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Abstract
We develop a method to estimate a game’s primitives in complex dy-

namic environments. Because of the environment’s complexity, agents may
not know or understand some key features of their interaction. Instead of
equilibrium assumptions, we impose an asymptotic ε-regret (ε-AR) condi-
tion on the observed play. According to ε-AR, the time average of the
counterfactual increase in past payoffs, had each agent changed each past
play of a given action with its best replacement in hindsight, becomes small
in the long run. We first prove that the time average of play satisfies ε-
AR if and only if it converges to the set of Bayes correlated ε-equilibrium
predictions of the stage game. Next, we use the static limiting model to
construct a set estimator of the parameters of interest. The estimator’s cov-
erage properties directly arise from the theoretical convergence results. The
method applies to panel data as well as to cross-sectional data interpreted
as long-run outcomes of learning dynamics. We apply the method to pricing
data in an online marketplace. We recover bounds on the distribution of
sellers’ marginal costs that are useful to inform policy experiments.
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1 Introduction
Examining data generated by strategic interaction through the lens of equilib-
rium models is a standard approach in empirical economics. This approach is
used, with appropriate modifications, both for data in which the interaction is ob-
served over time and for cross-sectional data on outcomes across different markets.
Applications include the study of firms’ pricing, entry, investment and technology
adoption decisions, and bidding in auctions, both over time and in a cross-section.1

While appropriate in some settings, the equilibrium approach may be unsat-
isfactory in others. For instance, in many empirically relevant dynamic environ-
ments, agents may find it hard to know or understand some key features of the
strategic interaction. Leading examples include real-time pricing in online user-
to-user marketplaces and bidding in sponsored search auctions. We call these
complex dynamic environments. These are characterized by three salient features.
First, agents may not know their opponents’ identities and incentives and may not
have a prior on their private information and beliefs. Second, monitoring others’
actions may be hard or impossible. Third, it may be difficult to know how the
environment evolves over time. Due to complexity or lack of information, such
environments are hard to predict and to model, and agents may be unable to form
correct beliefs on their opponents’ behavior. Therefore, although agents try to
learn and adapt to their strategic environment, they may not behave according to
a static or dynamic equilibrium notion.2 Thus, a researcher that observes the full
strategic interaction may want to relax equilibrium assumptions.

Additionally, what is modeled as cross-sectional data generated by independent
play of static games may instead arise from an interaction that happens over time,
with linkages across periods. We call these long-run outcomes. A salient example
is entry in markets, in which firms decide to enter different markets at different
times. As the researcher cannot typically determine the exact timing of different
entry decisions, these data are commonly treated as cross-sectional and inter-
preted as long-run equilibrium outcomes (Ciliberto and Tamer, 2009).3 In such

1For seminal contributions, see Berry, Levinsohn, and Pakes (1995) for pricing, Bresnahan
and Reiss (1991) for entry, Ackerberg and Gowrisankaran (2006) for technology adoption, and
Guerre, Perrigne, and Vuong (2000) for auctions.

2This is not because agents are boundedly rational, but rather because the environment’s
characteristics make equilibrium play hard. Unsurprisingly, there is an increasing reliance on
specialized pricing algorithms in these environments (see, e.g., Chen, Mislove, and Wilson, 2016).

3Specifically, Ciliberto and Tamer (2009) argue as follows: “The idea behind cross-section
studies is that in each market, firms are in a long-run equilibrium. The objective of our econo-
metric analysis is to infer long-run relationships between the exogenous variables in the data
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contexts, imposing equilibrium assumptions on a static game-theoretic structure
ignores that players may have had different information at different times, and
adapted their play by learning across markets.

In this paper, we develop a method to estimate a game’s primitives in settings
in which agents interact over time, encompassing both complex dynamic environ-
ments and long-run outcomes. Our method deemphasizes an equilibrium approach
and instead pursues an adaptive approach based on the minimization of ex-post
regret notions. In particular, we build on the idea that learning outcomes can be
used as an alternative to solution concepts when analyzing the outcomes of game
dynamics. This strategy is consistent with recent advances in robust analysis in
economic theory and computer science (see references in Section 1.1).

In practice, we model agents interacting over discrete periods in an incomplete
information environment (complete information is a special case of our setting).
We only assume that agents’ behavior satisfies the minimal long-run optimality
condition of asymptotic ε-regret (hereafter, ε-AR). According to ε-AR, in the
long run, the time average payoff of each type of each agent becomes ε-close to
the payoff that type of that agent would have obtained by changing each past play
of a given action with its best replacement in hindsight.4 Intuitively, ε-AR re-
quires the no ex post regret property of Nash equilibrium to hold, approximately,
over sequences of play with respect to a specific benchmark policy in hindsight;
however, ε-AR does not require agents’ actions to be stable and independent. Im-
portantly, ε-AR is a weaker requirement than equilibrium: whenever agents play
any equilibrium of the underlying stage game, they also minimize their regrets.

Regret minimization (i.e., outperforming in hindsight a given benchmark strat-
egy) is the leading criterion to evaluate performance in complex and unstructured
dynamic environments, as reflected by a large literature in game theory and com-
puter science (see references in Section 1.1). The ε-AR condition is satisfied by
many procedures, once they are adapted to the play of games with incomplete
information. This class includes simple adaptive heuristics, fictitious-play-like
dynamics, calibrated learning, more sophisticated learning rules involving exper-
imentation, specialized learning algorithms, and equilibrium play; several regret-
minimizing procedures can also be cast as reinforcement learning rules.5

and the market structure that we observe at some point in time, without trying to explain how
firms reached the observed equilibrium.”

4We discuss alternative related notions of regret throughout the paper.
5See Section 3.1 for a brief overview of regret-minimizing procedures, their properties, and

references to the original contributions.
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The ε-AR condition can be satisfied in environments of arbitrary complexity
and with almost no knowledge of the environment—each agent need not know
more than his set of actions and (an estimate of) his realized payoff at the end of
each period. However, we neither exclude that agents know or observe more nor
assume that they coordinate on a specific regret minimization procedure. We only
assume that each agent learns to interact in/adapt to the environment sufficiently
well for ε-AR to hold. In this sense, ours is an incomplete model (Tamer, 2003).

Under the ε-AR assumption, we develop an empirical strategy to estimate
the structural parameters of the stage game. We do so in two steps. First, we
show that the time average of play satisfies ε-AR if and only if it converges to
the set of Bayes correlated ε-equilibrium (hereafter, ε-BCE) predictions of the
stage game (not necessarily to an element in this set). The ε-BCE notion extends
Bayes Correlated Equilibrium (Bergemann and Morris, 2016) by requiring incen-
tive constraints to only hold approximately. To establish the convergence result,
we generalize to incomplete information environments earlier results on dynamic
foundations for correlated equilibrium (Aumann, 1974, 1987) in games with com-
plete information (e.g., Foster and Vohra, 1997; Hart and Mas-Colell, 2000, 2001;
Fudenberg and Levine, 1995, 1999).

In the second step, we build on the theoretical convergence result to recover
the parameters with a set estimator based on the restrictions implied by the static
notion of ε-BCE. The method applies to panel data as well as to cross-sectional
data interpreted as long-run outcomes of learning dynamics. In contrast to the ex-
isting literature that uses the BCE notion to develop methods to make inferences
in static games (Magnolfi and Roncoroni, 2021; Syrgkanis, Tamer, and Ziani, 2021;
Gualdani and Sinha, 2020; Bergemann, Brooks, and Morris, 2021), we do not pur-
sue robustness to assumptions on information. Rather, we use ε-BCE restrictions
for estimating dynamic interactions, or their long-run outcomes, in complex envi-
ronments under weak assumptions on behavior, thus interpreting data generated
by a dynamic interaction with a static limiting model.

Based on our convergence result, we show that the estimator almost surely
contains the true parameter value after a sufficient number of periods. Moreover,
by leveraging the features of the data-generating process, we show how to obtain
tighter bounds on parameters by taking the intersection of set estimators com-
puted at different points in time when panel data are available. We also construct
theoretical bounds on how informative the estimated set of parameters can be. We
provide Monte Carlo evidence for a repeated binary pricing game. Our method
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produces tight estimated sets of parameters describing the distribution of sellers’
marginal costs.

Our method is broadly applicable. For instance, it is well suited to study
pricing behavior in e-commerce marketplaces. A sizable portion of online retail
happens via decentralized platforms where sellers set prices independently. Ex-
amples of these environments are Amazon and Walmart marketplaces, eBay, and
Etsy. In an empirical application, we use our method to recover the distribution of
sellers’ marginal cost on Swappa—an online marketplace for used cellphones and
other portable electronic devices. Because of the complexity and the availability
of pricing algorithms, relying on the ε-AR assumption is an appealing approach
to recover the distribution of sellers’ marginal costs in this environment. Our
method produces estimates of seller-specific average cost which are plausible in
this economic environment.

The primitives that we recover can inform policy exercises and counterfactu-
als. The distribution of marginal costs allows researchers to evaluate the degree of
competitiveness of pricing in the platform by comparing prices to a Bertrand equi-
librium and a perfect collusion benchmark. Moreover, the distribution of marginal
costs enables simulations of the price path according to widely used algorithms in
e-commerce applications. This counterfactual provides useful inputs to the design
decision of the platform, which may want to make these algorithms available (or
mandatory) to sellers. Finally, there is a growing literature on pricing algorithms
and their effects on market outcomes (see, e.g., Assad, Calvano, Calzolari, Clark,
Denicolò, Ershov, Johnson, Pastorello, Rhodes, Xu, and Wildenbeest, 2021, and
references therein). Evaluating algorithmic pricing in this context, where prim-
itives are obtained with an algorithm-independent method, would contribute to
the ongoing debate.

1.1 Related Literature

We contribute to a recent literature that estimates empirical models of learn-
ing agents (for a survey, see Aguirregabiria and Jeon, 2020). Complementary
to model-based and belief-based approaches (e.g., Doraszelski, Lewis, and Pakes,
2018; Aguirregabiria and Magesan, 2020), our method is based on regret-minimizing
agents who need not specify a model of other agents’ behavior, nor need to form
beliefs about their information or behavior. This is in the spirit of incomplete
models (Tamer, 2003; Haile and Tamer, 2003; Ciliberto and Tamer, 2009) and
results in set-valued estimators of parameters.
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A recent strand of the computer science literature explores the connection be-
tween regret minimization and empirical work. In an online auction environment,
Nekipelov, Syrgkanis, and Tardos (2015) characterize and perform inference on
the set of valuations consistent with a given level of regret, but without relying
on an equilibrium concept. Nisan and Noti (2017a,b) evaluate a similar approach
with experimental data and propose adjustments to the ε-regret estimation proce-
dure. Noti and Syrgkanis (2021) find that econometric approaches based on regret
minimization compare favorably to both machine learning methods and standard
equilibrium-based econometrics when used to predict bids in online ad auctions. In
contrast to these papers, our general econometric approach leverages convergence
results to interpret the data through the lens of the static equilibrium notion of
ε-BCE. Thus, our method easily applies to any underlying stage game and does
not require relying on the specific features of a given empirical application (e.g.,
of the online auction environment or the online pricing game).

Regret minimization relative to some benchmark has been used as a criterion
to develop robust approaches to decision making (e.g., Savage, 1951, 1972) and op-
timal treatment choice (e.g., Manski, 2004, 2007, 2021; Stoye, 2007, 2009; Schlag,
2007; Hirano and Porter, 2009). It is also a central idea in robust contracting
and robust mechanism design (e.g., Hurwicz and Shapiro, 1978; Bergemann and
Schlag, 2008, 2013; Renou and Schlag, 2011; Chassang, 2013; Caldentey, Liu, and
Lobel, 2017; Beviá and Corchón, 2019; Guo and Shmaya, 2019, 2021; Chassang
and Kapon, 2021; Braverman, Mao, Schneider, and Weinberg, 2018; Deng, Schnei-
der, and Sivan, 2019; Camara, Hartline, and Johnsen, 2020). These papers use
regret-based objectives to characterize optimal decision rules, treatment rules, or
mechanisms in complex environments in which agents find it hard to form prior
beliefs. In contrast, we use the minimization of a regret-based objective to impose
a minimal optimality condition on dynamic behavior with the aim of inferring
economic primitives in complex environments.

A large and growing literature at the intersection of economics and computer
science studies learning and regret minimization. In particular, regret minimiza-
tion is a leading approach in sequential decision problems (or online learning)
and multi-armed bandit problems (see, e.g., Foster and Vohra, 1999; Cesa-Bianchi
and Lugosi, 2006; Shalev-Shwartz, 2011; Bubeck and Cesa-Bianchi, 2012; Slivkins,
2019; Lattimore and Szepesvári, 2020; Hazan, 2021, and references therein) and
a central idea in multiagent learning and learning in games (see, e.g., Vohra and
Wellman, 2007; Nisam, Roughgarden, Tardos, and Vazirani, 2007; Roughgarden,
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2016; Fudenberg and Levine, 1998; Young, 2004; Hart and Mas-Colell, 2013, and
references therein). We contribute to this literature by providing novel results on
the convergence properties of regret-minimizing dynamics in games with incom-
plete information.

1.2 Road Map

In Section 2, we present the model and the econometric problem we aim at provid-
ing an answer to. In Section 3, we formalize the asymptotic ε-regret property and
study convergence under this property to the set of ε-BCE of the underlying stage
game. In Section 4, we develop our econometric approach. In Section 5, we present
our empirical application. In Section 6, we discuss additional results and exten-
sions. In Section 7, we conclude. Proofs and omitted details are in the Appendices.

2 Model
In this section, we first describe the general model. Next, we present the econo-
metric problem we aim at providing an answer to.

2.1 Basic Setup

There is a finite set I of I players, I := {1, . . . , I}, and i is a typical player. A
basic game G consists of: (i) a finite set of payoff states, Θ; (ii) for each player i, a
finite set of actions Ai, where we define A := A1 × · · · ×AI , and a payoff function
ui : A × Θ → R; and (iii) a full-support probability distribution ψ ∈ ∆++(Θ).
Thus, G :=

(
Θ, (Ai, ui)

I
i=1, ψ

)
. An information structure S consists of: (i) for each

player i, a finite set of signals (or types) Ti, where we define T := T1 × · · · × TI ;
and (ii) a signal distribution π : Θ → ∆(T ). Thus, S :=

(
(Ti)

I
i=1, π

)
. We refer to

the pair (G,S) as the (incomplete information) stage game.
We denote by θ, ai, a, ti, and t typical elements of sets Θ, Ai, A, Ti, and T (or

of their subsets). We write π(· | θ) for the probability distribution on T when the
payoff state is θ and π(t | θ) for the probability of signal profile t when the payoff
state is θ. We denote by a−i a profile of actions for players other than i, i.e., a−i :=

(a1, . . . , ai−1, ai+1, . . . , aI), and by t−i a profile of signals for players other than i.

Players interact over discrete time periods n ∈ N := {1, 2, . . . } in some instance
of game (G,S).
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Assumption 1. We maintain the following assumptions on what players observe
about the game, on the timing of events, and on the sequence of payoff states.

