution and the corresponding standard deviation
(SD), skewness (Skew), kurtosis (Kurt), the first order autocorrelation coefficient (AC1), the number of time series (#TS)
and the average number of observations for each time series (OBS). In Panel B, we report the same information aggregated
at a weekly frequency starting from October 20, 2020. All return-based statistics are annualized.

Panel A: Daily
Variable Mean SD p25 Median p75 Skew Kurt AC1 #TS OBS

Yield Farming Related Strategy
Yield Farming 1.4770 1.2589 -10.7408 1.9316 13.8564 -0.3061 7.6484 -0.0999 219 129.4749
Liquidity Mining 0.1944 1.2869 -12.2038 0.5753 12.6476 -0.3148 7.7429 -0.0974 219 129.4749
Buy and Hold (Capital Gain) 0.4910 1.2770 -11.7385 0.5155 12.2615 -0.0900 7.8647 -0.0944 219 129.4749

Benchmark Strategy
Bitcoin 1.6872 0.8184 -6.6577 0.9842 10.2659 -0.0602 4.5463 -0.0723 1 321
Ethereum 2.6641 1.1056 -9.3253 3.3788 15.5856 -0.5416 7.4258 -0.0893 1 321
MVIS 10 index 2.2795 1.0574 -7.8283 2.9056 15.0479 -0.7909 7.4093 -0.1282 1 321
MVIS 100 index 1.9048 0.9186 -6.9797 1.6245 12.8309 -0.6778 6.5268 -0.1336 1 321
Crypto Market Return 1.8627 0.9469 -5.7472 3.7891 11.9020 -1.4206 10.9296 -0.1654 1 321
S&P 500 index 0.3170 0.1337 -0.7547 0.3198 1.6078 -0.5792 4.9087 -0.0679 1 221

Panel B: Weekly
Variable Mean SD p25 Median p75 Skew Kurt AC1 #TS OBS

Yield Farming Related Strategy
Yield Farming 1.6976 1.1884 -2.9113 1.9471 6.6150 -0.1660 3.7229 0.0407 219 20.3881
Liquidity Mining 0.0630 1.2472 -4.7842 0.5348 5.2841 -0.2664 3.7847 0.0317 219 20.3881
Buy and Hold (Capital Gain) 0.3759 1.2015 -4.1795 0.4920 5.0737 -0.1368 4.0227 0.0230 219 20.3881

Benchmark Strategy
Bitcoin 1.6072 0.8039 -1.5417 1.9565 5.0711 -0.1920 3.6945 0.0506 1 45
Ethereum 2.4798 0.9592 -1.2047 1.8896 7.6812 -0.0942 3.4519 0.1703 1 45
MVIS 10 index 2.1920 0.8930 -1.0153 2.1312 5.5719 -0.5030 3.9603 0.1024 1 45
MVIS 100 index 1.8275 0.7417 -0.4450 2.0685 4.1985 -0.7626 4.4258 0.1546 1 45
Crypto Market Return 1.7272 0.7913 -1.5302 2.5532 5.1645 -1.0549 5.0982 0.2006 1 45
S&P 500 index 0.3230 0.1351 -0.3794 0.3520 0.6915 0.7631 4.6875 -0.4165 1 45

48

E
lectronic copy available at: https://ssrn.com

/abstract=
4063228



Table 5: Return Decomposition

In this table, we decompose each return series into the contributions arising from (a) capital
gains, (b) impermanent losses, (c) trading fees, and (d) farm yields. The sample period is
October 20th, 2020 to September 5th, 2021. In Panel A, we report summary statistics
on the return characteristics for each component. We report the cross-sectional average
daily mean log return (Ret) median (Median), 25th (p25) and 75th (p75) percentiles of the
log return distribution and the corresponding standard deviation (SD), skewness (Skew),
kurtosis (Kurt), the first order autocorrelation coefficient (AC1), and the average number
of observations for each time series (OBS). We also report the same information sorted
by terciles in terms of average in-sample offered yield. In Panel B, we report the same
information aggregated at a weekly frequency starting from October 20, 2020. All return-
based statistics are annualized.

Panel A: Daily
Component Mean SD p25 Median p75 Skew Kurt AC1 OBS

Full Sample
Capital Gains 0.3829 1.2473 -11.8466 0.5121 12.3606 -0.0750 7.7172 -0.1022 129.4749
Impermanent Loss -0.4108 0.0767 -11.8466 -0.0884 -0.0220 -5.5866 49.4831 0.0951 129.4749
Trading Fees 0.1136 0.0072 0.0475 0.0768 0.1348 2.9542 18.4164 0.4701 129.4749
Farm Yields 1.5392 0.0308 1.1351 1.4704 1.8573 0.9113 5.4694 0.7625 129.4749

Tercile 1
Capital Gains 1.5524 1.0403 -8.2413 1.3081 11.1555 0.0160 8.4568 -0.1375 176.9863
Impermanent Loss -0.2530 0.0473 -8.2413 -0.0493 -0.0107 -6.6853 71.5797 0.1203 176.9863
Trading Fees 0.1137 0.0093 0.0448 0.0722 0.1318 3.0882 21.4939 0.5547 176.9863
Farm Yields 0.5298 0.0162 0.3268 0.4561 0.6560 1.5669 8.4307 0.8110 176.9863

Tercile 2
Capital Gains 0.4381 1.2154 -11.0216 0.3898 11.6992 -0.0009 8.0638 -0.0888 113.2055
Impermanent Loss -0.4002 0.0654 -11.0216 -0.0807 -0.0187 -5.3846 42.6768 0.1089 113.2055
Trading Fees 0.1144 0.0066 0.0457 0.0753 0.1347 3.1567 19.7484 0.4815 113.2055
Farm Yields 1.3681 0.0354 0.9040 1.2894 1.7581 0.6009 3.8779 0.8166 113.2055

Tercile 3
Capital Gains -0.8418 1.4861 -16.2769 -0.1616 14.2270 -0.2401 6.6310 -0.0805 89.2329
Impermanent Loss -0.5792 0.1174 -16.2769 -0.1353 -0.0365 -4.6900 34.1930 0.0563 89.2329
Trading Fees 0.1127 0.0056 0.0519 0.0828 0.1378 2.6308 14.1237 0.3759 89.2329
Farm Yields 2.7196 0.0409 2.1746 2.6657 3.1579 0.5660 4.0995 0.6598 89.2329
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Panel B: Weekly
Component Mean SD p25 Median p75 Skew Kurt AC1 OBS

Full Sample
Capital Gains 0.3461 1.2002 -4.1780 0.4610 5.0141 -0.1377 4.0485 0.0272 20.388
Impermanent Loss -0.5088 0.1371 -4.1780 -0.1405 -0.0348 -2.2584 8.7455 0.0195 20.388
Trading Fees 0.1096 0.0147 0.0478 0.0743 0.1335 1.7011 6.0237 0.3370 20.388
Farm Yields 1.3756 0.0821 0.9822 1.2894 1.6796 0.6626 3.9011 0.5046 20.388