1. Each player i knows his own set of actions Ai.

2. Within each period n, the following occurs in sequence:

(i) State θn realizes;
(ii) A profile of signals (tn1 , . . . , t

n
I ) is drawn from π(· | θn);

(iii) After observing his signal tni , each player i selects an action ani ;
(iv) Payoffs realize and each player i observes (an estimate of) his own

realized payoff ui(a
n, θn).

3. Almost all paths of the process for payoff states (θn)n∈N have a limiting
empirical distribution ψL ∈ ∆++(Θ

L) for some ΘL ⊆ Θ.

We denote by (G,S)∞ the game defined by (G,S) and Assumption 1 and refer
to it as the dynamic game. The history of (G,S)∞ at the end of periodN is the ran-
dom sequence (θ1, t1, a1, . . . , θN , tN , aN). LetHN := (A× T ×Θ)N be the set of all
possible histories at the end of period N , H := ∪N≥1H

N the set of all finite histo-
ries, and H∞ := (A× T ×Θ)∞ the set of all possible infinite histories. We refer to
((θn, tn, an))n∈N ∈ H∞ as a sequence of states, signals, and actions from (G,S)∞.

Let TL
i := {ti ∈ Ti : π(ti, t−i | θ) > 0 for some θ ∈ ΘL}, TL := TL

1 × · · · × TL
I ,

and πL be the restriction of π to ΘL. We refer to game (GL, SL), with GL :=(
ΘL, (Ai, ui)

I
i=1, ψ

L
)
and SL :=

(
(TL

i )
I

i=1, π
L
)
, as the limiting stage game.

When Θ is a singleton, (G,S) is a game with complete information, and so is
(GL, SL). Moreover, many stochastic processes for payoff states satisfy part 1 of
Assumption 1. Examples include: an i.i.d. process for payoff states, a perfectly
persistent payoff state (in which case (GL, SL) is a game with complete informa-
tion), payoff states that follow a Markov chain with limiting distribution, payoff
states that follow a periodic Markov chain. In particular, the stochastic environ-
ment need not be stationary. Thus, the results that we develop in this paper apply
to a wide variety of stochastic environments with incomplete information as well
as to complete information environments.

We note however that the setting described in Assumption 1 does not include
an important class of dynamic environments used in the applied literature. These
are the environments with a payoff state that evolves endogenously as a function
not only of the current state, but also of players’ actions in the current period
(e.g., Rust, 1987; Ericson and Pakes, 1995; Pakes, Ostrovsky, and Berry, 2007;
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Aguirregabiria and Mira, 2007; Bajari, Benkard, and Levin, 2007; Pesendorfer and
Schmidt-Dengler, 2008). We leave an extension of our method to these settings as
future work.

We only assume that each player knows his own set of actions and receives as
feedback (an estimate of) his own realized payoff at the end of each period. We do
not make any further knowledge or monitoring assumption. Players may observe,
know, or understand more, but need not do so. In particular:

• The (stage or dynamic) game need not be knowledge or common knowledge
among players. More specifically: (i) players need not know how many
and which opponents they are facing; (ii) players need not know what their
opponents’ payoff functions are; (iii) players need not know what the state
space of the process for payoff states is or how the process evolves over time
(i.e., they need not know Θ, ψ, ΘL, or ψL)—in particular, players need not
have a prior, let alone a common one; (iv) players need not know how payoff
states are mapped into signals (i.e., they need not know π).

• Players need not observe the realized state θn at the end of each period.

• Players need not observe the profile of actions an that has been played at the
end of each period (i.e., players need not monitor their opponents’ actions).

Our minimal assumptions on what players know about the environment are
not meant to capture a form of bounded rationality; indeed, we do not exclude that
agents know more than what is specified by Assumption 1. Rather, these minimal
assumptions capture the idea that the environment may be complex enough that
players find it hard or impossible to know or understand some key features of their
strategic interaction.

2.2 Econometric Problem

Given a dynamic game (G,S)∞, a researcher knows the corresponding limiting
stage game up to some structural parameters. More formally, the limiting stage
game belongs to a parametric class of games{(

GL(λG), SL(λS)
)}

λ∈Λ

indexed by structural parameters λ := (λG, λS) ∈ Λ, where Λ is a non-empty set.
The true structural parameters in the data generating process are

λ0 := (λG0 , λ
S
0 )
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and are unknown to the researcher.

We consider the two following data environments.
• Dataset D1: for some positive integer K, the researcher observes a realized

sequence of actions (an)Kn=1 ∈ AK from the dynamic game (G,S)∞.

• Dataset D2: for some positive integerK, the researcher observes an empirical
distribution of actions qK ∈ ∆(A), defined pointwise by

qK(a) :=
1

K

K∑
n=1

1{a}(a
n)

for all a ∈ A, from the dynamic game (G,S)∞ (possibly without information
about the timing of actions).6

Note that dataset D2 can be constructed from dataset D1, but not viceversa.7

Our goal is to develop a method to recover λ0 under Assumption 1 when the
researcher has access to dataset D1 or D2. We will do so by imposing an asymp-
totic ε-regret property on sequences ((θn, tn, an))n∈N from (G,S)∞ and by exploit-
ing novel theoretical results on the convergence of regret-minimizing dynamics in
games with incomplete information, which we develop in Section 3.

2.3 Illustration: A Two-Seller Pricing Game

The pricing game we use as illustrative example is a simplified version of that in
our empirical application in Section 5.

Basic Setup. There are two sellers of a differentiated good, i = 1, 2. In each
period n, each seller i privately observes the marginal cost tni of selling a unit of
his good and then sets a price pni ∈ {p, p}, where 0 < p < p. In each period n, if
prices are pn := (pn1 , p

n
2 ), seller i faces demand gi(p

n
i , p

n
−i) for his good. Seller i’s

profit in period n is gi(pni , pn−i)(p
n
i − tni ). In period n = 1, marginal costs are drawn

from a probability distribution ψ̃ with finite support T̂ .
In the language of our general model, we have the following. The set of players

is I = {1, 2}. In the basic game G, we have Θ = T̂ 2, A1 = A2 = {p, p}, and
ψ = ψ̃, and ui((pi, p−i), θ) = gi(pi, p−i)(pi − ti). In the information structure S,

6That is, qN (a) is the empirical frequency of the action profile a in the first K periods.
7The assumption that only actions are observable to the researcher is the most common in

the empirical literature. However, it is not the only one. For instance, Bergemann and Morris
(2013) consider a setting where both actions and payoff states are observable to the researcher.
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we have T = Θ and π : Θ → ∆(T ) is such that π(t | θ) = 1 if and only if t = θ.
Regarding the relationship between the stage game (G,S) and the limiting stage
game (GL, SL), consider the following (non-exhaustive) possibilities:

• If Θ is a singleton (i.e., Θ = T1 × T2 = {(t1, t2)}), then (G,S) = (GL, SL)

and both are games with complete information.

• If |Θ| > 1 and marginal costs are drawn in period n = 1 from ψ̃ and
perfectly persistent thereafter—let (t̃1, t̃2) denote the realization of the two
sellers’ marginal costs in period n = 1—then (G,S) ̸= (GL, SL), (G,S) is a
game with incomplete information, and (GL, SL) is a game with complete
information. In particular, ΘL = TL

1 × TL
2 = {(t̃1, t̃2)}, ψL is trivial, and πL

is the restriction of π to ΘL.

• If |Θ| > 1 and marginal costs are i.i.d. over time, then (GL, SL) = (G,S)

and both are games with incomplete information.

• Suppose |Θ| > 1 and the process for payoff states (θn)n∈N is an irreducible
and aperiodic Markov chain with initial distribution ψ̃ and stationary dis-
tribution ψL. If ψ̃ = ψL, then (GL, SL) = (G,S); If ψ̃ ̸= ψL, then
(GL, SL) ̸= (G,S).

Each seller i knows the prices he can set and, in each period, observes his
own marginal cost of selling and receives as feedback (an estimate of) his own
realized profit at the end of the period. We do not make any further knowledge
or monitoring assumption. Sellers may or may not observe, know, or understand
more about the pricing game being played. For instance, sellers may or may not
know the demand function, their opponent’s profit function, the distribution of
marginal costs, and how payoff states evolve over time.

Econometric Problem. Suppose the researcher can estimate “offline” the de-
mand function. For some positive integer K, the researcher observes: (i) a realized
sequence of prices (pn)Kn=1 (dataset D1); or (ii) an empirical distribution of prices
qK , where qK(p) := 1

K

∑K
n=1 1{p}(p

n) for all p ∈ {p, p}2 (dataset D2). The re-
searcher aims at recovering the distribution of the two sellers’ marginal costs in
the limiting stage game, that is, λG0 = ψL.

3 Asymptotic ε-Regret and Static ε-Equilibria
In this section, we first formalize the notions of regret and asymptotic ε-regret
property. Next, we study convergence to the set of ε-BCE of the limiting stage
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game under the asymptotic ε-regret property. To simplify the exposition, in this
section, given a dynamic game (G,S)∞, we denote the corresponding limiting
stage game simply as (GL, SL), omitting the indexing with the true structural
parameter λ0. Since the results in this section are purely game-theoretical, no
confusion will arise.

3.1 Regrets and the Asymptotic ε-Regret Property

For all i ∈ I and ti ∈ Ti, let Ui(ti, N) be the average factual payoff that player i
with signal ti has obtained up to time N ; that is,

Ui(ti, N) :=
1

N

N∑
n=1

ui
(
(ani , a

n
−i), θ

n)
)
1{ti}(t

n
i ).

Let ai be the last action played by player i with signal ti up to time N . For
each action a′i ∈ Ai, let Vi(ai, a′i, ti, N) be the average counterfactual payoff player
i with signal ti would have obtained had he played a′i instead of ai every time in
the past that he actually played ai. That is,

Vi(ai, a
′
i, ti, N) :=

1

N

N∑
n=1

vni (ai, a
′
i, ti),

where, for all n ∈ N,

vni (ai, a
′
i, ti) :=

 ui
(
(a′i, a

n
−i), θ

n)
)
1{ti}(t

n
i ) if ani = ai

ui
(
(ani , a

n
−i), θ

n)
)
1{ti}(t

n
i ) if ani ̸= ai

.

Definition 1 (Regret). For all i ∈ I, ti ∈ Ti, and ai, a′i ∈ Ai, the regret of player
i with signal ti for action a′i with respect to action ai before play at time N + 1 is
denoted by Ri(ai, a

′
i, ti, N) and defined by

Ri(ai, a
′
i, ti, N) := max {Vi(ai, a′i, ti, N)− Ui(ti, N), 0} .

Ri(ai, a
′
i, ti, N) is a measure of the time average regret experienced by player

i with signal ti at period N for not having played, every time that ai was played
in the past, the different action a′i.

Notation. Let ε := (εi(ai, a
′
i, ti))i∈I,ai,a′i∈Ai,ti∈TL

i
denote the vector that specifies,

for all i ∈ I, ai, a′i ∈ Ai, and ti ∈ TL
i , a non-negative real number εi(ai, a′i, ti). We

write ε = 0 if εi(ai, a′i, ti) = 0 for all i ∈ I, ai, a′i ∈ Ai, and ti ∈ TL
i . We write

ε′ ≥ ε if ε′i(ai, a′i, ti) ≥ εi(ai, a
′
i, ti) for all i ∈ I, ai, a′i ∈ Ai, and ti ∈ TL

i . The
expressions ε′ = ε and ε′ > ε are defined analogously.
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Definition 2 (Asymptotic ε-Regret Property). Fix an ε. A sequence ((θn, tn, an))n∈N
from (G,S)∞ has the asymptotic ε-regret (hereafter, ε-AR) property if

lim sup
N→∞

Ri(ai, a
′
i, ti, N) ≤ εi(ai, a

′
i, ti) (1)

for all i ∈ I, ti ∈ TL
i , and ai, a

′
i ∈ Ai. We refer to dynamics satisfying the ε-AR

property as ε-regret dynamics.

The ε-AR property is a minimal optimality conditions for the play of (G,S)∞

capturing the idea that players learn in/adapt to their complex strategic environ-
ment. If the ε-AR property holds, the average regret experienced by each player
for any of his signals for not having replaced all past plays of a given action with
an arbitrary different action, separately for each of the player’s actions, is “close”
to vanish in the long-run; the meaning of close is quantified by the values specified
by the vector ε.

Intuitively, the ε-AR property requires the no ex post regret property of Nash
equilibrium to hold, approximately, over sequences ((θn, tn, an))n∈N with respect to
a specific benchmark policy in hindsight; in contrast to Nash equilibrium, however,
the ε-AR property does not require players’ actions to necessarily be stable and
independent. Importantly, the ε-AR property is a weaker requirement than equi-
librium play: whenever players reach or play any Bayes Nash or Bayes Correlated
ε-equilibrium of (GL, SL), the resulting sequence ((θn, tn, an))n∈N from (G,S)∞

has the ε-AR property (see Section 3.2 for the formal statement).

Assuming that players minimize their regrets amounts to the following two ob-
servations. First, players are sufficiently sophisticated and rational to use any in-
formation they have about the environment to succeed in minimizing their regrets.
Second, players may not reach a fully cooperative equilibrium of the dynamic game
(if such equilibria exist and have positive regret).8 Such failure to reach a fully co-
operative equilibrium, however, need not depend on player’s bounded rationality;
rather, important economic environments are so complex and hard to predict that
reaching a fully cooperative equilibrium of the dynamic game may be too hard or
even impossible.9

8In many repeated games, if players are sufficiently patient, there are cooperative (or collu-
sive) equilibria which Pareto-dominate all equilibria of the stage game and have positive regrets.

9In the computer science literature, recent results on the price of anarchy show that ε-regret
dynamics have “near-optimal” welfare properties in many games (e.g., Blum, Hajiaghayi, Ligett,
and Roth, 2008; Roughgarden, 2009; Hartline, Syrgkanis, and Tardos, 2015; Caragiannis,
Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes Leme, and Tardos, 2015). Although
they are are developed in different contexts than ours, such arguments suggest that ε-regret
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The vector ε measures, for each of the player’s signals and actions, how much
each player’s behavior departs from perfect regret minimization. Consistent with
the previous observations, such departures can have two explanations: (i) play-
ers are not exact optimizers; (ii) players are sustaining some form of cooperation
beyond that allowed by exact regret minimization despite the environment’s com-
plexity.

Regret minimization (i.e., outperforming in hindsight a given benchmark strat-
egy) is the leading criterion in economics and computer science to evaluate per-
formance in complex dynamic environments. The earliest regret-minimizing pro-
cedures can be traced back to Blackwell (1956a,b) and Hannan (1957). Since
then, a large literature on the topic has developed at the intersection of eco-
nomics and computer science. Once adapted to the play of games with incomplete
information—with each player computing and minimizing his own regrets signal-
by-signal—many well-known procedures or rules of behavior for the play of game
(G,S)∞ generate a sequence ((θn, tn, an))n∈N that has the ε-AR property. The
class of regret-minimizing procedures—hereafter referred to as ε-AR algorithms—
is very large, and its review goes beyond the scope of this paper (we refer to,
e.g., Foster and Vohra, 1999; Cesa-Bianchi and Lugosi, 2006; Nisam et al., 2007;
Roughgarden, 2016, for surveys of this literature).10

In general, ε-AR algorithms have desirable behavioral and computational prop-
erties. Importantly—and consistently with our Assumption 1—there are (simple)
ε-AR algorithms that work in environments of arbitrary complexity and with
almost no knowledge of the environment. More specifically, there are ε-AR algo-
rithms that only require to know a player’s set of actions and receive (an estimate
of) the player’s realized payoff as feedback at the end of each period, but not
dynamics have good welfare properties in our setting as well. The price of anarchy measures
how the efficiency of a system degrades due to selfish behavior of its agents in the worst case.

10A (largely) non-exhaustive list of ε-AR algorithms includes: repeated Bayes Nash equilib-
rium play and repeated Bayes Correlated equilibrium play of (GL, SL) (see Section 3.2); simple
adaptive heuristics, such as regret matching and its generalizations (Hart and Mas-Colell, 2000,
2001; Hart, 2005); fictitious-play-like dynamics (Fudenberg and Levine, 1995, 1999); calibrated
learning (Foster and Vohra, 1997, 1998); specialized learning algorithms, such as greedy
algorithms, weighted majority, multiplicative weights, and polynomial weights algorithms (e.g.,
Littlestone and Warmuth, 1994; Freund and Schapire, 1997, 1999; Cesa-Bianchi, Mansour, and
Stoltz, 2007; Arora, Hazan, and Kale, 2012), and follow the perturbed leader and follow the
regularized leader algorithms (e.g., Kalai and Vempala, 2005; Shalev-Shwartz, 2011). There are
also ε-AR algorithms that allow for bounded memory (Lehrer and Solan, 2009) and that are
dynamically consistent (Schlag and Zapechelnyuk, 2017). Finally, Several regret-minimizing
procedures can also be cast into a form that is similar to reinforcement learning rules (e.g.,
Bush and Mosteller, 1955; Roth and Erev, 1995; Börgers and Sarin, 1997, 2000; Erev and Roth,
1998; Young, 2004).
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(necessarily) that players observe ((an, θn))n∈N. Such algorithms are model- and
belief-free, as they do not require players to: (i) know their opponents’ payoff
functions or signals; (ii) have (prior) beliefs about the information environment;
(iii) to build a model of (or develop beliefs about) their opponents’ play, and to
reply optimally to such play.

Assuming that the ε-AR property holds, however, does not exclude that play-
ers know, understand, or observe more than the bare minimum needed to minimize
their regrets—they just need not to. In other words, the ε-AR property neither
requires nor excludes sophisticated behavior, strong knowledge assumptions, and
rich informational feedback to players.

Although the class of ε-AR algorithms is very large, we pursue an algorithm-
independent approach. That is, we neither assume that players adopt a specific
regret minimization procedure nor assume that they coordinate on the same regret
minimization procedure.

Probability Space. Typically, ε-AR algorithms involve randomization (i.e., re-
quire a player, say i, to play an element of ∆(Ai) in some or all periods). Thus,
there are three sources of randomness in the model: (i) the process of payoff
states (θn)n∈N; (ii) the sequence of signal distributions (π(· | θn))n∈N; (iii) the ran-
domization induced by ε-AR algorithms. These three sources naturally induce a
probability measure, which we denote by P, on the set of all finite histories H. By
the Kolmogorov extension theorem, this probability measure uniquely extends to
H∞. Hereafter, whenever we use the expression “almost sureley” we mean almost
surely with respect to probability measure P.

3.2 Convergence under the Asymptotic ε-Regret Property

The relevant space of uncertainty in the limiting stage game (GL, SL) is A×TL×
ΘL. We write ν for a typical element of ∆(A × TL × ΘL). The notion of Bayes
correlated ε-equilibrium is defined through the restrictions we impose on ν.

Definition 3 (Bayes Correlated ε-Equilibrium). Fix an ε. The probability dis-
tribution ν ∈ ∆(A × TL × ΘL) is a Bayes Correlated ε-Equilibrium (hereafter,
ε-BCE) of (GL, SL) if the two following properties hold.

1. ν is consistent for (GL, SL); that is, for all t ∈ TL and θ ∈ ΘL, we have∑
a

ν(a, t, θ) = πL(t | θ)ψL(θ).
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2. ν is ε-obedient for (GL, SL); that is, for all i ∈ I, ti ∈ TL
i , and ai ∈ Ai, we

have∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ν
(
(ai, a−i), (ti, t−i), θ

)
≤ εi(ai, a

′
i, ti)

for all a′i ∈ Ai.
We denote by E(ε) the set of ε-BCE of (GL, SL).

Consistency is a feasibility constraint which requires the marginal of ν on
the exogenous variables TL and ΘL to be consistent with the elements of game
(GL, SL). Obedience is an incentive constraint. A probability distribution ν is
obedient if any i who knows ν and is told his action-signal pair (ai, ti) from a
realization of ν weakly prefers to play ai, given that the other players, who know
their realized action-signal pair, play their part of the realized action profile.

For any ε, the set E(ε) is convex. When ε = 0, we have Bayes correlated
equilibrium (hereafter, BCE). The BCE notion is due to Bergemann and Morris
(2016) and is an incomplete information version of correlated equilibrium (Au-
mann, 1974, 1987). When ΘL is a singleton, the notion of ε-BCE reduces to that
of correlated ε-equilibrium for a complete information game.

Definition 4 (Empirical Distribution). Let ((θn, tn, an))n∈N be a sequence of states,
signals, and actions from (G,S)∞. For all N ∈ N, the empirical distribution
ZN ∈ ∆(A× T ×Θ) is defined pointwise by

ZN(a, t, θ) :=
1

N

N∑
n=1

1{a}(a
n)1{t}(t

n)1{θ}(θ
n)

for all (a, t, θ) ∈ A× T ×Θ.

That is, ZN(a, t, θ) is the empirical frequency of the action-signal-state profile
(a, t, θ) in the first N periods. Note that qK defined in (2.2) is the marginal on A
of the empirical distribution ZK for all K ∈ N. That is, qK(a) =

∑
t,θ Z

K(a, t, θ)

for all a ∈ A.

The next theorem establishes the following results: the sequence of empirical
distributions converges almost surely to E(ε) if and only if the sequence of states,
signals, and actions from (G,S)∞ has the ε-AR property almost surely.

Theorem 1 (Convergence of ε-Regret Dynamics). Fix an ε. The sequence of
states, signals, and actions ((θn, tn, an))n∈N from (G,S)∞ has the ε-AR property
almost surely if and only if, as N → ∞, the sequence of empirical distributions
(ZN)N∈N converges almost surely to E(ε).
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When the payoff state is perfectly persistent, if ((θn, tn, an))n∈N from (G,S)∞

has ε-AR almost surely, then (ZN)N∈N converges almost surely to the set of cor-
related ε-equilibria of the complete information game (GL, SL).

Although only instrumental in this paper, Theorem 1 may be of independent
interest as it provides dynamic foundations for the static equilibrium notion of ε-
BCE (Bergemann and Morris, 2016). The BCE notion is central for the literature
on information design (e.g., Aumann, Maschler, and Stearns, 1995; Kamenica and
Gentzkow, 2011; Bergemann and Morris, 2019; Kamenica, 2019) and for that on
robust prediction in games with incomplete information (e.g., Bergemann and
Morris, 2013, 2016). Theorem 1 generalizes to games with incomplete information
earlier work on the dynamic foundations for correlated equilibrium in games with
complete information (e.g., Foster and Vohra, 1997; Hart and Mas-Colell, 2000,
2001; Fudenberg and Levine, 1995, 1999).

Recent contributions in computer science (Hartline, Syrgkanis, and Tardos,
2015; Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes Leme,
and Tardos, 2015) also study convergence properties of regret-minimizing dynam-
ics in incomplete information environments. There are motivational, technical,
and conceptual differences between their setting and ours. First, whereas they
focus on price of anarchy and efficiency results, our emphasis is on connecting ε-
regret dynamics to the inference problem of an outside observer (see the next sec-
tions). Second, Hartline et al. (2015) study a private values setting in which private
information is independent across players and time, and Caragiannis et al. (2015)
restrict attention to generalized second price auctions and allow for valuations that
are correlated across bidders; in contrast, we work with general games and allow
for private information that is correlated across players and over time as well as for
common values. Third, they adopt notions of players’ payoffs and regrets that are
different than ours. Fourth, they study convergence to the coarse analog of the set
of BCE as (some definitions) in Forges (1993); in contrast, we study convergence to
the set of BCE as in Bergemann and Morris (2016) (or to its coarse analog, see Sec-
tion 6.1). Because of these and other contrasts, our analyses are complementary.

We now define restrictions on the set of actions implied by ε-BCE.

Definition 5 (ε-BCE Prediction). Fix an ε. A probability distribution q ∈ ∆(A)

is an ε-BCE prediction if there exists ν ∈ E(ε) such that

q(a) =
∑
t,θ

ν(a, t, θ)
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for all a ∈ A. We denote by Q(ε) the set of ε-BCE predictions of (GL, SL).

The following is an immediate corollary of Theorem 1.

Corollary 1 (Convergence of the Empirical Distribution of Actions). Fix an ε.
If the sequence of states, signals, and actions ((θn, tn, an))n∈N from (G,S)∞ has ε-
AR almost surely, then the sequence of empirical distributions of actions (qN)N∈N

converges almost surely to Q(ε).

Remark 1. We clarify the convergence notion in Theorem 1 and Corollary 1.
We do so for the convergence of (qN)N∈N to Q(ε); similar observations apply
to the convergence of (ZN)N∈N to E(ε). First, the almost sure convergence of
(qN)N∈N is to Q(ε), not necessarily to a point in that set. Second, it is the
empirical distribution of actions that becomes essentially an ε-BCE prediction,
not necessarily the actual play. Third, define the distance between qN and Q(ε) as

d
(
qN , Q(ε)

)
:= inf

q∈Q(ε)

∥∥qN − q
∥∥,

where ∥ · ∥ is the Euclidean norm; then, the almost sure convergence of (qN)N∈N

to Q(ε) means that

P
(

lim
N→∞

d
(
qN , Q(ε)

)
= 0

)
= 1.

That is, the following statement holds P-almost surely: for any δ > 0, there ex-
ists a positive integer N ′ such that, for each N > N ′, there exists q̃N ∈ Q(ε)

with ∥qN − q̃N∥ < δ. In other words, the sequence of empirical distributions of ac-
tions (qN)N∈N eventually enters any neighborhood of Q(ε) and stays there forever.
Equivalently, the following statement holds P-almost surely: for any ε′ > ε, there
exists a positive integer N ′ such that qN ∈ Q(ε′) for all N > N ′. In other words,
P-almost surely, there is a finite time N ′ after which the empirical distribution of
actions is always an ε′-BCE prediction of (GL, SL).

3.3 Illustration: A Two-Seller Pricing Game

Consider again the two-seller pricing game introduced in Section2.3. Hereafter,
for ease of exposition we assume that marginal costs are i.i.d. across sellers and
over time, so that (G,S) = (GL, SL).

Regrets and the ε-Regret Property. Since each seller has two actions, the ε-
AR property can be stated as follows: as the number of periods grows, the average
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actual payoff of each seller becomes ε-close to that of having set the best fixed price
in hindsight for each of the seller’s marginal cost. Formally, for all i and ti, the av-
erage factual profit that seller i with marginal cost ti has obtained up to time N is

Ui(ti, N) =
1

N

N∑
n=1

gi(p
n
i , p

n
−i)(p

n
i − tni )1{ti}(t

n
i ).

Moreover, for each price pi, the average counterfactual profit seller i with marginal
cost ti would have obtained had he set price pi in all periods up to time N is

Vi(pi, ti, N) =
1

N

N∑
n=1

gi(pi, p
n
−i)(pi − tni )1{ti}(t

n
i ).

The regret of seller i with marginal cost ti for price pi before setting a price at
time N + 1 is

Ri(pi, ti, N) = max {Vi(pi, ti, N)− Ui(ti, N), 0} .

Ri(k, ti, N) is a measure of the time average regret experienced by seller i with
marginal cost ti at period N for not having set price pi in all past periods up to N .

Let ε be a vector that specifies, for all i, pi, and ti, a non-negative real number
εi(pi, ti). A sequence of marginal costs and prices ((tn, pn))n∈N has the ε-AR
property if

lim sup
N→∞

Ri(pi, ti, N) ≤ εi(pi, ti)

for all i, ti, and pi.

For illustrative purposes, suppose sellers play the pricing game using regret
matching. This is a particularly simple regret-minimizing procedure (due to Hart
and Mas-Colell, 2000) for the repeated play of a complete information stage game.
We adapt the procedure to repeated play of the incomplete information pricing
game. Since each seller has two actions, regret matching prescribes setting each
price pi in period N + 1 with a probability that is proportional to the vector of
regrets. Formally, let γN+1

i (pi, ti, N) denote the probability of setting price pi in
period N+1 by seller i with marginal cost ti; then, regret matching prescribes that

γN+1
i (pi, ti, N) =

Ri(pi, ti, N)∑
p′i
Ri(p′i, ti, N)

for all pi. Play is arbitrary in the first period and when all regrets are zero. We
use regret matching to generate the simulated paths of play that we present next.
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Convergence under the ε-Regret Property. Let p := (p1, p2) denote a typ-
ical price profile and t := (t1, t2) a typical marginal cost profile. The empirical
distribution of prices and marginal costs at time N , denoted by ZN , is defined
pointwise as

ZN(p, t) :=
1

N

N∑
n=1

1{p}(p
n)1{t}(t

n)

for all (p, t). In the context of our pricing game, since each seller has two actions,
Theorem 1 can be stated as follows. A sequence of marginal costs and prices
((tn, pn))n∈N has the ε-AR property almost surely if and only if, as N → ∞, the
sequence of empirical distributions (ZN)N∈N satisfies the following properties:

1. Consistency for (G,S): for all t, we have

lim
N→∞

∑
p

ZN(p, t) = ψ(t)

almost surely.

2. ε-obedience for (G,S): for all i and ti, we have

lim sup
N→∞

∑
p,t−i

[
gi(p

′
i, p−i)(p

′
i − ti)− gi(p)(pi − ti)

]
ZN(p, (ti, t−i)) ≤ εi(p

′
i, ti)

for all p′i almost surely.