Tercile 1
Capital Gains 1.5212 1.0023 -2.5983 1.4304 5.6450 0.0347 4.2930 0.0100 27.299
Impermanent Loss -0.3026 0.0900 -2.5983 -0.0843 -0.0199 -2.7355 12.4430 0.0083 27.299
Trading Fees 0.1143 0.0142 0.0497 0.0804 0.1403 1.5098 5.4746 0.4405 27.299
Farm Yields 0.5120 0.0414 0.3160 0.4306 0.6290 1.1461 4.7528 0.5899 27.299

Tercile 2
Capital Gains 0.1257 1.1676 -4.0669 0.4520 4.3535 -0.1662 4.2069 -0.0238 18.045
Impermanent Loss -0.5512 0.1567 -4.0669 -0.1402 -0.0351 -2.2074 8.0561 -0.0019 18.045
Trading Fees 0.1279 0.0165 0.0592 0.0857 0.1609 1.8292 6.4456 0.2905 18.045
Farm Yields 1.3377 0.0938 0.9119 1.2394 1.6932 0.4193 3.6178 0.5361 18.045

Tercile 3
Capital Gains -0.6087 1.4307 -5.8688 -0.4995 5.0439 -0.2816 3.6458 0.0953 15.821
Impermanent Loss -0.6726 0.1645 -5.8688 -0.1969 -0.0494 -1.8322 5.7375 0.0520 15.821
Trading Fees 0.0865 0.0132 0.0345 0.0569 0.0993 1.7691 6.1683 0.2789 15.821
Farm Yields 2.2773 0.111 1.7187 2.1982 2.7166 0.4224 3.3329 0.3878 15.821
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Table 6: Variance Decomposition

In this table, we report the proportion of variation in the aggregate return series explained
by each of the four return components arising from (a) capital gains, (b) impermanent
losses, (c) trading fees, and (d) farm yields. For the variance decomposition, we split the
covariance terms equally for each component. We report the variance decomposition for
the overall population, and for each tercile of the population sorted by their average offered
yield throughout the sample period. The sample period is October 20, 2020 to September
5, 2021.

Panel A: Daily
Component Full Sample Tercile 1 Tercile 2 Tercile 3

Capital Gains 0.9995 1.0077 1.0073 0.9836
Impermanent Loss -0.0059 -0.0132 -0.0137 0.0091
Trading Fees 0.0011 0.0019 0.0011 0.0003
Farm Yields 0.0053 0.0036 0.0053 0.0071

Panel B: Weekly
Component Full Sample Tercile 1 Tercile 2 Tercile 3

Capital Gains 1.0055 1.0073 1.0142 0.9949
Impermanent Loss -0.0141 -0.0304 -0.0159 0.0039
Trading Fees 0.0072 0.0191 0.0016 0.0010
Farm Yields 0.0014 0.0041 0.0001 0.0002
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Table 7: Lack of Sophistication of Yield Farmers

In this table, we report the statistics that describe behaviors of yield farmers. The presented
statistics are all farmer-level variables. In Panel A, we present summary statistics of yield
farmers. No. Farms is the number of farms in which an yield farmer invests. Staked Balance
is the dollar value of LP tokens staked in farms. LP Balance is the dollar value of LP tokens.
Efficiency is average of efficiency of each farm. Efficiency is defined as the length of time
for which the user has staked his/her LP tokens in a farm divided by the length of the time
for which the user has kept the liquidity in a corresponding liquidity pool. Offered Farm
Yield is time-weighted average of the offered yield at the beginning of the holding period.
In Panel B, we decompose the yield farmers into two groups depending on the Efficiency
using 0.98 as a threshold. In Panel C, we decompose the yield farmers into quintiles by LP
Balance.

Panel A: Yield Farmers
Variables Mean SD p25 Median p75 OBS

No. Farms 1.81 1.52 1.00 1.00 2.00 207,699
Staked Balance ($) 6,539.36 201,986.99 33.95 173.26 823.89 207,699
LP Balance ($) 6,959.62 203,816.10 61.88 222.05 954.66 207,699
Efficiency 0.82 0.35 0.95 1.00 1.00 207,699
Offered Farm Yield 1.53 1.35 0.27 1.24 2.59 207,699

Panel B: Yield Farmers by Efficiency
No. Farms Staked LP Efficiency Offered OBS

Balance ($) Balance ($) Farm Yield
Efficiency≤0.98

Mean 1.59 1,695.34 3,099.74 0.40 1.40 60,514
(SD) (1.36) (37,885.67) (62,729.03) (0.41) (1.48)

Efficiency>0.98
Mean 1.90 8,530.95 8,546.58 0.998 1.58 147.185
(SD) (1.57) (238,682.27) (238,734.04) (0.004) (1.29)

Panel C: Yield Farmers by LP Balance.
No. Farms Staked LP Efficiency Offered OBS

Balance ($) Balance ($) Farm Yield
Quintile 1
Mean 1.446 17.938 25.553 0.672 1.530 41540
S.D. (0.990) (14.335) (10.581) (0.437) (1.500)
Quintile 2
Mean 1.592 68.277 84.421 0.797 1.610 41540
S.D. (1.181) (38.069) (24.726) (0.368) (1.374)
Quintile 3
Mean 1.829 204.396 236.434 0.855 1.614 41539
S.D. (1.493) (99.663) (71.232) (0.318) (1.313)
Quintile 4
Mean 1.999 660.956 742.677 0.883 1.581 41540
S.D. (1.676) (324.585) (260.844) (0.290) (1.298)
Quintile 5
Mean 2.198 31745.103 33708.856 0.917 1.310 41540
S.D. (1.941) (450779.453) (454767.188) (0.248) (1.235)
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Table 8: Returns from Yield Farming Portfolios

This table reports the summary statistics for percentage excess returns from yield farming investment strategies. We take the
perspective of a U.S. investor and report all information from the perspective of an initial USD investment. Excess returns
are computed relative to the three-month U.S. Treasury bill secondary market rate source from the Federal Reserve Bank
of St.Louis. All returns are value-weighted using the pools’ aggregate liquidity as weighting factors. The column (OBS)
reports the number of observations. We report the mean return (Mean), the standard deviation, 25th percentile, median,
75th percentile, skewness, and kurtosis of the yield farming strategies, as well as the serial correlation, the Sharpe ratio, the
alpha from a three factor model based on the work of Liu, Tsyvinski, and Wu (2019), and the t-statistic for alpha from
the three-factor regressions. The sample period is October 20, 2020 to September 5, 2021. All return-based statistics are
annualized. Because we report excess returns and alphas as annualized log returns, the mean return and alpha can be lower
than −1, unlike arithmetic returns.

Panel A: Daily
Strategy Mean SD p25 Median p75 Skew Kurt AC1 SR α t-stat of α OBS

Yield Farming Related Strategy
Yield Farming 2.3712 0.8194 -4.7524 2.5652 10.8074 -0.2228 9.8805 -0.0969 2.8938 1.3778 1.8653 321
Liquidity Mining 1.8598 0.8164 -5.2658 1.8591 10.3550 -0.2635 9.8465 -0.1028 2.2782 0.4454 0.7994 321
Buy and Hold (Capital Gain) 1.9628 0.8235 -5.3285 1.9200 10.4074 -0.0110 9.9887 -0.0979 2.3835 0.6137 1.0024 321

Benchmark Strategy
Bitcoin 1.6872 0.8184 -6.6577 0.9842 10.2659 -0.0602 4.5463 -0.0723 2.0617 -0.2851 -0.6508 321
Ethereum 2.6641 1.1056 -9.3253 3.3788 15.5856 -0.5416 7.4258 -0.0893 2.4096 0.1948 0.2920 321
MVIS 10 index 2.2795 1.0574 -7.8283 2.9056 15.0479 -0.7909 7.4093 -0.1282 2.1557 321
MVIS 100 index 1.9048 0.9186 -6.9797 1.6245 12.8309 -0.6778 6.5268 -0.1336 2.0736 321
Crypto Market Return 1.8627 0.9469 -5.7472 3.7891 11.9020 -1.4206 10.9296 -0.1654 1.9672 321
S&P 500 index 0.3170 0.1337 -0.7547 0.3198 1.6078 -0.5792 4.9087 -0.0679 2.3707 221

Panel B: Weekly
Strategy Mean SD p25 Median p75 Skew Kurt AC1 SR α t-stat of α OBS

Yield Farming Related Strategy
Yield Farming 2.4294 0.8182 -0.7666 1.8066 4.4608 0.2980 3.6981 0.2875 2.9692 1.3125 1.6202 45
Liquidity Mining 1.9008 0.8048 -1.4499 1.4603 4.1851 0.2101 3.6353 0.2661 2.3620 0.3867 0.6565 45
Buy and Hold (Capital Gain) 2.0114 0.8322 -1.2989 1.5381 4.2499 0.3494 3.8112 0.2664 2.4170 0.4965 0.7489 45

Benchmark Strategy
Bitcoin 1.6072 0.8039 -1.5417 1.9565 5.0711 -0.1920 3.6945 0.0506 1.9993 0.0256 0.0405 45
Ethereum 2.4798 0.9592 -1.2047 1.8896 7.6812 -0.0942 3.4519 0.1703 2.5853 0.9998 0.9839 45
MVIS 10 index 2.1920 0.8930 -1.0153 2.1312 5.5719 -0.5030 3.9603 0.1024 2.4547 45
MVIS 100 index 1.8275 0.7417 -0.4450 2.0685 4.1985 -0.7626 4.4258 0.1546 2.4639 45
Crypto Market Return 1.7272 0.7913 -1.5302 2.5532 5.1645 -1.0549 5.0982 0.2006 2.1829 45
S&P 500 index 0.3230 0.1351 -0.3794 0.3520 0.6915 0.7631 4.6875 -0.4165 2.3919 45
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Table 9: Impact of Trading Frictions on Returns from Yield Farming Portfolios

This table reports the summary statistics for percentage excess returns from yield farming investment strategies, accounting
for trading costs and price impact. We take the perspective of a U.S. investor and report all information from the perspective
of an initial USD investment. Excess returns are computed relative to the three-month U.S. Treasury bill secondary market
rate sourced from the Federal Reserve Bank of St.Louis. All returns are value-weighted using the pools’ aggregate liquidity as
weighting factors. The column (OBS) reports the number of observations. We report the mean return (Mean), the standard
deviation, skewness, and kurtosis of the yield farming strategies. We also report the Sharpe ratio (SR), information ratio
(IR), the alpha from a three factor model based on the work of Liu, Tsyvinski, and Wu (2019), and the t-statistic for alpha
from the three-factor regressions. The sample period is October 20, 2020 to September 5, 2021. All return-based statistics
are annualized. Because we report excess returns and alphas as annualized log returns, the mean return and alpha can be
lower than −1, unlike arithmetic returns.

Panel A: Daily
Strategy Mean SD SR IR α t-stat of α OBS
Frictionless benchmark

Yield Farming (Full Sample) 2.3712 0.8194 2.8938 2.0745 0.8624 1.8653 321
Yield Farming (Tercile 1) 2.0915 0.7198 2.9055 2.0981 0.7668 1.8865 321
Yield Farming (Tercile 2) 3.2008 1.1479 2.7885 1.8959 0.1006 1.7047 321
Yield Farming (Tercile 3) 3.0816 1.1921 2.5851 1.1550 0.7860 1.0385 321

Gas fee, Trading fee & Price impact ($5,000)
Yield Farming (Full Sample) -26.4169 1.3840 -19.0869 -25.0460 -27.9663 -22.5199 321
Yield Farming (Tercile 1) -7.7689 0.8175 -9.5034 -18.5515 -9.1026 -16.6804 321
Yield Farming (Tercile 2) -6.7097 1.2287 -5.4610 -12.8857 -8.8066 -11.5860 321
Yield Farming (Tercile 3) -6.8976 1.2708 -5.4276 -11.7501 -9.1889 -10.5650 321

Gas fee, Trading fee & Price impact ($10,000)
Yield Farming (Full Sample) -13.5242 1.0002 -13.5209 -23.0259 -15.0443 -20.7035 321
Yield Farming (Tercile 1) -3.7343 0.7526 -4.9621 -12.5993 -5.0622 -11.3286 321
Yield Farming (Tercile 2) -2.6828 1.1772 -2.2790 -7.7721 -4.7775 -6.9883 321
Yield Farming (Tercile 3) -2.9473 1.2199 -2.4161 -7.2670 -5.2353 -6.5341 321

Gas fee, Trading fee & Price impact ($100,000)
Yield Farming (Full Sample) -2.6171 0.8253 -3.1710 -9.7941 -4.1261 -8.8063 321
Yield Farming (Tercile 1) -0.3128 0.7212 -0.4337 -4.4779 -1.6416 -4.0262 321
Yield Farming (Tercile 2) 0.4327 1.1480 0.3769 -2.8528 -1.6692 -2.5651 321
Yield Farming (Tercile 3) -1.0320 1.1933 -0.8648 -4.8001 -3.3647 -4.3160 321

Gas fee, Trading fee & Price impact ($1,000,000)
Yield Farming (Full Sample) -2.6072 0.8204 -3.1778 -9.8129 -4.1454 -8.8232 321
Yield Farming (Tercile 1) -1.5290 0.7270 -2.1032 -7.6089 -2.9082 -6.8415 321
Yield Farming (Tercile 2) -3.8629 1.1715 -3.2975 -9.2186 -6.0497 -8.2888 321
Yield Farming (Tercile 3) -16.3170 1.6737 -9.7489 -13.7716 -19.1047 -12.3826 321
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Panel B: Weekly
Strategy Mean SD SR IR α t-stat of α OBS
Frictionless benchmark