Hereafter, we consider the following parametric specification of the game. The
demand for seller i’s good is

gi(p
n
i , p

n
−i) :=M

exp(αpni )

1 + exp(αpni ) + exp(αpn−i)
. (2)

Here, M > 0 is the market size and exp(αpni )/(1 + exp(αpni ) + exp(αpn−i)) is the
probability that a consumer buys from seller i when prices are (pni , p

n
−i). The

parameter α < 0 captures consumers’ price sensitivity, so that i’s probability
of selling is decreasing in pni and increasing pn−i. Marginal costs are distributed
according to a discretized and truncated Normal distribution with mean µ > 0,
variance σ > 0, and finite support T̂ . In addition, we consider the following nu-
merical specification of the game. Sellers set prices in {p, p} = {3, 10}. Demand
parameters are M = 1 and α = −1/3. The distribution of marginal costs has
mean µ = 3, variance σ = 1, and is truncated at t = 0 and t = 6.

To illustrate the restrictions on actions implied by ε-BCE, we parametrize the
vector ε as a function of a non-negative real number ε. In particular, for all i,
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pi, p
′
i with pi ̸= p′i, and ti, we set εi(p′i, ti) equal to a fraction ε of an upper bound

on seller i’s maximum payoff difference from a deviation from pi to p′i when his
signal is ti. This procedure is described in detail in Appendix B and results in
an intuitive scaling of ε. With a slight abuse of notation, we write the resulting
set of ε-BCE predictions as Q(ε) and plot it in Figure 1 for three values of ε. As
expected, the set grows as ε grows, but remains quite small even for values of ε as
high as 0.1.

Figure 1: Sets of ε-BCE Predictions.

(a) ε = 0.02. (b) ε = 0.05.

(c) ε = 0.1.

The light-red convex sets correspond to Q(ε) for ε = 0.02, ε = 0.05, and ε = 0.1.

With the parametric and numerical specification above, we generate a sequence
of marginal costs and prices ((tn, pn))Kn=1 by letting sellers set prices using regret
matching. Figure 2 represents the empirical distribution of prices corresponding
to K = 400 iterations of regret matching. Each blue dot is a snapshot of the
empirical distribution of prices at a point along the path. The light-red convex
set represent set Q(ε) for ε = 0.05. The convergence of the empirical distribution
of prices to Q(ε) provides an illustration of Corollary 1.
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Figure 2: Convergence.

We represent a path of the empirical distribution of prices
(
qN
)K
N=1

generated by K = 400
iterations of regret matching. Blue dots correspond to the empirical distribution of prices at a
point along the path; the light-red convex set corresponds to Q(ε) for ε = 0.05.

4 Econometrics
In this section, we build on the theoretical results we established in Section 3 to
develop an empirical strategy that addresses the econometric problem presented
in Section 2.

4.1 Identification and Estimation

4.1.1 Empirical Model

We start by laying out the empirical model. In particular, the next assumption
summarizes the data-generating process and the observables.

Assumption 2. The empirical model and the observables are summarized by 1–4
below.

1. A game (G,S)∞ is played over time under Assumption 1.

2. The corresponding limiting stage game belongs to a parametric class of games{(
GL(λG), SL(λS)

)}
λ∈Λ indexed by structural parameters λ := (λG, λS) ∈ Λ,
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where Λ is a non-empty set. The true structural parameters in the data
generating process are λ0 := (λG0 , λ

S
0 ).

3. The researcher has access to either of the following datasets:

• Dataset D1: for some positive integer K, the researcher observes a real-
ized sequence of actions (an)Kn=1 ∈ AK from the dynamic game (G,S)∞.

• Dataset D2: for some positive integer K, the researcher observes an
empirical distribution of actions qK ∈ ∆(A) from the dynamic game
(G,S)∞ (possibly without information about the timing of actions).

4. The sequence of states, signals, and actions ((θn, tn, an))n∈N from (G,S)∞

has the ε-AR property almost surely for some ε.

Recall that dataset D2 can be constructed from dataset D1, but not viceversa,
as noted in Section 2.2.

In the rest of this section, we investigate how we can recover λ0 under Assump-
tion 2. Before, however, we note the following. As specified by Assumption 2, our
empirical model is incomplete (in the sense of Tamer, 2003). This is so because
although we assume that players learn to interact in/adapt to the environment
sufficiently well for the ε-AR property, we leave unspecified other elements of the
model. In particular, we do not exclude that players know, understand, or observe
more than the bare minimum needed for the ε-AR property to hold. Moreover,
we assume neither that players adopt a specific regret minimization procedure nor
that they coordinate on the same one (i.e., we adopt an algorithm-independent
approach).

4.1.2 Bayes Correlated ε-Equilibrium and Restrictions on Parameters

For any ε′ ≥ ε, we denote by Q(λ; ε′) the set of ε′-BCE predictions of game
(GL(λG), SL(λS)) with structural parameters λ := (λG, λS) ∈ Λ. Under Assump-
tion 2, in our empirical model, data are not sampled from a limiting “population”
distribution of the observable actions, i.e., a fixed limiting q0 ∈ ∆(A). Instead,
Corollary 1 only ensures that the sequence of empirical distributions of actions
(qN)N∈N converges almost surely to Q(λ0; ε), not necessarily to a point in that
set. Hence, the data are not generated from the repetition of identical experi-
ments. As a consequence, the standard notion of identified set is not meaningful
in our context.
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Despite these features, and although we do not maintain that the data are
generated by equilibrium play, for any ε′ > ε, the set of parameters compat-
ible with a given distribution of actions q ∈ ∆(A) as a ε′-BCE prediction of
(GL(λG), SL(λS)), given by {λ ∈ Λ : q ∈ Q(λ; ε′)} is a key ingredient to recover
valid bounds on the structural parameters in our setting, as we next show. We
further discuss the special features of our environment in Section 4.2.1, after we
develop our empirical strategy below.

4.1.3 Recovering Bounds on Parameters

We start by proposing a simple estimation strategy that uses the observed empir-
ical distribution of actions qK to recover the structural parameters λ. This can be
done using the “plug-in” estimator.

Definition 6 (Plug-in Estimator). Fix an ε′ and let qK be the observed empirical
distribution of actions at time K. The plug-in estimator is denoted by Λ̂K(ε′) and
defined by

Λ̂K(ε′) :=
{
λ ∈ Λ : qK ∈ Q(λ; ε′)

}
. (3)

The plug-in estimator Λ̂K(ε′) can be computed from the data under both
dataset D1 and dataset D2.

If dataset D1 is available, we can leverage the dynamic nature of the data-
generating process for the estimation of the primitives. Intuitively, we construct
estimators Λ̂K(ε′) for successive values of K, where K > N for some positive inte-
ger N , and then consider their intersection. At the limit, when iterated infinitely
many times, this procedure delivers the intersection of plug-in estimators.

Definition 7 (Intersection of Plug-in Estimators). Fix an ε′, let N be a positive in-
teger, and let

(
qK
)
K>N

be a sequence of observed empirical distributions of actions.
The intersection of plug-in estimators is denoted by inf Λ̂N(ε′) and defined by

inf Λ̂N(ε′) :=
⋂

K>N

Λ̂K(ε′). (4)

In the next theorem, we characterize properties of these estimation strategies.

Theorem 2 (Properties of Λ̂K(ε′) and inf Λ̂N(ε′)). Under Assumption 2, the
following holds almost surely. For any ε′ > ε, there exists a positive integer N ′

such that:
1. λ0 ∈ Λ̂K(ε′) for all K > N ′;
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2. λ0 ∈ inf Λ̂N(ε′) for all N > N
′.

The first part of Theorem 2 establishes that, for any ε′ > ε, the static equilib-
rium notion of ε′-BCE provides a valid restriction for the estimation of interactions
that satisfy the optimality condition captured by the ε-AR property. More specif-
ically, the theorem establishes that, under Assumption 2, the restrictions implied
by the ε′-BCE notion lead to estimating a set which almost surely contains the
true parameter in the data-generating process. Despite data not being gener-
ated by the repetition of identical experiments, we bound structural parameters
without statistical assumptions on the sampling process on top of the economic
assumption of ε-AR.

The second part of the theorem pushes this further. If the sequence of actions is
observable (dataset D1), for any ε′ > ε, the true parameter λ0 is contained almost
surely in the set inf Λ̂N(ε′) for some sufficiently large N . This result is the foun-
dation for a feasible procedure that constructs estimated sets of parameters as the
intersection of plug-in estimators Λ̂K′

(ε′) for several values of K. This procedure
leverages the dynamic nature of the data-generating process to produce bounds
that are tighter than we would obtain by only considering Λ̂K(ε′) for a fixed K as

inf Λ̂N(ε′) ⊆ Λ̂K(ε′) for all K > N.

Although the intersection bounds obtained by using the intersection of plug-in
estimators are by construction smaller than those obtained with a single plug-in
estimator at any point in time, the extra informativeness of this procedure is not
always without drawbacks. To see this, let K be the highest time index in dataset
D1. Moreover, suppose that, for some N ′ < K, qN ̸∈ Q(λ0; ε

′) for some N ≤ N ′,
whereas qN ∈ Q(λ0; ε

′) for all N > N ′ (i.e., convergence to the set Q(λ0; ε′) has
occurred by time N ′ + 1, but not before). Then, if N < N ′, it could very well be
the case that λ0 ̸∈ inf Λ̂N(ε′), whereas λ0 ∈ Λ̂K . That is, if the intersection on the
right-hand side of (3) is taken over some N such that qN ̸∈ Q(λ0; ε

′), it could well
be the case that the intersection of plug-in estimators does not contain the true
parameter λ0, whereas the plug-in estimator constructed using the time average
of play at time K (the latest period in the dataset) does. This issue is related to
how large of an ε′ we want to use, and to the rate of convergence and the sample
size. We return to these ideas in Sections 4.2.2 and 4.2.3.
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4.1.4 Theoretical Bounds

Although the width of the estimated sets Λ̂K(ε′) and inf Λ̂N(ε′) depends on details
of the model and of the unknown data-generating process, we may construct the-
oretical bounds on Λ̂K(ε′) and inf Λ̂N(ε′) based on the properties in Assumption
2. To this aim, we first define two sets of parameters that are compatible with
ε′-BCE predictions.

The outer recoverable set consists of all parameters compatible with at least
one ε′-BCE prediction for the game characterized by λ0.

Definition 8 (Outer Recoverable Set). Fix an ε′. The outer set of recoverable
parameters is denoted by ΛOR(λ0; ε

′) and defined by

ΛOR(λ0; ε
′) :=

⋃
q∈Q(λ0;ε′)

{λ ∈ Λ : q ∈ Q(λ; ε′)} .

The inner recoverable set consists of all parameters compatible with all ε′-BCE
prediction for the game characterized by λ0.

Definition 9 (Inner Recoverable Set). Fix an ε′. The inner set of recoverable
parameters is denoted by ΛIR(λ0; ε

′) and defined by

ΛIR(λ0; ε
′) :=

⋂
q∈Q(λ0;ε′)

{λ ∈ Λ : q ∈ Q(λ; ε′)} .

The inner and outer recoverable sets, although not estimable from the data as
they depend on the true parameter λ0, represent theoretical bounds on the infor-
mativeness of our estimation strategy. This is established by the next theorem.

Theorem 3 (Theoretical Bounds on Λ̂K(ε′) and inf Λ̂N(ε′)). Under Assumption
2, the following holds almost surely. For any ε′ > ε, there exists a positive integer
N ′ such that:

1. Λ̂K(ε′) ⊆ ΛOR(λ0; ε
′) for all K > N ′;

2. ΛIR(λ0; ε
′) ⊆ inf Λ̂N(ε′) for all N > N ′.

Suppose that dataset D1 is available and that we develop an estimation strat-
egy based on the intersection of sets Λ̂N(ε′) for K > N . In the best-case scenario,
the data-generating process will be such that

(
qK
)
K>N

will trace out the full set
of ε′-BCE predictions. In this case, the bounds on λ0 implied by our estimation
strategy may come close to the theoretical bounds of the inner recoverable set.
Conversely, if

(
qK
)
K>N

does not move around much in the set of ε′-BCE predic-
tions, or only dataset D2 is available, the bounds on λ0 implied by our estimation
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strategy will still lie within the outer recoverable set of parameters; that is, the
outer recoverable set is a worse-case scenario bound for our estimation strategy.

4.2 Discussion and Further Econometric Details

4.2.1 Discussion of the Empirical Strategy

The empirical environment described in Assumption 2 departs from both standard
identification analysis and standard estimation setups. In identification analysis,
the researcher observes the joint distribution of the observables—in our setting,
that would correspond to a q0 ∈ ∆(A). For estimation, the researcher typically
observes a finite sample of N i.i.d. draws from q0. The identified set of parameters
is thus characterized as a function of q0,11 and a corresponding estimator instead
is a function of the data sample. An important exception is Epstein, Kaido, and
Seo (2016), who study inference in complete information static games. While they
maintain that payoff types are i.i.d. draws, they note that when the equilibrium
selection rule is left unspecified as in Ciliberto and Tamer (2009), the observables
may not be i.i.d. draws as the equilibrium selection may vary across markets. Im-
portantly, they develop inferential tools to estimate the identified set under these
assumptions. Similar to Epstein et al. (2016), we do not observe i.i.d. draws from
q0, but rather a sequence of actions. Hence, the standard notion of an identified
set is not relevant for our model. Due to this, we focus on the true parameter
λ0—similar to some results in Ciliberto and Tamer (2009).

Our estimation strategy reflects the special features of our environment. Typ-
ically, in the literature on partially identified models (see, e.g., Molinari, 2020),
estimators are shown to have a weak consistency property with respect to the
identified set, or confidence sets have certain coverage properties. Instead, we
prove in Theorem 2 a strong coverage property of our estimator relative to λ0.
The strong (a.s.) nature of our results derives from the theoretical convergence
property of the data.12 Moreover, the special nature of sampling—where the dy-
namic data-generating process does not converge to a single distribution—can be
leveraged to treat successive distributions of the observables qN as different data
points. This motivates our intersection results in Theorem 2.

11See, for instance, Beresteanu, Molchanov, and Molinari (2011) and Galichon and Henry
(2011) on how to characterize the identified set in models of discrete games.

12Notice that we also maintain, similar to the literature on the estimation of games, that
unobservable payoff shifters are i.i.d. draws. Although we could construct an inferential strategy
based on this property, as in Epstein et al. (2016), we choose instead to build on the strong
convergence properties deriving from theory.
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4.2.2 Choosing the Value of ε′

The value of ε′ captures how much players’ behavior departs from perfect regret
minimization. As discussed in Section 3.1, such departures can have two explana-
tions: (i) players are not exact optimizers; (ii) players are sustaining some form of
cooperation beyond that allowed by exact regret minimization (despite the envi-
ronment’s complexity). Therefore, the question arises of how a researcher should
set ε′ for estimation.

In our estimation strategy, we treat ε′ as a tuning parameter. There is a clear
trade-off when choosing ε′. On the one hand, the larger ε′ is, the more robust
we are with respect to the perfect regret minimization assumption. On the other
hand, the larger ε′ is, the less informative the estimated bounds on parameter are;
this is so because for any ε′′ > ε′,

Λ̂K(ε′) ⊆ Λ̂K(ε′′) and inf Λ̂N(ε′) ⊆ inf Λ̂N(ε′′)

for all K and N . The approach we follow is to profile how estimated bounds
Λ̂K(ε′) and inf Λ̂N(ε′) change as ε′ varies. In practice, the choice of ε′ can be
guided by comparing the available sample size to a theoretically-informed guess
of how many time periods periods players need to satisfy the ε′-AR property. We
discuss this idea in the next section.