Yield Farming (Full Sample) 2.4294 0.8182 2.9692 1.9616 0.8345 1.6202 45
Yield Farming (Tercile 1) 2.2181 0.7227 3.0691 2.0365 0.7761 1.6821 45
Yield Farming (Tercile 2) 2.9351 1.1181 2.6250 1.5503 0.8426 1.2805 45
Yield Farming (Tercile 3) 3.4141 1.2372 2.7594 1.5633 1.1650 1.2912 45

Gas fee, Trading fee & Price impact ($5,000)
Yield Farming (Full Sample) -1.5554 0.9705 -1.6027 -6.2233 -3.4437 -5.1404 45
Yield Farming (Tercile 1) 0.8462 0.7563 1.1188 -1.7431 -0.6884 -1.4398 45
Yield Farming (Tercile 2) 1.5449 1.1528 1.3401 -1.1207 -0.6338 -0.9257 45
Yield Farming (Tercile 3) 1.9968 1.2713 1.5707 -0.4265 -0.3298 -0.3523 45

Gas fee, Trading fee & Price impact ($10,000)
Yield Farming (Full Sample) 0.2140 0.8754 0.2444 -3.3110 -1.5210 -2.7348 45
Yield Farming (Tercile 1) 1.4016 0.7371 1.9016 -0.2204 -0.0847 -0.1821 45
Yield Farming (Tercile 2) 2.0990 1.1339 1.8512 -0.0569 -0.0315 -0.0470 45
Yield Farming (Tercile 3) 2.5397 1.2526 2.0275 0.3447 0.2629 0.2848 45

Gas fee, Trading fee & Price impact ($100,000)
Yield Farming (Full Sample) 1.7146 0.8216 2.0867 0.2628 0.1123 0.2171 45
Yield Farming (Tercile 1) 1.8715 0.7231 2.5883 1.1305 0.4315 0.9338 45
Yield Farming (Tercile 2) 2.5264 1.1179 2.2599 0.8114 0.4457 0.6702 45
Yield Farming (Tercile 3) 2.7842 1.2345 2.2553 0.7709 0.5837 0.6368 45

Gas fee, Trading fee & Price impact ($1,000,000)
Yield Farming (Full Sample) 1.7076 0.8148 2.0956 0.3298 0.1414 0.2724 45
Yield Farming (Tercile 1) 1.6874 0.7169 2.3536 0.7577 0.2913 0.6258 45
Yield Farming (Tercile 2) 1.9163 1.1038 1.7360 -0.1502 -0.0838 -0.1241 45
Yield Farming (Tercile 3) 0.4974 1.2779 0.3892 -1.5780 -1.3805 -1.3034 45

55

E
lectronic copy available at: https://ssrn.com

/abstract=
4063228



Table 10: Flow Regressions

In this table, we report the results for the liquidity flow regressions. We regress the farm
Flow over the next 7 days (a week) on Offered Farm Yield, past Flow, past Log return
on yield farming, past Log crypto MKT return, and Log (Liquidity). Flow, Offered Farm
Yield, past Log return, and Log (Liquidity) are defined in Section 4. Log crypto MKT
return is logarithm of the cryptocurrency market return, the construction process for which
is explained in Section 5.4 in detail. The sample period is October 20, 2020 to September
5, 2021. Standard errors are clustered at the farm level.∗,∗∗, and ∗∗∗ indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6)
Flowt,t+7

Offered Farm Y ieldt 0.0149∗∗ 0.0149∗∗ 0.0973∗∗∗ 0.114∗∗∗

(0.0063) (0.0072) (0.0138) (0.0156)

Flowt−7,t 0.0528∗ 0.0449 0.0391 -0.0125
(0.0284) (0.0299) (0.0288) (0.0305)

Flowt−14,t−7 0.0118 0.00543 0.00808 -0.0227
(0.0248) (0.0257) (0.0259) (0.0269)

Flowt−21,t−14 -0.0136 -0.0182 -0.00856 -0.0222
(0.0220) (0.0228) (0.0223) (0.0226)

Flowt−28,t−21 -0.0259 -0.0295∗ -0.0297∗ -0.0440∗∗

(0.0167) (0.0173) (0.0176) (0.0179)

Log returnt−7,t 0.122∗∗∗ 0.110∗∗∗ 0.164∗∗∗ 0.0969∗∗∗

(0.0386) (0.0370) (0.0373) (0.0359)

Log returnt−14,t−7 0.00505 -0.00241 0.0581 0.0337
(0.0396) (0.0396) (0.0378) (0.0368)

Log returnt−21,t−14 0.0109 0.000981 0.0672∗ 0.0304
(0.0376) (0.0381) (0.0369) (0.0360)

Log returnt−28,t−21 0.0224 0.0154 0.0721∗∗ 0.0443
(0.0368) (0.0373) (0.0359) (0.0372)

Log crypto MKT returnt−7,t -0.120∗∗∗ -0.106∗∗∗ -0.160∗∗∗ -0.0965∗∗∗

(0.0414) (0.0390) (0.0399) (0.0368)

Log crypto MKT returnt−14,t−7 -0.00342 0.00564 -0.0545 -0.0416
(0.0439) (0.0441) (0.0429) (0.0415)

Log crypto MKT returnt−21,t−14 -0.00578 0.00317 -0.0673∗ -0.0603
(0.0386) (0.0393) (0.0389) (0.0374)

Log crypto MKT returnt−28,t−21 -0.0212 -0.0156 -0.0782∗∗ -0.0859∗∗

(0.0388) (0.0390) (0.0385) (0.0371)

Log(Liquidityt) 0.0005 0.0044 -0.0514∗∗∗ -0.0527∗∗∗

(0.0028) (0.0031) (0.0071) (0.0100)
Farm FE X X X
N 3016 3012 3012 3016 3012 3012
R2 0.003 0.009 0.011 0.086 0.084 0.129
adj. R2 0.002 0.005 0.006 0.026 0.019 0.067
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Appendix

Figure A.1: UI of Yield Farms in PancakeSwap

In this figure, we provide a snapshot of user-interface environment of yield farms in Pan-
cakeSwap.
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Figure A.2: Investment outcome from liquidity provision vs. Investment outcome from a
buy-and-hold strategy

In this figure, we compare investment outcome from liquidity provision with investment
outcome from a simple buy-and-hold strategy. A liquidity provider buys equal U.S. dollar
amount of token A and token B of a liquidity pool at time t. y-axis is the ratio of investment
outcome from a liquidity provision and investment outcome from a simple buy-and-hold
strategy at time t + h minus 1. x-axis is the growth of the ratio of prices of token A and

token B between time t and t+ h, i.e.,
ρt+h
ρt

where ρt =
PAt
PBt
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Figure A.3: Relation between Model-implied and Listed Offered Farm Yields

In this figure, we compare the offered farm yields calculated using Equation (8)
on the y-axis to those listed on the PancakeSwap’s homepage on the x-axis
(https://pancakeswap.finance/farms). The listed farm yields are manually collected from
Pancakeswap’s web page at midnight Greenwich Meridian Time (GMT) on October 11,
2021. All values are reported in percentage points. The blue circles represent all observa-
tions and the red dashed line connects (0%,0%) and (300%,300%), i.e., a 45-degree line. A
linear regression where we regress the calculated on the listed farm yields obtains an R2 of
1.00 and an estimated regression line given by ŷt = 1.002× yt − 0.001.