4.2.3 Rate of Convergence and Sample Size

Fix a value of ε′. It is natural to ask how many observations K a researcher
needs to construct a plug-in estimator Λ̂K(ε′) that contains almost surely the
true parameter λ0. In our setting, this question is equivalent to the question of
how long it takes for the sequence of empirical distributions of actions (qN)N∈N

to converge almost surely to Q(λ0; ε′). The answer to the latter question depends
on: (i) how long it takes for the joint empirical distribution of signals and states
to converge to the true distribution πL(· | ·)ψL(·); (ii) the specific ε-AR algorithm
that players follow to play game (G,S)∞. Hence, we cannot provide sharp rate-
of-convergence results without selecting a specific ε-AR algorithm (i.e., under an
algorithm-independent approach).

A large literature in computer science and economics, however, has pointed
out that many ε-AR algorithms have good convergence rates (i.e., they are fast,
and more so the more accurate is players’ knowledge of the environment or the
informational feedback they receive). In addition, such literature characterizes the
convergence rates for most ε-AR algorithms. In particular, for such algorithms,
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it is possible to determine upper bounds on how far the empirical distribution of
actions is from perfect regret minimization as a function of the number of periods
N and other parameters of the environment. Even in an algorithm-independent
approach, such theoretical results can be useful to guide the choice of ε′ for esti-
mation purposes as a function of the available sample size.

4.2.4 Joint Estimation of λ0 and ε

An alternative approach is to construct a set estimator that recovers bounds for
both λ0 and ε0, where ε0 is the true value of ε in the data-generating process.
Let D denote the dimension of vector ε and let qK be the observed empirical
distribution of actions at time K. The plug-in estimator of (λ0, ε0), which we
denote by Λ̂K , consists of all (λ, ε) compatible with the distribution of actions qK

as a ε-BCE prediction of (GL(λG), SL(λS)). That is,

Λ̂K :=
{
(λ, ε) ∈ Λ×R

D
+ : qK ∈ Q(λ; ε)

}
.

The projection on Λ of Λ̂K at a fixed value of ε′ returns the plug-in estimator
Λ̂K(ε′).

4.3 Computation

The estimation strategy described in Section 4.1 relies on the set estimator Λ̂N(ε′).
Although the definition of Λ̂N(ε′) in (3) is not immediately implementable, a
few steps proposed in Magnolfi and Roncoroni (2021) allow to efficiently com-
pute this set. In particular, denote by b⊺ the transpose of b ∈ R|A| and by
B|A| := {b ∈ R|A| : b⊺b ≤ 1} the closed unit ball centered at 0|A| ∈ R|A|. The
following result holds true.

Proposition 1. Fix an ε′ and let g(·; qN , ε′) : Λ → R be the function defined
pointwise by

g(λ; qN , ε′) := max
b∈B|A|

min
q∈Q(λ;ε′)

b⊺
(
qN − q

)
. (5)

Then,
Λ̂N(ε′) =

{
λ ∈ Λ : g

(
λ; qN , ε′

)
= 0
}
. (6)

According to Proposition 1, we can characterize the estimator Λ̂N(ε′) as the
zero level set of the criterion function g(·; qN , ε′). Hence, computing the set esti-
mator Λ̂N(ε′) amounts to evaluating the function g(·; qN , ε′) over an appropriately
chosen finite subset (a grid) of Λ. The computation of g(·; qN , ε′) can be further
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simplified by replacing the inner constrained minimization problem in (6) by its
dual, which consists of a linear constrained maximization problem. This step
makes it is possible to check whether a given value of λ belongs to the estimator
Λ̂N(ε′) by solving a single linear constrained maximization problem. We refer to
Appendix C for further computational details.

4.4 Illustration: A Two-Seller Pricing Game

We illustrate the estimation strategy in the context of the two-seller pricing game.
We first generate data under the same parametric and numerical specification as
in Section 3.3: sellers set prices in {3, 10}, demand parameters are M = 1 and
α = −1/3, and marginal costs are i.i.d. across players and over time according to
a discretized Normal distribution with µ0 = 3, σ0 = 1, and truncated at t = 0

and t = 6. Players set prices every period using regret matching, which we iterate
for K = 400 periods to obtain the sequence of empirical distributions of prices(
qN
)K
N=1

, K = 400.
We use the sequence of empirical distributions of prices

(
qN
)K
N=1

, K = 400,
depicted in Figure 2 to estimate the structural parameter λG = σ, the variance
parameter of the distribution of marginal costs.13 Similar to Section 3.3, we
parametrize ε′ as a function of a non-negative real number ε′ and denote—with
slight abuse of notation—the criterion function as g(σ; qN , ε′) and the correspond-
ing estimator as Λ̂N(ε′). We compute this function for three separate values of N
and ε′ = 0.05; the resulting estimator Λ̂N(0.05) is the set of values of σ for which
g(σ; qN , 0.05) = 0.

We report in Panel A of Table 1 the set estimator Λ̂N(ε′) for three values of ε′

and three values of ε′. The simulations show that in this example Λ̂N(ε′) is already
quite small for N = 400 and ε′ = 0.05. Except for one case (discussed below), our
plug-in estimators include the true value σ = 1. Moreover, the intersection of plug-
in estimators has the potential of considerably shrinking the estimated set of pa-
rameters. When ε′ and N are small, Λ̂N(ε′) and inf Λ̂N(ε′) do not contain the true
value σ = 1. This illustrates the discussion in Sections 4.1 and 4.2 of the potential
issues when considering the intersection of plug-in estimators for a small values of
N and ε′, the choice of ε′, and its relation to the number of available observations.

We report in Panel B of Table 1 the inner and outer recoverable set. In
this case, the inner recoverable set coincides with the true parameter. The outer

13Many other parametrizations of this game are possible. For instance, λ could describe sellers’
payoff functions, seller-specific perfectly persistent marginal costs, or the information structure.
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Figure 3: Estimation of σ.

For ε′ = 0.05, we represent the function g(σ; qN , ε′) which characterizes the set estimator Λ̂N (ε′).
Each of the three lines corresponds to a different value of N . The function is computed over a
grid of 500 values. See Appendix C for computational details.

recoverable set gives worst-case bounds that are informative for ε′ = 0.02 and
ε′ = 0.05. For ε′ = 0.1, which correspond to a large departure from perfect regret
minimization, the estimated sets remain informative, but the outer recoverable set
indicates that worst-case bounds can be largely uninformative.

5 Application: Pricing in an Online Platform
We use our method to study sellers’ pricing behavior on Swappa, an online market-
place for smartphones and other consumer electronics with around $100 million
in sales in 2018. Swappa is an appealing empirical environment to apply our
method to for at least two reasons. First, pricing on Swappa is a good example
of a complex dynamic environment: sellers set prices over time and need to po-
tentially keep track of a large and fast-evolving set of competitors and potential
competitors. Thus, the payoffs of different pricing strategies are hard to predict.
Second, this environment has broader relevance for many online decentralized
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Table 1: Set Estimators and Recoverable Sets.

Panel A: Set Estimators ε′ = 0.02 ε′ = 0.05 ε′ = 0.1

Λ̂200(ε′) [1.03, 1.84] [0.80, 2.01] [0.51, 2.40]

Λ̂300(ε′) [0.89, 1.23] [0.69, 1.32] [0.44, 1.48]

Λ̂400(ε′) [0.76, 1.21] [0.59, 1.28] [0.37, 1.43]

inf Λ̂200(ε′) [1.03, 1.21] [0.80, 1.28] [0.51, 1.43]

Panel B: Recoverable Sets ε′ = 0.02 ε′ = 0.05 ε′ = 0.1

ΛIR(ε′;σ0) {1} {1} {1}
ΛOR(ε′;σ0) [0.50, 2.40] [0.42, 2.71] [0.30, 13.25]

Panel A reports set estimators Λ̂N (ε′) for three values of N , and inf Λ̂N (ε′) for N = 200;
each set estimator is computed for three values of ε′. Panel B reports ΛIR(σ0; ε

′) and
ΛOR(σ0; ε

′) computed over a grid of 500 values of σ for three values of ε′. See Appendix C
for computational details.

platforms and marketplaces, where pricing is a decision of individual sellers. Ex-
amples include Amazon marketplace and eBay buy-it-now listings, which account
for several hundreds of billions in annual sales. In contrast to other marketplaces,
Swappa has desirable features: first, sellers do not compete with the platform (as
in, e.g., Amazon and Walmart marketplaces); second, sellers do not have access
to algorithmic pricing tools during our sample period.

In this environment, we use our method to recover the distribution of sellers’
marginal costs. This primitive is an essential input to a variety of market design
questions. For instance, suppose that the platform were to offer pricing algorithms
to sellers: what would be the resulting change in sales and surplus?

In the rest of the section, we first describe the empirical setting and the data;
then we introduce the empirical model; finally, we discuss estimation results.

5.1 Empirical Setting and Data

Swappa is a user-to-user online marketplace where sellers list new or used electronic
devices. Listings go through an approval process whereby the platform checks that
the device is ready for activation. There is no listing fee, but buyers pay a flat fee to
the platform upon purchase; the fee is included in the buyer’s purchase price. Buy-
ers shop on the website by first selecting the device they are interested in and then
choosing among different listings for individual items. Figure 4 shows a screenshot
from the website, which displays the set of available items at a point in time.

We collect data from Swappa by scraping the website for about three consecu-
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Figure 4: A Screenshot from the Swappa Website.

The figure shows the web page that Swappa users see when selecting a device (in this case, Apple
iPhone X).
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tive months from November 2019 to February 2020. While many types of devices
are on sale on Swappa, we only collect data for the ten most common models of
iPhones, as these tend to be the thickest markets on the website. For each listing—
corresponding to a phone on sale—we collect information on price and seller and
product characteristics at hourly intervals until the item is sold. The hourly price
observations are aggregated at the daily level by taking the average. Over the full
sample period, we observe a total of 12,741 product listings owned by 2,436 sellers.

Sellers on the website greatly differ in the number of listings that they make
over our sample period. While there is a long tail of sellers that only list one device
in our sample, we focus on more experienced sellers. We do so because we want to
model pricing behavior over time for sellers that make multiple pricing decisions.
Hence, in the following analysis, we focus in particular on the largest sellers. The
largest seller has 763 listings over the sample period; considering sellers that have
at least 130 listings over the sample period yields a set of 15 sellers.14 These sellers
are typically small firms that acquire used cellphones, refurbish them, and resell
them. A device’s marginal cost for these firms mainly consists of the acquisition
and refurbishment cost (including labor and parts).

5.2 Empirical Model

Sellers on the marketplace face a trade-off: lower prices increase the probability
of selling a device but lead to lower margins. For each seller i we assume that, for
each device j seller i has on sale, the seller makes a pricing decision every day d
that the listing is active.15 Hereafter, we refer to each device-day pair (j, d) as a
different period n (i.e., n = (j, d)).

To construct the set of competitors −i for every device-day (j, d) of seller i,
we assume that the set of competing devices includes all the devices of the same
model as that of device j that are available on day d on Swappa. Seller i’s payoff
in period n is defined as

ui(p
n
i , p

n
−i, ti) := gi(p

n
i , p

n
−i)(p

n
i − tni ),

where pni and pn−i denote the prices of seller i and its competitors in period n, the
function gi(pni , pn−i) maps profiles of prices (pni , pn−i) in period n into probabilities
of making a sale for seller i in period n, and tni denotes seller i’s marginal cost in
period n.

14We further document heterogeneity across sellers in pricing behavior in Appendix D.2
15In Appendix D.3, we present evidence on the timing of pricing decisions and argue that daily

timing fits well the environment we study.
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Although we consider a few separate markets, in which sellers list relatively
homogeneous items, several factors are likely to affect pricing behavior. For in-
stance, the phones on sale may vary in storage capacity and condition (ranging
from “mint” to “fair”). In principle, accounting for this observable heterogeneity
in the model is straightforward. In practice, our data is limited, suggesting that we
may want to learn from sellers’ pricing behavior across different devices. Hence, to
make the model estimable with our method, we adopt a few simplifying assump-
tions. Let n = (j, d) be a device-day pair. We assume that marginal costs tni can
be decomposed into two additive components, or tni = χm(j)d + ζni , where χm(j)d

is an “average valuation” of a device j with characteristics m(j) on day d, and ζni
is a seller-specific cost shock in period n. We interpret χm(j)d as the market price
of a device j with characteristics m(j) on other platforms or online marketplaces
on day d, and ζni as an idiosyncratic cost component, capturing the specific ac-
quisition cost or valuation of the seller. This assumption is similar to the additive
valuation assumption in Haile, Hong, and Shum (2003) and Wildenbeest (2011).

We further assume that χm(j)d can be estimated from price data, or pni =

χm(j)d + ρni , where E[ρni | χm(j)d] = 0.16 Hence, the pricing residual ρni captures
the seller’s pricing behavior for item j in period d, and we can rewrite payoffs as

πi(ρ
n
i , ρ

n
−i, ζ

n
i ) := g̃i(ρ

n
i , ρ

n
−i, ζ

n
i )(ρ

n
i − ζni ),

where g̃i models probabilities of sale for seller i. Moreover, we assume that, for
all i, i′, if (ρni , ρn−i) = (ρni′ , ρ

n
−i′), then g̃i(ρ

n
i , ρ

n
−i) = g̃i′(ρ

n
i′ , ρ

n
−i′), as sale probabili-

ties only depend on the tuples of pricing residuals (ρni , ρn−i) and (ρni′ , ρ
n
−i′). Taken

together, our assumptions on payoffs greatly simplify the pricing problem by sup-
pressing the dependence on item characteristics. Although the assumptions are
strong, they preserve the basic incentive structure and make the empirical envi-
ronment tractable by yielding an empirical game that is close to the general model.

The pricing game that sellers play on Swappa is potentially large, including a
fast-evolving set of many competing sellers. To reduce the dimensionality of the
game, we assume that seller i’s payoff—through the function g̃i—only depends on
the aggregate state ρn−i in period n. The aggregate state ρn−i captures prices of

16To operationalize this approach, we express χm(j)d as a linear index of observable covariates
and estimate the linear model

pni = x⊺m(j)dβ + ρni ,

where β is a vector of parameters, and x⊺m(j)d is the transpose of vector xm(j)d, which includes
a “trusted seller” indicator, the seller’s rating, warranty length, an indicator for additional
warranty, and fixed effects for storage capacity level, condition, and date-device. Further details
are in Appendix D.4.1.
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sellers other than i in period n. This is in the spirit of the oblivious equilibrium
approach of Weintraub, Benkard, and Van Roy (2008) and of aggregative- and
large-games approaches (see, e.g., Jensen, 2018; Gradwohl and Kalai, 2021).