59

Electronic copy available at: https://ssrn.com/abstract=4063228



Table A.1: Chain of Transactions for Yield Farming Strategies

In this table, we itemize the individual transactions in a yield farming strategy. We explain how each step of the yield farming
strategy can change the number of tokens in a liquidity pool and we describe three different types of transaction costs: gas
fees, trading fees, and price impact. We refer to a hypothetical pair of cryptocurrency tokens A and B in a liquidity pool
(LP) A/B.

Step Timing Event # Tokens A # Tokens B Trading Frictions
in LP for A/B in LP for A/B Gas Fee Trading Fee Price Impact

1 t Yield farming starts. αAt αBt

2 t

The yield farmer buys ∆A
t units of token A us-

ing a part of his/her fund, It = fLt, using ∆B
t

units of token B. This generates a temporary
price change from price impact. αAt −∆A

t αBt + ∆B
t X X X

3 t
The yield farmer buys token B in a liquid pool
for B using the rest of his/her fund. αAt −∆A

t αBt + ∆B
t X X

4 t
Arbitrageurs correct the price by supplying ∆A

t
of token A and receiving ∆B

t of token B. αAt αBt

5 t

The yield farmer provides liquidity to the pool
and receives LP tokens. Denote the fraction of
his/her tokens to the tokens in the current pool
by s(f). (1 + s(f))αAt (1 + s(f))αBt X

6 t
The yield farmer stakes the LP tokens in a
farm. (1 + s(f))αAt (1 + s(f))αBt X

7 t+ h h days elapse. (1 + s(f))αAt+h (1 + s(f))αBt+h

8 t+ h
The yield farmer receives (harvests) realized
farm yields in CAKE tokens. (1 + s(f))αAt+h (1 + s(f))αBt+h X

9 t+ h The yield farmer withdraws his/her LP tokens. (1 + s(f))αAt+h (1 + s(f))αBt+h X
10 t+ h The yield farmer sells their CAKE tokens. (1 + s(f))αAt+h (1 + s(f))αBt+h X X

11 t+ h

The yield farmer redeems their LP tokens at
the liqudity pool and receives his/her shares of
token A and B. αAt+h αBt+h X

12 t+ h

The yield farmer sells his/her ∆A
t+h =

s(f)αAt+h of token A using the same pool. This
generates a temporary price change from price
impact. They receive ∆B

t+h of token B in ex-
change from the liquidity pool. αAt+h + ∆A

t+h αBt+h −∆B
t+h X X X

13 t+ h
The yield farmer sell his/her (∆B

t+h+s(f)αBt+h)
of token B in a liquid pool for B. αAt+h + ∆A

t+h αBt+h −∆B
t+h X X

14 t+ h

Arbitrageurs correct the price by supplying
∆B
t+h of token B and receiving ∆A

t+h of token
A. A new round of yield farming starts again. αAt+h αBt+h
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Table A.2: Token Pairs used for Conversion of Token Prices into U.S. Dollars

In this table, we list tokens used as numeraires in the liquidity pools included in our data.
Frequency refers to the number of liquidity pools in which the corresponding token is used
as the numeraire. PancakeSwap Token Pairs Used lists the token pairs in PancakeSwap
liquidity pools used for the conversion of token prices into U.S. dollars. Data from Coin-
MarketCap lists the tokens whose prices we collect from CoinMarketCap.

Numeraire Token Numeraire Frequency PancakeSwap Data from
Token Symbol Token Pairs Used CoinMarketCap

Wrapped Binance Coin BNB 146 BNB-BUSD BUSD
Binance USD BUSD 50 None BUSD
TerraUSD UST 6 None UST
Binance-Peg Ethereum ETH 4 ETH-BNB, BNB-BUSD BUSD
PancakeSwap Token CAKE 4 Cake-BNB, BNB-BUSD BUSD
Binance-Peg Bitcoin BTCB 3 BTCB-BNB, BNB-BUSD BUSD
Binance-Peg Tether USDT 2 None USDT
Binance-Peg USD Coin USDC 2 None USDC
pTokens Bitcoin PBTC 1 PBTC-BNB, BNB-BUSD BUSD
QIAN Governance Token KUN 1 KUN-BUSD BUSD

Total 219
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Table A.3: Summary Statistics of Coins used for Constructing Cryptocurrency Factors

In this table, we provide summary statistics of cryptocurrencies used for construction of
cryptocurrency factors. Our sample period for cryptocurrency factors starts on December
28, 2013 and ends on September 5, 2021. The unit for market capitalization and daily
trading volume in this table is $ million.

Year # Coins Market Capitalization Daily Trading Volume
Mean Median Mean Median

2013 26 409.8 7.3 2.01 0.05
2014 100 260.1 4.1 1.21 0.03
2015 79 136.9 2.8 1.13 0.10
2016 157 171.5 3.5 1.76 0.02
2017 675 427.9 9.9 17.89 0.13
2018 1,250 415.8 10.9 23.64 0.15
2019 1,175 227.8 6.0 68.67 0.18
2020 1,520 301.0 6.8 121.25 0.29
2021 2,291 724.8 13.9 146.86 0.53
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Table A.4: Comparison of Cryptocurrency Three-Factor Regressions

This table compares the regression results for portfolios sorted on one-week momentum by
quintile. The sample period used in Liu, Tsyvinski, and Wu (2019) is from the beginning
of 2014 to the end of 2018, which we interpret to be from the first week in 2014 to the 52nd
(last) week of 2018.

Panel A: Regressions from Quintile
Liu, Tsyvinski, and Wu (2019) 1 2 3 4 5

α -0.015 -0.010 -0.003 0.025 -0.012
t(α) -1.970 -1.525 -0.657 1.470 -1.080
βCMKT 1.041 1.029 0.958 1.093 0.924
βCSMB 0.124 0.014 0.204 0.072 0.297
βCMOM -0.164 -0.125 -0.071 0.072 0.424
R2 0.531 0.606 0.687 0.198 0.435

Panel B: Replicated Regressions Quintile
1 2 3 4 5

α -0.019 -0.015 -0.004 0.031 -0.013
t(α) -2.640 -2.362 -0.718 1.562 -1.230
βCMKT 0.994 0.957 0.873 1.119 0.996
βCSMB 0.019 0.030 0.150 -0.034 0.081
βCMOM -0.148 -0.056 -0.045 -0.040 0.325
R2 0.578 0.635 0.699 0.190 0.503
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B.1 Appendix for Conceptual Framework

B.1 Capital gains and impermanent loss

In this section, we outline the procedure for deriving the main equations of Section 4 as-

suming that there are no trading frictions such as trading fees and gas fees. For expositional

purposes, we consider the following scenario:

• Suppose a liquidity provider provides 1 BNB and 100 BUSD, a stablecoin pegged to

U.S. dollar, to a liquidity pool.