For each seller i, we estimate the distribution of marginal costs ζni by using the
method described in Section 4. We denote by ψi(·;λ0i) ∈ ∆++(Ti) the distribution
of seller i’s marginal costs (parametrized by λ0i). Moreover, we denote by ψ̃i(·) ∈
∆++(Θi) the distribution of prices of sellers other than i (that can be estimated
from the data).

We assume that, for each seller i, the sequence of aggregate states, marginal
costs, and prices ((ρn−i, ζ

n
i , ρ

n
i ))n∈N has the ε-AR property almost surely. The

empirical distribution of prices, marginal costs, and states at time N for seller i,
denoted by ZN

i , is defined pointwise as

ZN
i (ρi, ζi, ρ−i) :=

1

N

N∑
n=1

1{ρi}(ρ
n
i )1{ζi}(ζ

n
i )1{ρ−i}(ρ

n
−i)

for all (ρi, ζi, ρ−i) ∈ (Ai × Ti ×Θi). By Theorem 1, since ((ρn−i, ζ
n
i , ρ

n
i ))n∈N has the

ε-AR property almost surely as N → ∞, the sequence of empirical distributions
(ZN

i )N∈N satisfies the following properties:
1. Consistency:

lim
N→∞

∑
ρi

ZN
i (ρi, ζi, ρ−i) = ψi(ζi;λ0i)ψi(ρ−i),

almost surely.

2. εi-obedience: for all ζi and ρi, we have

lim sup
N→∞

∑
ρ−i

[[
g̃i(ρ

′
i, ρ−i, ζi)(ρ

′
i − ζi)− g̃i(ρi, ρ−i, ζi)(ρi − ζi)

]
× ZN

i (ρi, ζi, ρ−i)Z
N
i (ρi, ζi, ρ−i)

]
≤ εi(ρi, ρ

′
i, ti)

for all ρ′i almost surely.

Our estimation strategy is based on the restriction implied by consistency and
εi-obedience in the empirical pricing game we consider. To make the empiri-
cal model estimable, we perform some further simplifications. First, we adopt a
coarse discretization of pricing residuals to reduce the computational burden of
the method. In particular, we split the observations of ρni into positive and neg-
ative values and construct ρH and ρL as the median observations in each of the
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two bins. We also discretize ρn−i and assign a value ρH if the majority of seller i’s
competitors in period n are priced at ρH and a value ρL otherwise. With this dis-
cretization, the function g̃i takes four possible values, which we estimate directly
from the data. In particular, for any pair (ρi, ρ−i), we compute g̃i(ρi, ρ−i) as the
average probability of selling a device for all observations with price ρi = ρ when
the aggregate state is ρ−i.

Second, similar to our illustrative example, we assume that each seller i’s
marginal costs ζni is i.i.d. according to a truncated Normal distribution with pa-
rameters µi and σi. This specification leaves the parameters to be seller dependent
and allows for variability in marginal costs for a seller across periods (or, equiv-
alently, across device-days). In the next section, we discuss the estimation of µi

while fixing σi at different values; that is, λ0i := µi(σi). The parameter σi captures
the variability across periods of seller i’s (residualized) marginal costs; thus, small
(resp., large) values of σi corresponds to a relatively small (resp., large) variability
across periods of seller i’s marginal costs.

5.3 Estimation Results

For each seller i, we obtain an empirical distribution of prices qNi , and define a
function gi

(
µi; q

N
i , ε

′, σi
)
, where the corresponding estimated sets Λ̂N(ε′, σi) con-

tain the zeros of function gi. The real number ε′ parametrizes ε′ as in Sections 3.3
and 4.4. We also express σi as the ratio of ρH−ρL, as to provide an intuitive scale.

We first fix ε′ = 0.05 and profile the estimated sets for µi as a function of σi.
Figure 5 represents the estimated set Λ̂N(0.05, σi) for the four largest sellers in
our sample (by the total number of listings) in different shades of blue, and for
different values of σi on the vertical axis. The figure shows that similar values of
average ζi rationalize the data for different sellers. The values of µi are in USD.
Such values are negative because ζi is the deviation between sellers’ marginal cost
and average valuation. Thus, our results indicate that µi is in the order of $20,
suggesting that sellers are able to acquire and refurbish phones for around $20 less
than the average valuation. Higher values of σi enlarge the set Λ̂N(0.05, σi), as
a broader range of average parameters can rationalize the data for higher values
of the variance parameter. However, for small variations in marginal cost within
sellers, the estimated sets are small.

Figure 6 further explores heterogeneity across sellers, representing the esti-
mated set Λ̂N(0.05, 0.05) for the nine largest sellers in the sample. The figure indi-
cates more heterogeneity than was apparent from just focusing on the four largest
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Figure 5: Estimation Results I.

For ε′ = 0.05, we represent the estimated set Λ̂N (ε, σi) for the four largest sellers in the sample
in different shades of blue, and for different values of σi on the vertical axis.

sellers. Figure 7 finally profiles the estimated set Λ̂N(ε′, 0.05) for different values
of ε′. Unsurprisingly, larger values of ε′ generate larger estimated sets. However,
the estimated sets remain informative even for ε′ = 0.2, which corresponds to a
substantial departure from perfect regret minimization.

Figure 6: Estimation Results II.

For ε′ = 0.05 and σi = 0.05, we represent the estimated set Λ̂N (ε′, σi) for the nine largest sellers
in the sample.

The primitive that we recover enables two kinds of policy exercises. First, we
can use the distributions of sellers’ marginal costs to evaluate how the current
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Figure 7: Estimation Results III.

For σi = 0.05, we represent the estimated set Λ̂N (ε′, σi) for the four largest sellers in the sample
in different shades of blue, and for different values of ε on the vertical axis.

level of pricing compares with a Bertrand equilibrium and a perfect collusion
benchmark. This measures the degree of current competitiveness of pricing in
this online marketplace. Second, the distributions of sellers’ marginal costs allow
us to simulate pricing according to popular algorithms that are widely used in e-
commerce applications. While some online marketplaces have made available these
pricing tools to sellers, the effect that they have on prices is a topic of frontier
research. This policy exercise could contribute meaningfully to this debate.

6 Additional Results and Discussion

6.1 Alternative Regret Notions

There are alternative notions of regret and asymptotic ε-regret property than those
introduced by Definitions 1 and 2. A well-known alternative is that of external
regret.17. In words, a sequence ((θn, tn, an))n∈N from (G,S)∞ has the asymptotic
ε-external regret property if the time average of the counterfactual increase in past
payoffs, had each player (i, ti) played the best fixed action in hindsight, becomes
ε-close to vanish in the long run. Thus, external regrets are a coarser measure of
regret than internal regrets.

17As opposed to internal regret, which correspond to the notion in Definition 1. For additional
regret notions see, e.g., Greenwald and Jafari (2003) and Lehrer (2003)
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In Appendix E, we provide analogous results to those in Section 3 for the ex-
ternal regret notion. In particular, we show that a sequence of states, signals, and
actions from (G,S)∞ has the asymptotic ε-external regret property almost surely
if and only if the sequence of empirical distributions converges almost surely to
the set of Bayes coarse correlated ε-equilibria of the limiting stage game. The
notion of Bayes coarse correlated ε-equilibrium (hereafter, ε-BCCE) is new to
this paper. It can be interpreted as an incomplete information version of coarse
correlated equilibrium (Hannan, 1957; Moulin and Vial, 1978; Young, 2004) or as
the coarse analog of the ε-BCE notion. Since the ε-BCCE is defined using coarse
incentive constraints than those used to define the ε-BCE, the set of ε-BCCE of
the limiting stage game is a superset of its set of ε-BCE.

With the appropriate changes, our estimation approach can be implemented
under the assumption that the sequence of states, signals, and actions from (G,S)∞

has the asymptotic ε-external regret property. In that case, the ε′-BCCE notion
would provide valid restrictions to estimate the structural parameters of interest.

We develop our econometric approach under the asymptotic ε-external regret
property for two reasons. First, Blum and Mansour (2007) provide a “black box
reduction” to convert any asymptotic ε-external regret algorithm into a ε-internal
regret algorithm. Thus, whenever agents can satisfy the asymptotic ε-internal
regret, they can also satisfy the asymptotic ε-external regret property. Second,
for games with complete information, Greenwald and Jafari (2003) show that the
tightest game-theoretic solution concept to which regret minimizing algorithms
can (provably) converge is correlated equilibrium. For regret notions that are
more refined than internal regrets, convergence properties cannot be established.
Thus, our approach leverages the most informative restrictions implied by regret
minimization while, at the same time, taking advantage of the possibility of using
a limiting simple equilibrium restriction for estimation purposes. Because of the
“black-box reduction,” however, more informative restrictions do not come with
additional assumptions on players knowledge or understanding of the environment.

6.2 Asymptotic ε-Regret and Orders on Information Struc-
tures

There are (at least) two natural orderings on information structures: an “incentive
ordering” and a “statistical ordering”. Roughly speaking, we have the following.18

18We refer to Bergemann and Morris (2016) for the formal definitions.
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• Incentive ordering: an information structure is more incentive constrained
than another if it gives rise to a smaller set of BCE.

• Statistical ordering: an information structure is individually sufficient for an-
other if there exists a combined information structure19 where each player’s
signal from the former information structure is a sufficient statistic for the
state and other players’ signals in the latter information structure; individ-
ual sufficiency captures intuitively when one information structure contains
more information than another.

Bergemann and Morris (2016) show that one information structure is more incen-
tive constrained than another if and only if the former is individually sufficient for
the latter. That is, the statistical ordering is equivalent to the incentive ordering.

Building on the latter equivalence, we can address the following robustness
question for our empirical exercise. Fix a limiting basic game GL(λG0 ). Suppose the
researcher assumes that the information structure is SL, but the true information
structure is S̃L, for some S̃L that is individually sufficient for SL, the exact S̃L

being unknown to the researcher. Can the researcher still recover valid bounds on
λG0 under the ε-AR assumption?

The answer to the previous question is positive. Let E(ε) be the set of ε-BCE
of (GL(λG0 ), S

L) and let Ẽ(ε) be the set of ε-BCE of (GL(λG0 ), S̃
L). Suppose that

the sequence of states, signals, and actions has the ε-AR property almost surely.
Thus, by Theorem 1, the sequence of empirical distributions converges almost
surely to Ẽ(ε). As S̃L is individually sufficient for SL, by Bergemann and Morris
(2016)’s equivalence result, S̃L is also more incentive constrained than SL, and so
Ẽ(ε) ⊆ E(ε). But then, the sequence of empirical distributions converges almost
surely also to E(ε). As a result, the bounds on λG0 under the ε-AR assumption
remain valid, although they might not be as sharp as those one would obtain under
the correct specification of the information structure.

The previous discussion also suggests that the results in this paper provide
a novel interpretation of estimates obtained under BCE. While BCE has been
adopted for estimation to weaken assumptions on information (Magnolfi and Ron-
coroni, 2021; Syrgkanis et al., 2021; Gualdani and Sinha, 2020), our results imply
that BCE identified sets are still valid even if the data are not generated by BNE,

19A combination of the two information structures is a new information structure in which
a pair of signals—one from each information structure—is observed and the marginal proba-
bility over signals from each of the original information structures corresponds to the original
distribution over signals for that information structure.

41



insofar the ε-regret property holds. Thus, robustness with respect to assumptions
on equilibrium play comes at no additional cost—in terms of informativeness of the
estimation procedure—when one pursues robustness with respect to assumptions
on information.

7 Conclusion
We develop a new approach to estimate a game’s primitives when players interact
in a complex dynamic environment. Because of the environment’s characteristics,
players may not know or understand key aspects of the interaction. This setup mo-
tivates a departure from standard equilibrium assumptions. In contrast, we pursue
an adaptive approach that builds on the idea that learning outcomes can be used
as an alternative to solution concepts when analyzing game dynamics. We impose
an asymptotic ε-regret property on the observed play. Under the asymptotic ε-
regret property, we first prove that the empirical distribution of actions converges
to the set of Bayes correlated ε-equilibrium predictions of the underlying limiting
stage game. Then, we use this static equilibrium notion to construct set-valued
estimators of the parameters of interest. The econometric properties of these esti-
mators directly arise from the theoretical convergence results under the asymptotic
ε-regret property. We also construct theoretical bounds on how informative the
estimated set of parameters can be. The method applies to panel data as well as
to cross-sectional data interpreted as long-run outcomes of learning dynamics.

Monte Carlo evidence for a repeated binary pricing game shows that our esti-
mation strategy delivers informative bounds on parameters for a simple two-seller
pricing game. In an empirical application, we use the method to recover the distri-
bution of sellers’ marginal costs from data on pricing behavior on Swappa—an e-
commerce platform for used cellphones and other portable electronic devices. The
distribution of sellers’ marginal costs is a key input to inform policy exercises and
market-design counterfactuals. Our method produces estimates of seller-specific
average costs that are plausible in this economic environment.

This paper leaves open several avenues for future research. We mention a
few. First, the methods we develop have a counterpart for single-agent dynamics.
A natural extension of our approach can be used to study the estimation of re-
peated discrete choice models in complex environments. Second, the foundational
assumptions of our approach, the ε-AR property, may be formally tested using
either experimental or non-experimental data. Such a test would help to better
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define the scope of empirical environments where our method applies. Finally, in
parallel work in progress, we show that coarse correlated ε-equilibrium restrictions
on payoffs provide useful restrictions to robustly identify the structural primitives
in infinitely repeated games with perfect monitoring or imperfect public monitor-
ing under equilibrium assumptions. Our approach is robust in two respects. First,
the method does not rely on equilibrium selection assumptions besides subgame
perfection in repeated games with public monitoring and perfect public equilib-
rium in repeated games with imperfect public monitoring. Second, the method
does not require the analyst to fully specify the informativeness of the game’s
monitoring structure or agents’ patience.
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A Proofs for Sections 3.2 and 4

A.1 Proof of Theorem 1

[=⇒] Fix an ε and suppose ((θn, tn, an))n∈N from (G,S)∞ has ε-AR almost surely. Con-
sider any subsequence

(
ZNl

)
l∈N of

(
ZN
)
N∈N that converges almost surely to some ν ∈

∆(A × TL × ΘL). We need to show that ν ∈ E(ε) almost surely, i.e., that ν is almost
surely consistent and ε-obedient for (GL, SL).

Consistency. Pick any (t, θ) ∈ T ×Θ′. Note the following:

∑
a

ν(a, t, θ) =
∑
a

lim
l→∞

ZNl(a, t, θ)

= lim
l→∞

∑
a

ZNl(a, t, θ)

= lim
l→∞

[ ∑
a Z

Nl(a, t, θ)∑
a,t Z

Nl(a, t, θ)

∑
a,t

ZNl(a, t, θ)

]
(7)

= lim
l→∞

∑
a Z

Nl(a, t, θ)∑
a,t Z

Nl(a, t, θ)
lim
l→∞

∑
a,t

ZNl(a, t, θ)

= lim
l→∞

∑Nl
n=1 1{t}(t

n)1{θ}(θ
n)∑Nl

n=1 1{θ}(θ
n)

lim
l→∞

∑Nl
n=1 1{θ}(θ

n)

Nl
.