• There is a total of 10 BNB and 1,000 BUSD in the pool after this liquidity provision.

Therefore, the liquidity provider’s share is 10%.

• After h days, the price of BNB becomes 200 BUSD.

• The liquidity provider withdraws his/her liquidity.

The constant product model imposes a condition that the product of two tokens should

be constant. In this case, k = αAt α
B
t = 10 × 1, 000 = 10, 000, where αi is the number

of cryptocurrency i in the liquidity pool. Let A and B be BNB and BUSD, repectively.

Consider t as today and t + h as h days after today. The value of A (BNB) in the pool

should be identical to the value of B (BUSD) at any t, i.e. PAt α
A
t = PBt α

B
t for all t. See

Lemma 1 for more details.

Lemma 1) PAt α
A
t = PBt α

B
t in a constant product model.

Proof) Under the constant product model, the product of the quantities of two cryptocur-

rencies should be constant, i.e. αAt α
B
t = k. This implies that

∂αBt
∂αAt

= −αBt
αAt

. To purchase δ,

a trader needs to pay δ
αBt
αAt

., which means that PAt δ = PBt δ
αBt
αAt
→ PAt α

A
t = PBt α

B
t .

Since we have two equations: PAt α
A
t = PBt α

B
t and k = αAt α

B
t , we can solve for both αAt and

αBt :

αAt =

√
k

(
PBt
PAt

)
, αBt =

√
k

(
PAt
PBt

)
.
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Given that the rate of exchange for 1 BNB becomes 200 BUSD (which is equivalent to $200,

assuming that BUSD is perfectly pegged to the U.S. dollar) at time t+ h:

αAt+h =

√√√√k

(
PBt+h
PAt+h

)
=
√

10, 000× ($1/$200) =
√

50 = 7.07,

αBt+h =

√√√√k

(
PAt+h
PBt+h

)
=
√

10, 000× ($200/$1) =
√

2, 000, 000 = 1414.21.

The liquidity provider’s share is 10%. If he/she withdraws their liquidity, he/she will get

0.707 BNB and 141.421 BUSD. This amounts to 0.707 × 200 + 141.421 × 1 = $282.82. In

the crypto community, the impermanent loss is often defined as the percentage of the ratio

of investment outcomes at time t + h in two scenarios: (1) providing liquidity to the pool

at t or (2) directly holding the underlying assets. If the liquidity provider simply held the

assets (1 BNB and 100 BUSD), he/she would now have $300 = 1× 200 + 100× 1 worth of

assets. In this case, the impermanent loss is (282.82/300−1)×100 = -5.727%. To formalize

this, we compute the following measure which is the ratio of investment outcomes at time

t+ h in two scenarios minus 1. In this example, the liquidity provider’s share is 10%. Let’s

assume that his/her share in general is ω.

ω(PAt+hα
A
t+h + PBt+hα

B
t+h)

ω(PAt+hα
A
t + PBt+hα

B
t )

− 1

Note that αi in the denominator is the same as the number of shares the liquidity provider

initially held, whereas αi in the numerator is the number of shares after trading activities
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between t and t+ h.

ω(PAt+hα
A
t+h + PBt+hα

B
t+h)

ω(PAt+hα
A
t + PBt+hα

B
t )

− 1

=

(
PAt+h
PBt+h

)
αAt+h + αBt+h(

PAt+h
PBt+h

)
αAt + αBt

− 1

=

(
PAt+h
PBt+h

)√
k

(
PBt+h
PAt+h

)
+

√
k

(
PAt+h
PBt+h

)
(
PAt+h
PBt+h

)√
k
(
PBt
PAt

)
+

√
k
(
PAt
PBt

) − 1

=

(
PAt+h
PBt+h

)√
PBt+h
PAt+h

+

√
PAt+h
PBt+h(

PAt+h
PBt+h

)√
PBt
PAt

+

√
PAt
PBt

− 1

Denote the relative price of token A to token B at t by ρt (=
PAt
PBt

). Then, the above expression

is reduced to

ρt+h
√

1
ρt+h

+
√
ρt+h

ρt+h

√
1
ρt

+
√
ρt

− 1 =
2
√
ρt+h

ρt+h

√
1
ρt

+
√
ρt
− 1 =

2
√

ρt+h
ρt

ρt+h
ρt

+ 1
− 1.

The above figure shows the relation between change of the relative price (
ρt+h
ρt

) and the

impermanent loss, defined as the ratio of investment outcomes at time t + h in the two

scenarios, minus 1. If ρ changes and
ρt+h
ρt

deviates from 1, the liquidity provider experiences a

loss compared to a simple position of holding underlying tokens from t. It is straightforward

to show that this loss, also called the impermanent loss, is non-positive:
2
√
ρt+h
ρt

ρt+h
ρt

+1
− 1 =

−
(
√
ρt+h
ρt
−1)2

ρt+h
ρt

+1
.

However, the above approach is not directly applicable to our analysis because we analyze

returns from liquidity provision, rather than comparing an investment outcome at t + h

with an investment outcome in a hypothetical situation at t+ h. Therefore, our goal is to
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simplify the liquidity provider’s gross return, expressed as follows:

ω(PAt+hα
A
t+h + PBt+hα

B
t+h)

ω(PAt α
A
t + PBt α

B
t )

We can decompose the above expression into two parts.

PAt+hα
A
t+h + PBt+hα

B
t+h

PAt α
A
t + PBt α

B
t

=

((
PAt α

A
t

PAt α
A
t + PBt α

B
t

)
RAt,t+h +

(
PBt α

B
t

PBt α
A
t + PBt α

B
t

)
RBt,t+h

)
+

(
PAt+hα

A
t+h + PBt+hα

B
t+h

PAt α
A
t + PBt α

B
t

−
((

PAt α
A
t

PAt α
A
t + PBt α

B
t

)
RAt,t+h +

(
PBt α

B
t

PBt α
A
t + PBt α

B
t

)
RBt,t+h

))

We call the first term capital gains, which is a return that an investor can earn if he/she

holds αAt and αBt shares of token A and B until time t+h without providing liquidity to the

pool. We define the second term as impermanent loss in our context, which is the difference

between the return on liquidity provision and capital gains.

First, the capital gains are reduced to 1
2R

A
t,t+h + 1

2R
B
t,t+h thanks to Lemma 1. Second, in

order to simplify the impermanent loss, we use Lemma 1 again.