The ratio ∑Nl
n=1 1{t}(t

n)1{θ}(θ
n)∑Nl

n=1 1{θ}(θ
n)

(8)

is the empirical frequency of the signal profile t when filtered at time steps where the state is θ.
As the tn’s are drawn from π(· | θn), (8) is the empirical frequency of

∑Nl
n=1 1{θ}(θ

n) condition-
ally independent observations from π(· | θ). Moreover, since almost all paths of process (θn)n∈N
have a limiting empirical distribution ψL with full support on ΘL,

∑Nl
n=1 1{θ}(θ

n) → ∞ as
l → ∞ almost surely. Thus, by the strong law of large numbers,

lim
l→∞

∑Nl
n=1 1{t}(t

n)1{θ}(θ
n)∑Nl

n=1 1{θ}(θ
n)

= πL(t | θ) a.s. (9)

Moreover, again because almost all paths of process (θn)n∈N have a limiting empirical distri-
bution ψL with full support on ΘL

lim
l→∞

∑Nl
n=1 1{θ}(θ

n)

Nl
= ψL(θ) a.s. (10)

Together, (7), (9), and (10) give

∑
a

ν(a, t, θ) = πL(t | θ)ψL(θ) a.s. (11)
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As (t, θ) ∈ TL × ΘL was arbitrarily chosen, we conclude from (11) that ν is almost surely
consistent for (GL, SL).

ε-obedience. To begin, note the following:

Vi(ai, a
′
i, N, ti)− Ui(ti, N)

=
1

N

N∑
n=1

[
ui
(
(a′i, a

n
−i), θ

n)
)
− ui

(
(ani , a

n
−i), θ

n)
)]
1{ai}(a

n
i )1{ti}(t

n
i )

=
1

N

∑
θ

N∑
n=1

[
ui
(
(a′i, a

n
−i), θ

n)
)
− ui

(
(ani , a

n
−i), θ

n)
)]
1{ai}(a

n
i )1{ti}(t

n
i )1{θ}(θ

n)

=
∑

a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ZN
(
(ai, a−i), (ti, t−i), θ

)
.

(12)

Now pick any i ∈ I, ti ∈ TL
i , and ai, a

′
i ∈ Ai. As lim supN→∞Ri(ai, a

′
i, ti, N) ≤ εi(ai, a

′
i, ti)

a.s., by definition of Ri(ai, a
′
i, ti, N), we also have

lim sup
N→∞

[
Vi(ai, a

′
i, ti, N)− Ui(ti, N)

]
≤ εi(ai, a

′
i, ti) a.s. (13)

Then, by (12) and (13),

lim sup
N→∞

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ZN
(
(ai, a−i), (ti, t−i), θ

)
≤ εi(ai, a

′
i, ti) (14)

holds almost surely. Moreover, on the subsequence
(
ZNl

)
l∈N we get

lim
l→∞

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ZNl

(
(ai, a−i), (ti, t−i), θ

)
=

∑
a−i,t−i,θ

lim
l→∞

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ZNl

(
(ai, a−i), (ti, t−i), θ

)
(15)

=
∑

a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ν
(
(ai, a−i), (ti, t−i), θ

)
.

Together, (14) and (15) give

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ν
(
(ai, a−i), (ti, t−i), θ

)
≤ εi(ai, a

′
i, ti) a.s. (16)

As i ∈ I, ti ∈ TL
i , and ai, a

′
i ∈ Ai were arbitrarily chosen, we conclude from (16) that ν is

almost surely ε-obedient for (GL, SL).
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[⇐=] Now suppose
(
ZN
)
N∈N converges almost surely to E(ε) for some ε. Pick any i ∈ I,

ti ∈ TL
i , and ai, a′i ∈ Ai. By ε-obedience,

lim sup
N→∞

∑
a−i,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui

(
(ai, a−i), θ

)]
ZN
(
(ai, a−i), (ti, t−i), θ

)
≤ εi(ai, a

′
i, ti) (17)

holds almost surely. By (12) and (17),

lim sup
N→∞

[
Vi(ai, a

′
i, ti, N)− Ui(ti, N)

]
≤ εi(ai, a

′
i, ti) a.s.,

which implies
lim sup
N→∞

Ri(ai, a
′
i, ti, N) ≤ εi(ai, a

′
i, ti) a.s.

by definition of Ri(ai, a
′
i, ti, N). As i ∈ I, ti ∈ TL

i , and ai, a′i ∈ Ai were arbitrarily chosen, the
desired result follows. ■

A.2 Proof of Theorem 2

Proof of part 1. For any ε′ > ε, by definition of Λ̂K(ε′), we have:

λ0 ∈ Λ̂K(ε′) ⇐⇒ qK ∈ Q(λ0; ε
′). (18)

Under Assumption 2, the sequence
(
qK
)
N∈N converges almost surely to Q(ε;λ) as K → ∞

(by Theorem 1 and Corollary 1). Then, by Remark 1, almost surely, for any ε′ > ε, there
exists N ′ such that qK ∈ Q(λ0; ε

′) for all K > N ′. Combining this fact with (18) gives the
desired result. ■

Proof of part 2. It follows from part 1 and the definition of inf Λ̂N (ε′) in (4). ■

A.3 Proof of Theorem 3

Proof of part 1. For any ε′ > ε, by definition of Λ̂K(ε′) and of ΛOR(λ0; ε
′), we have:

qK ∈ Q(λ0; ε
′) ⇐⇒

{
λ ∈ Λ : qK ∈ Q(λ; ε′)

}
⊆ ΛOR(λ0; ε

′) ⇐⇒ Λ̂K(ε′) ⊆ ΛOR(λ0; ε
′). (19)

Under Assumption 2, almost surely, for any ε′ > ε, there exists N ′ such that qK ∈ Q(λ0; ε
′)

for all K > N ′ (by Theorem 1 and Corollary 1, see proof of Theorem 2). Combining this with
(19) gives the desired result. ■

Proof of part 2. Under Assumption 2, almost surely, for any ε′ > ε, there exists N ′ such
that qK ∈ Q(λ0; ε

′) for all K > N ′ (by Theorem 1 and Corollary 1, see proof of Theorem 2).
Thus, by definition of ΛIR(λ0; ε

′) and inf Λ̂N (ε′), almost surely, for any ε′ > ε, there exists

46



N ′ such that
ΛIR(λ0; ε

′) ⊆ inf Λ̂N (ε′)

for all N > N ′, which gives the desired result. ■

A.4 Proof of Proposition 1

First, since Q(λ; ε′) is a non-empty, closed, and convex set, it has the following (support-
function) characterization:

qN ∈ Q(λ; ε′) ⇐⇒
〈
b⊺qN − sup

q∈Q(λ;ε′)
b⊺q ≤ 0 for all b ∈ B|A|〉. (20)

Second, since Q(λ; ε′) is also bounded and b⊺q is continuous, (20) is equivalent to

qN ∈ Q(λ; ε′) ⇐⇒
〈
b⊺qN − max

q∈Q(λ;ε′)
b⊺q ≤ 0 for all b ∈ B|A|〉. (21)

Third, since b⊺qN − maxq∈Q(λ;ε′) b
⊺q = minq∈Q(λ;ε′) b

⊺(qN − q) and minq∈Q(λ;ε′) b
⊺(qN − q)

evaluated at b = 0|A| ∈ B is equal to 0, (21) is equivalent to

qN ∈ Q(λ; ε′) ⇐⇒ max
b∈B|A|

min
q∈Q(λ;ε′)

b⊺
(
qN − q

)
. (22)

The desired result follows from (22), the definition of Λ̂N (ε′) in (3), and the definition of
g(·; qN , ε′) in (5). ■

B Details for Illustrative Examples
Parametrization of ε. We describe how we parametrize ε as a function of a non-negative
real number ε in the illustrative examples of Sections 3.3 and 4.4. Fix i ∈ I, ai, a′i ∈ Ai, and
ti ∈ Ti, and consider ε-obedience:

∑
a−i,t−i

[
ui
(
(a′i, a−i), ti;λ

)
− ui

(
(ai, a−i), ti;λ

)]
ν
(
(ai, a−i), (ti, t−i)

)
≤ εi(ai, a

′
i, ti).

The left-hand side of the inequality provides a natural scale for εi(ai, a′i, ti). To ensure com-
putational tractability and not have εi(ai, a′i, ti) depend on equilibrium objects (i.e., on ν), we
consider the following upper bound:

∑
a−i,t−i

[
ui
(
(a′i, a−i), ti;λ

)
− ui

(
(ai, a−i), ti;λ

)]
ν
(
(ai, a−i), (ti, t−i)

)
≤
∑

a−i,t−i

∣∣ui((a′i, a−i), ti;λ
)
− ui

(
(ai, a−i), ti;λ

)∣∣ν((ai, a−i), (ti, t−i)
)
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≤max
a−i

∣∣ui((a′i, a−i), ti;λ
)
− ui

(
(ai, a−i), ti;λ

)∣∣( ∑
a−i,t−i

ν
(
(ai, a−i), (ti, t−i)

))
≤max

a−i

∣∣ui((a′i, a−i), ti;λ
)
− ui

(
(ai, a−i), ti;λ

)∣∣ψ(ti;λ),
which is computable for any guess of the parameter λ. Thus, to compute the function
g(λ; qN , ε) we set

εi(ai, a
′
i, ti;λ) = εmax

a−i

∣∣ui((a′i, a−i), ti;λ
)
− ui

(
(ai, a−i), ti;λ

)∣∣ψ(ti;λ),
where ε ∈ [0, 1]. Intuitively, this parametrization scales εi(ai, a′i, ti;λ) as a fraction ε of an
upper bound on player i’s maximum payoff difference from a deviation from ai to a′i when his
signal is ti.

Although the parametrization introduces a dependence of ε on λ, this does not have
consequences on the estimates: in simulations, we obtain qualitatively identical bounds if we
set λ = λ0. Alternatively, the procedure could be implemented for a fixed guess of λ.

C Computational Appendix
In this appendix, we present the details for the computation of the function g(·; qN , ε′) : Λ →
R, defined pointwise by

g
(
λ; qN , ε′

)
:= max

b∈B|A|
min

q∈Q(λ;ε′)
b⊺
(
qN − q

)
, (P0)

which characterizes the set estimator Λ̂N (ε′). We consider the case of our illustrative example
and empirical application in which the limiting stage game has independent private values and
is the same as the stage game: Θ = T , ui(a, θ;λ) = ui(a, ti;λ), and π : Θ → ∆(T ) is such that
π(t | θ) = 1 if and only if t = θ. The computational procedure, however, plainly applies to the
general setting of Sections 2–4.

Rewriting P0. To begin, rewrite problem (P0) as a constrained optimization problem by
making explicit the constraint that q ∈ Q(λ; ε′). In particular, the optimization problem (P0)
is equivalent to the following problem:

max
b∈R|A|

min
q∈R|A|

+

ν∈R|A|·|T |
+

b⊺
(
qN − q

)
(P1)

subject to

b⊺b− 1 ≤ 0,
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q(a)−
∑
t

ν(a, t) = 0 ∀a ∈ A,∑
a

ν(a, t)− ψ(t;λ) = 0 ∀t ∈ T,∑
a,t

ν(a, t)− 1 = 0,

∑
a−i,t−i

[
ui(a

′
i, a−i, ti;λ)− ui(a, ti;λ)

]
ν(a, ti, t−i)− ε ≤ 0 ∀i ∈ I, ai, a′i ∈ Ai, ti ∈ Ti.

The first constraint is equivalent to b ∈ B|A|. The second, third, and fifth constraints, together,
are equivalent to q ∈ Q(λ; ε′); in particular, the third and fifth constraints correspond to the
ε′-BCE restrictions on ν (consistency and ε′-obedience), and the second constraint requires q
to be the ε′-BCE prediction corresponding to ν. The fourth constraint is superfluous—it is
implied by the third constraint and the fact that ψ(·;λ) is a probability distribution; we add
the constraint explicitly to help computation.

Vectorization. Next, since problem (P1) is linear, we write it in matrix form. We represent
the probability distribution ψ(·;λ) as a |A|×1 vector with elements ψ(am;λ) for 1 ≤ m ≤ |A|;
analogously, we represent the probability distributions q and qN as |A| × 1 vectors. We rep-
resent a probability distribution ν ∈ ∆(A × T ) as an |A| × |T | matrix with entries ν(am, tn)
for 1 ≤ m ≤ |A| and 1 ≤ n ≤ |T |. We define v := vec(ν) to be the vectorization of the
matrix representation of ν; the linear transformation vec(ν) stacks the columns of the matrix
representation of ν on top on one other to obtain the dv × 1 vector v, where dv := |A| · |T |.
Moreover, we define z1 := qN − q, z2 := v, and the dz × 1 vector

z :=

 z1

z2

 ,
where dz := |A| · (1 + |T |). Hereafter, we denote by 0d d× 1 vectors whose components are all
zeros.

The equality constraints in (P1) are linear. Thus, we write them in matrix form as

Meqz = y,

where: (i) Meq is the appropriately defined deq × dz matrix of coefficients, with deq := |A| +
|T |+ 1; (ii) y is the deq × 1 vector defined by

y :=


qN

ψ(·;λ)

1

 .
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The inequality constraints in (P1) are also linear. Thus, we write them in matrix form as

Mineqz ≤ ε′,

where: (i) Mineq is the appropriately defined dineq × dz matrix of coefficients, with dineq :=∑
i(|Ai| · (|Ai| − 1) · |Ti|); (ii) ε′ is the appropriately ordered dineq × 1 vector.
Finally, since Q(λ; ε′) is a subset of the (|A| − 1)-dimensional simplex,

max
b∈B|A|

min
q∈Q(λ;ε′)

b⊺(qN − q) = max
b̃∈B|A|−1

min
q∈Q(λ;ε′)

 b̃

0

⊺ (
qN − q

)
,

where B|A|−1 is the closed unit ball centered at 0|A|−1 ∈ R|A|−1.
Therefore, we can now rewrite problem (P1) in the following equivalent form:

max
b̃∈R|A|−1

min
z1∈R|A|

z2∈Rdv
+

 b̃

0dv+1

⊺

z (P2)

subject to

b̃⊺b̃ ≤ 1,

Meqz = y,

Mineqz ≤ ε′.

Duality. Finally, we replace the inner linear constrained minimization problem in (P2) by
its dual to obtain the following linear constrained maximization problem:

max
b̃∈R|A|−1

ℓeq∈Rdeq

ℓineq∈R
dineq
+

−

 y

ε′

⊺  ℓeq

ℓineq

 (P3)

subject to

b̃⊺b̃ ≤ 1,

[M⊺]1:|A|

 ℓeq

ℓineq

 = −

 b̃

0

 ,
[M⊺](|A|+1):dz

 ℓeq

ℓineq

 ≥ 0dv ,
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where

M :=

 Meq

Mineq

 ,
the dual variables associated to the constraints of (P2) are the deq × 1 vector ℓeq and the
dineq×1 vector ℓineq, and [M⊺]r:s denotes the matrix consisting of rows r, r+1, . . . , s of matrix
M⊺. Let dM := deq + dineq denote the number of rows of M . By strong duality, problem
(P3) has the same value as problem (P2). Problem (P3) can be efficiently computed by using
standard solvers.