PAt+hα
A
t+h + PBt+hα

B
t+h

PAt α
A
t + PBt α

B
t

−
((

PAt α
A
t

PAt α
A
t + PBt α

B
t

)
RAt,t+h +

(
PBt α

B
t

PBt α
A
t + PBt α

B
t

)
RBt,t+h

)
=
PAt+hα

A
t+h

PAt α
A
t

−
(

1

2
RAt,t+h +

1

2
RBt,t+h

)

=

PAt+h

√
k

(
PBt+h
PAt+h

)
PAt

√
k
(
PBt
PAt

) −
(

1

2
RAt,t+h +

1

2
RBt,t+h

)

=
√
RAt,t+hR

B
t,t+h −

(
1

2
RAt,t+h +

1

2
RBt,t+h

)
= −1

2

(√
RAt,t+h −

√
RBt,t+h

)2

The impermanent loss defined in the context of return on liquidity provision is closely

related to the impermanent loss defined as the ratio of investment outcomes at time t + h
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in the two scenarios minus 1. It is straightforward to show that

−1

2

(√
RAt,t+h −

√
RBt,t+h

)2

=

(
1

2
RAt,t+h +

1

2
RBt,t+h

) 2
√

ρt+h
ρt

ρt+h
ρt

+ 1
− 1



B.2 Trading frictions in yield farming

In this section, we explain trading frictions in yield farming and how they can affect the

performance of a yield farming strategy. We investigate three different trading frictions:

gas fees, trading fees, and price impact.

Gas fees

Table A.1 lists 14 steps for one round of the yield farming strategy. Out of the 14 steps,

10 require the farmer to pay gas fees. The gas fee is the transaction cost that BSC users

need to pay whenever they execute transactions that require computational resources of the

network. The gas fee is typically not proportional to the size of the transaction. We discuss

in Section 5.2 about how we collect gas fee data in yield farming. We subtract the gas fee

in each round of yield farming from invested capital to incorporate the effect of gas fee on

the performance of yield farming.

Trading fees

Let c∗=0.0025 (0.25%) denote the fraction of trading volume that traders need to pay

in trading fees at PancakeSwap. In Step 2, when a yield farmer buys token A, he/she

pays a 0.25% trading fee. Because this trading fee does not apply to token B, the farmer

pays effectively half of the trading fee c∗
2 (=0.125%) of the additional liquidity that he/she

provides. Moreover, the farmer has to pay an additional fee of 0.25%: when he/she converts

the withdrawn token A to token B, he/she pays additional c∗
2 fraction of trading fee. The

farmer also needs to pay also c∗
2 of trading fee in Step 3 and Step 13. Given that the yield

farmer pays c∗
2 our times, the yield farmer’s gross return on capital gain and impermanent

loss should be

(1− 2c∗)
(
PAt+hα

A
t+h + PBt+hα

B
t+h

)
PAt α

A
t + PBt α

B
t

= (1− 2c∗)

((
1

2
RAt,t+h +

1

2
RBt,t+h

)
− 1

2

(√
RAt,t+h −

√
RBt,t+h

)2
)
.

In Step 10, the yield farmer also needs to pay trading fees when he/she sells CAKE tokens
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harvested from farming. For this, we multiply (1− c∗) on the realized farm yield term in

equation (10).

Price impact

Executing a yield farming strategy involves buying and selling token A. In Step 2, a yield

farmer buys token A. As a result of price impact, the yield farmer will buy token A at a price

above the current market price. Symmetrically, the yield farmer will sell token A at a price

below the current market price. Such adverse price impacts will result in additional losses

for the yield farmer. The size of the loss is proportional to the relative size of investment

(It) to the size of the liquidity pool, i.e., It = fLt. We go through each step in Table A.1

to investigate the price impacts involved in a yield farming strategy.

(1) Step 1: We start from a liquidity pool with two tokens A and B. It has αAt of token A

and αBt of token B and the prices of token A and B are denoted as PAt and PBt .

(2) Step 2: An yield farmer buys ∆A
t number of token A using a part of his/her fund,

It = fLt. What is important here is that the yield farmer must obtain tokens A and B

proportionally to αAt /α
B
t . For this purpose, we divide his/her fund into xIt and (1− x) It

to allocate towards token A and B, respectively. The yield farmer first converts $xIt to

token B in a liquid market for B. Then, the farmer will have xIt
PBt

of token B on hand, which

he/she will convert to token A by means of the liquidity pool. Due to the constant product

model assumption, (
αAt −∆A

t

)(
αBt +

xIt

PBt

)
= αAt α

B
t

If we solve this for ∆A
t ,

∆A
t =

(
xIt
PBt

)
αAt

αBt + xIt
PBt

=
xItα

A
t

PBt α
B
t + xIt

=
xItα

A
t

1
2Lt + xIt

=
xfαAt
1
2 + xf

(3) Step 3: The yield farmer uses the rest of their funds, $(1− x) It, to buy token B in a

liquid market for B. Then, he/she will get ∆B
t of token B where ∆B

t is expressed as follows.

∆B
t =

(1− x) It

PBt
=

(1− x) fLt

PBt
.
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Finally, we find x that satisfies
∆A
t

∆B
t

=
αAt
αBt
.

∆A
t

∆B
t

=

xfαAt
1
2

+xf

(1−x)fLt
PBt

=

xfαAt
1
2

+xf

(1−x)f(2PBt α
B
t )

PBt

=

(
x

1− x

) (
1

1 + 2xf

)
αAt
αBt

.

Therefore, (
x

1− x

) (
1

1 + 2xf

)
= 1.

If we solve for x,

x =
f − 1 +

√
f2 + 1

2f
.

There are two solutions, but only the above solution is positive.

(4) Step 4: Arbitrageurs correct the price by supplying ∆A
t of token A and receiving ∆B

t

of token B in return, after which the liquidity pool becomes basically identical to the initial

pool.

(5) Step 5: The yield farmer provides their liquidity to the pool and receives LP tokens.

For simplicity of notation, let’s define s(f), the ratio of the yield farmer’s share to the

current share in the liquidity pool before the yield farmer provides the liquidity.

s(f) =
∆A
t

αAt
=

xItαAt
1
2
Lt+xIt

αAt
=

xfLt
1
2Lt + xfLt

=

f ×
(
f−1+

√
f2+1

2f

)
1
2 + f × f−1+

√
f2+1

2f

=
f − 1 +

√
f2 + 1

f +
√
f2 + 1

After the liquidity provision by the yield farmer, the shares of token A and B become

αAt (1 + s(f)) and αBt (1 + s(f)) . Now, we measure the price impact when the yield farmer

buys ∆A
t of token A. The farmer uses $xIt to buy ∆A

t of token A. This means that the

effective price paid by the farmer is:

P̃At =
xIt

∆A
t

=
xfLt
xfαAt
1
2

+xf

=
xf
(
2PAt α

A
t

)
xfαAt
1
2

+xf

= 2PAt

(
1

2
+ xf

)
= PAt (1 + 2fx)

= PAt

(
1 +

(
f − 1 +

√
f2 + 1

))
Given that f − 1 +

√
f2 + 1 > 0, P̃At > PAt .

(6) Step 6: The yield farmer stakes the P tokens to a farm.
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(7) Step 7: The yield farmer waits for h days. After the trading activities the shares of

token A and B become αAt+h (1 + s(f)) and αBt+h (1 + s(f)) .

(8) Step 8: The yield farmer receives (harvest) realized farm yields in Cake tokens.

(9) Step 9: The yield farmer withdraws his/her LP tokens from the farm.

(10) Step 10: The yield farmer sells Cake tokens.

(11) Step 11: The yield farmer withdraws his/her liquidity from the liquidity pool by

sending the LP tokens to the pool. After the farmer’s withdrawing liquidity, the shares of

token A and B in the pool become αAt+h and αBt+h.

(12) Step 12: The yield farmer sells his ∆A
t+h = s(f)αAt+h of token A and receives ∆B

t+h of

token B. Currently, there are αAt+h and αBt+hof token A and token B in the pool. After the

farmer’s sending ∆A
t+h = s(f)αAt+h of token A, he/she receives ∆B

t+h token B. Due to the

constant product model,

(
αAt+h + s(f)αAt+h

) (
αBt+h −∆B

t+h

)
= αAt+hα

B
t+h

→ ∆B
t+h =

s(f)

1 + s(f)
αBt+h

The farmer sends s(f)αAt+h of token A and in return PBt+h∆B
t+h worth of USD. This means

that the effective price that the yield farmer receives when selling token A is

P̃At+h =
PBt+h∆B

t+h

s(f)αAt+h
=

s(f)
1+s(f)α

B
t+hP

B
t+h

s(f)αAt+h
=

s(f)
1+s(f)α

A
t+hP

A
t+h

s(f)αAt+h
=

(
1

1 + s(f)

)
PAt+h

So the yield farmer sells at a lower price than PAt+h.

(13) Step 13: The yield farmer sells ∆B
t+h + s(f)αBt+h of token B in a liquid market for

token B.

(14) Step 14: An arbitrageur corrects the price by supplying ∆B
t+h of token B and receiving

∆A
t+h of token A. A new round of yield farming starts again.

Now we compute the return of this yield farming strategy considering the price impact.

First, the yield farmer uses his/her fund It = fLt = P̃At
(
s(f)αAt

)
+ PBt (s(f)αBt ) to buy

s(f)αAt and s(f)αBt shares of token A and B at P̃At and PBt . After h days, the yield farmer
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withdraws s(f)αAt+h and s(f)αBt+h shares of token A and B and sell them at P̃At+h and PBt+h.

Then, its gross return is expressed as

P̃At+h
(
s(f)αAt+h

)
+ PBt+h(s(f)αBt+h)

P̃At
(
s(f)αAt

)
+ PBt (s(f)αBt )

=
P̃At+hα

A
t+h + PBt+hα

B
t+h

P̃At α
A
t + PBt α

B
t

.

We simplify this as follows.

P̃At+hα
A
t+h + PBt+hα

B
t+h

P̃At α
A
t + PBt α

B
t

=

(
1

1+s(f)

)
PAt+hα

A
t+h + PBt+hα

B
t+h

PAt

(
1 +

(
f − 1 +

√
f2 + 1

))
αAt + PBt α

B
t

=

(
1

1+s(f) + 1
)
PAt+hα

A
t+h(

1 +
(
f − 1 +

√
f2 + 1

)
+ 1
)
PAt α

A
t

=

1
1+s(f) + 1

f + 1 +
√
f2 + 1

(
PAt+hα

A
t+h

PAt α
A
t

)

=λ (f)

(
PAt+hα

A
t+h + PBt+hα

B
t+h

PAt α
A
t + PBt α

B
t

)

=λ (f)

((
1

2
RAt+h +

1

2
RBt+h

)
− 1

2

(√
RAt+h −

√
RBt+h

)2
)

,

where

λ (f) =

1
1+s(f) + 1

f + 1 +
√
f2 + 1

=

1

1+ f−1+
√
f2+1

f+
√
f2+1

+ 1

f + 1 +
√
f2 + 1

=
3f + 3

√
f2 + 1− 1(

2f + 2
√
f2 + 1− 1

)(
f + 1 +

√
f2 + 1

) ,
In sum, if we take into account of both price impact and trading fee, return will be

(1− 2c∗)λ (f)

((
1

2
RAt+h +

1

2
RBt+h

)
− 1

2

(√
RAt+h −

√
RBt+h

)2
)

where (1− 2c∗)λ (f) < 1.

Figure 3 illustrates the price impact in buying and selling token A and λ(f), which summa-

rizes the overall effect of price impacts on the performance of yield farming. Panel A shows

the relation between f and
P̃At
PAt

.
P̃At
PAt

is greater than or equal to 1 and increasing in f , which

implies that the yield farmer pays higher prices than the current market price when they

purchase token A, which is attenuated as the size of his/her investment increases. Panel B

shows the relationship between f and
P̃At+h
PAt+h

. This is less than or equal to 1 and decreasing
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in f , which means that the yield farmer sells token A at a larger discount as the size of

investment increase. Finally, Panel C plots λ(f) with respect to f . λ(f) is less than or

equal to 1, decreasing in f , and its effect is substantial when f is large. For example, if the

yield farmer’s investment is very small such that f is close 0, λ(f) = 1 and therefore, there

is no effect. However, if the yield farmer invests as much as the size of the pool (f = 1),

he/she will lose more than 50% of their gross return.

C.1 Accuracy of Constructed Cryptocurrency Factors

As a test of the accuracy of our methodology, we replicate the three-factor regressions from

Table 11 in Liu, Tsyvinski, and Wu (2019) for portfolios sorted on one-week momentum

by quintile, a set of implementable trading strategies not used in the construction of the

three factors. In table A.4, we compare our parameter estimates to those obtained in Liu,

Tsyvinski, and Wu (2019). The two are near-identical with only minor deviations, which

may be from small variations in the sample period used and/or changes in the markets for

which Coinmarketcap tracks price data.

In addition, it is worth noting that the estimates for alpha obtained in Liu, Tsyvinski,

and Wu (2019) are reported in weekly frequency, whereas our measures of alpha have been

annualized. For instance, a weekly alpha of 0.025, as is the case for the fourth quintile of

one-week momentum in table A.4, translates into a yearly alpha of 2.611 when annualized.

Therefore, the magnitudes of our estimates of alpha for yield-farming strategies are rea-

sonably comparable to strategies analyzed in table 11 of Liu, Tsyvinski, and Wu (2019),

in which three-factor weekly alphas exceed 0.02 (or an annualized alpha of 1.80) for many

price- and momentum-based strategies.
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