D Empirical Application: Further Details

D.1 Sample of Listings

We describe in this appendix the sample of listings in our data. In total, we have 12,741
product listings by 2,436 sellers. We only collect data on Apple iPhone products. This is
because there is a large difference between the popularity of iPhone and other cell phones on
Swappa during the period that we study. Over the 80-day scraping period, different generations
of iPhone vary in terms of their popularity. As shown in Figure 8, the number of listings for
each product exceeded 100 for each day during our observation period, reaching a maximum
of nearly 500.

Figure 8: Product Listings per Day.
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D.2 Heterogeneity across Sellers

We present in this appendix some evidence on seller’s characteristics and heterogeneity across
sellers. Table 2 shows summary statistics of characteristics of the 2,436 sellers in our data.
Sellers have on average of 4.7 active listings, with a long right tail, since few sellers are
categorized as business sellers or “trusted” by the platform.

Table 2: Sellers’ Characteristics.

Characteristic N Mean Sd Explanation

i_Promoted 2,436 0.091 0.288 Indicator for listings being promoted
ListActive 2,436 4.755 54.10 Number of active listings for a seller
i_Trusted 2,436 0.025 0.155 Indicator for if a seller is trusted
i_BusinessSeller 2,436 0.006 0.078 Indicator for if a seller is a business

We further analyze the characteristics of the 59 sellers with more than 50 active listings
in Table 3: the average number of active listings is 176.3 in this subsample.

Table 3: Characteristics for Sellers with >50 Active Listings.

Characteristic N Mean Sd Explanation

i_Promoted 59 0.254 0.439 Indicator for the listing being promoted
ListActive 59 176.3 303.4 Number of active listings for the sellers
i_Trusted 59 0.288 0.457 Indicator for if a seller is trusted
i_BusinessSeller 59 0.153 0.363 Indicator for if a seller is a business

We refine the set of sellers by showing the top 15 sellers in Table 4 by number of listings
over the sample period. In this set, two sellers (after Tigerphones and GM DEALS) have a
markedly different profile, since they seem to sell less than 5% of their listings, while other
sellers typically manage to sell more than 90% of their listings over the period of our study.
This is due to the fact that these sellers seem to use the same listings to sell multiple devices
of the same model, thus interfering with our data collection exercise. Therefore, we exclude
these two sellers from the analysis.

Table 4: Large Sellers—Total Listings and Sales.

Seller Name Seller Total Sold Seller Total Listings

Sellworld 597 763

Wisephone ER 385 558

Continued on next page
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Table 4 – Continued from previous page

Seller name Seller total sold Seller total listings

TPSC 290 462

Certified Gadgets 288 426

Sam H. 178 425

GM DEALS 2 385

Tigerphones 0 363

Pangea Deals 42 302

We Buy Mobile Corp. 17 261

CellPros 173 237

Super Value Cellular 223 229

Noori 153 202

Smartphone Hub 179 198

Winston V. 156 193

cellularreturns 155 172

D.3 Pricing Patterns

We collect price data for each listing every hour until it is sold or closed. While we assume
in Section 5 that pricing decisions by sellers are daily, pricing patterns display a considerable
heterogeneity in the data. As in previous literature (Ellison, Snyder, and Zhang, 2018), we
observe substantial inertia in prices, and only half of the listings change prices during our sam-
ple period. Most of the price change strategies in the product listings are “gradual decrease”.
We exclude outlier price changes of more than $100, and plot the histogram of price changes
in Figure 9.

Figure 10 shows the frequency of price changes. As can be seen from the figure, most price
changes occur within 15 days. Within 15 days, the frequency of price changes clearly shows a
tendency to decrease with time. After 15 days, the willingness to change prices becomes less
strong. Therefore, we can assume that sellers who are willing to adjust their prices tend to
start adopting a price reduction strategy soon after they put their products on the shelves.

Table 5 shows the days it takes for each listing to sell. The table shows that the average
number of days for a device to sell is less than 15 on average, with the longest being 14.52
days for the iPhone 6plus and the shortest being 6.613 days for the iPhone 6. This is highly
consistent with the frequency of price changes: most sellers tend to sell their devices within
15 days by adjusting the price over time.
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Figure 9: Difference between Last and First Price.

Figure 10: Price Changing Frequency.

D.4 Homogenization and Sale Probabilities

In this appendix we describe the homogenization of device prices and the estimation of sale
probabilities.

D.4.1 Homogenization

Similar to Haile et al. (2003) and Wildenbeest (2011), we seek to homogenize different pricing
games by removing the effect of observable characteristics. To do so, we estimate the following
regression using daily pricing observations:

pni = x⊺m(j)dβ + ρni , (23)

where pni is the price that seller i chooses for device-day n, and xm(j)d are covariates. These
include a “trusted seller” indicator, seller rating, warranty length, indicator for other non-
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Table 5: Time from Original Listing to Sale.

Variables N mean min max p25 p50 p75

iPhone 6 284 6.613 0 16 2 4 12
iPhone SE 631 13.57 0 27 7 14 19
iPhone 6S 416 8.358 0 22 3 7 13
iPhone 6 Plus 554 14.52 0 28 7 13 24
iPhone 7 2,396 9.988 0 29 5 9 14
iPhone 7 Plus 1,663 13.79 0 29 8 14 19
iPhone 8 2,813 12.49 0 26 6 13 20
iPhone 8 Plus 2,478 12.97 0 29 6 12 20
iPhone X 2,514 13.24 0 29 7 12 19
iPhone Xs Max 115 6.852 0 14 3 7 10

standard warranty, whether the listing is promoted, storage, condition and date × device
fixed effects.

Table 6 shows the regression results over the full sample, and in three subsamples which
describe different website traffic conditions (busy, medium, slow). The subsamples are con-
structed by obtaining device-model specific measures of traffic by counting the number of
listings that day, and then denoting as busy, medium and slow, respectively, the observations
that lie in the 0-33rd, 34th-66th, and 67th-100th percentiles of the distribution of listings.

The results in Table 6 show mostly intuitive correlations. Higher sellers’ ratings result in
higher prices, but the trusted seller indicator is ceteris-paribus associated with lower prices.
Warranty length has no impact, but the presence of additional warranty seems to positively
impact prices. Promoted listings have a small price premium. Interestingly, some of the
indicators show a U-shape with the change of traffic conditions. For example, the coefficients
of seller rating, other warranty and promoted listing variables are the smallest at medium and
increase significantly at both busy and slow. Other variables show an inverted U-shape with
traffic conditions. For instance, the coefficients of the trusted seller and the are largest at
medium and smaller at busy and slow.

After we obtain the regression results, we compute the pricing residuals ρni and show their
distributions for different devices in Figure 11. Some devices, such as iPhone XS Max, seem
to have higher variance in their residual prices than others.

For each listing, sellers choose a “high” price ρ when the corresponding residual ρni is
positive. The Figure 12 shows (device-by-device) how the fraction of high-priced products –
according to our discretized definition — evolves over time. By and large, the fraction of high-
priced devices hovers around 50%, with considerable variation day-to-day and across devices.
From Figure 13 we also observe considerable dispersion in sellers’ strategies.
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Table 6: Regression Results in Different Device Traffic Situation.

Trusted Seller -19.317*** -18.683*** -20.240*** -18.172***
(-62.83) (-37.05) (-37.26) (-32.08)

Seller Rating 27.562*** 32.382*** 18.709 30.103***
(4.39) (35.00) (1.31) (4.42)

Warranty Length -0.020 -0.070 0.016
(-0.58) (-0.89) (0.42)

Other Warranty 7.528*** 10.668*** 2.259 7.300***
(7.27) (5.79) (1.13) (4.69)

Promoted Listing 3.687*** 5.141*** 2.796*** 3.360***
(12.72) (10.57) (5.65) (6.50)

Constant 185.481*** 163.422*** 246.506*** 154.698***
(5.91) (36.44) (3.45) (4.55)

Observations 27,881 10,765 7,973 9,143
R-Squared 0.989 0.989 0.989 0.990
Website Traffic All Busy Medium Slow

t-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Figure 11: Residuals by Model.
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Figure 12: Fraction of Higher-than-Expected Price.

Figure 13: Fraction of High Actions (by Seller).
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Figure 14: Time-Averaged Residual Price.

D.4.2 Sale Probability

We describe in this appendix the estimation of the probability of sale g̃. We do so by simply
computing

g̃i(ρ
n
i , ρ

n
−i) = #(Sold at (ρni , ρ

n
−i))/#(Listings at (ρni , ρ

n
−i)).

In this equation, we estimate the probability of a listing selling at a given level of own and
competitors’ residualized prices (ρni , ρn−i) as the share of listings sold over the total number of
listings. Table 7 shows these estimates for all levels of own price and competitor residual prices.

Table 7: Sale Probabilities by Price Bin.

Own Price Bin Competitor Probability of Sale

High High .0349
High Low .0328
Low High .0767
Low Low .0636

E External Regrets and Bayes Coarse Correlated
Equilibrium

In this section, we first formalize the notions of external regrets, asymptotic εc-external re-
gret property, and Bayes coarse correlated εc-equilibrium. Next, we study convergence to the
set of Bayes coarse correlated εc-equilibria of the limiting stage game under the asymptotic
εc-external regret property.
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Remark 2. Hereafter, we refer to the regret notion introduced by Definition 1 as internal
regret.

E.1 External Regrets and the εc-External Regret Property

For each action a′i ∈ Ai, let V ext
i (a′i, ti, N) be the average counterfactual payoff player i with

signal ti would have obtained had he played a′i in all periods up to time N ; that is,

V ext
i (a′i, ti, N) :=

1

N

N∑
n=1

ui
(
(a′i, a

n
−i), θ

n)
)
1{ti}(t

n
i ).

Definition 10 (External Regret). For all i ∈ I, ti ∈ Ti and a′i ∈ Ai, the external regret of
player i with signal ti for action a′i before play at time N + 1 is denoted by Rext

i (a′i, ti, N) and
defined by

Rext
i (a′i, ti, N) := max

{
V ext
i (a′i, ti, N)− Ui(ti, N), 0

}
.

Rext
i (a′i, ti, N) is a measure of the time average regret experienced by player i with signal

ti at period N for not having played action a′i in all past periods up to N . When each player
has at most two actions, external regrets coincide with internal regrets; otherwise, external
regrets are a coarser measure of regret than internal regrets.

Notation. Let εc := (εci (a
′
i, ti))i∈I,a′i∈Ai,ti∈TL

i
denote the vector that specifies, for all i ∈ I,

a′i ∈ Ai, and ti ∈ TL
i , a non-negative real number εci (a′i, ti). We write εc = 0 if εci (a′i, ti) = 0

for all i ∈ I, a′i ∈ Ai, and ti ∈ TL
i . For any ε and εc, with some abuse of notation, we write

εc = ε if εci (a′i, ti) = εi(ai, a
′
i, ti) for all i ∈ I, ai, a′i ∈ Ai, and ti ∈ TL

i .

Definition 11 (Asymptotic εc-External Regret Property). Fix an εc. A sequence ((θn, tn, an))n∈N

from (G,S)∞ has the asymptotic εc-external regret (hereafter, εc-AER) property if

lim sup
N→∞

Rext
i (a′i, ti, N) ≤ εci (a

′
i, ti) (24)

for all i ∈ I, ti ∈ TL
i , and a′i ∈ Ai.

To develop intuition, let us refer to player i with signal ti as “player (i, ti).” A sequence
((θn, tn, an))n∈N from (G,S)∞ has the asymptotic ε-internal regret property if the time aver-
age of the counterfactual increase in past payoffs, had each player (i, ti) changed each past play
of a given action with its best replacement in hindsight, becomes ε-close to vanish in the long
run. In contrast, a sequence ((θn, tn, an))n∈N from (G,S)∞ has the asymptotic εc-external
regret property if the time average of the counterfactual increase in past payoffs, had each
player (i, ti) played the best fixed action in hindsight, becomes εc-close to vanish in the long
run. Clearly, when ε = εc, if ((θn, tn, an))n∈N from (G,S)∞ has the asymptotic ε-internal
regret property, then it also has the asymptotic εc-external regret property.
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E.2 Bayes Coarse Correlated εc-Equilibrium

Definition 12 (Bayes Coarse Correlated εc-Equilibrium). Fix an εc. The probability distri-
bution ν ∈ ∆(A×TL×ΘL) is a Bayes Coarse Correlated εc-Equilibrium (hereafter, εc-BCCE)
of (GL, SL) if the two following properties hold.

1. ν is consistent for (GL, SL) (see Definition 3).

2. ν is coarsely εc-obedient for (GL, SL); that is, for all i ∈ I and ti ∈ TL
i , we have

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ)

]
ν
(
a, (ti, t−i), θ

)
≤ εci (a

′
i, ti)

for all a′i ∈ Ai.

We denote by Ec(εc) the set of εc-BCCE of (GL, SL).

Like the ε-BCE notion, the notion of Bayes coarse correlated εc-equilibrium is defined
through the restrictions we impose on ν. What distinguishes the two equilibrium notions is
the form of incentive constraint—obedience versus coarse obedience. A probability distribu-
tion ν is coarsely obedient if any player i who knows ν, is told his signal ti, but not his action
ai, from a realization of ν, and is given a choice between (a) committing to whatever joint
action profile (ai, a−i) has realized from ν, and (b) committing to a fixed action a′i, weakly
prefers (a) to (b), given that the other players, who know their realized signal, but not their
realized action, are committed to playing their part of whatever joint action has realized.

For any εc, the set Ec(εc) is convex. If ε = εc, we have E(ε) ⊆ Ec(εc). When each player
has at most two actions, if ε = εc, ε-obedience coincides with εc-coarse obedience, and so
E(ε) = Ec(εc).

When εc = 0, we have the notion of Bayes coarse correlated equilibrium (hereafter, BCCE).
The BCCE notion is new to this paper. It can be interpreted as an incomplete information
version of coarse correlated equilibrium (Hannan, 1957; Moulin and Vial, 1978; Young, 2004)
or as the coarse analog of the BCE notion. When ΘL is a singleton, the notion of εc-BCCE
reduces to that of coarse correlated εc-equilibrium for a complete information game.

E.3 Convergence of εc-External Regret Dynamics

The next theorem establishes the following results: the sequence of empirical distributions
converges almost surely to Ec(εc) if and only if the sequence of states, signals, and actions
from (G,S)∞ has the εc-AER property almost surely. Thus, the theorem provides dynamic
foundations for the static equilibrium notion of εc-BCCE.

Theorem 4 (Convergence of εc-Regret Dynamics). Fix an εc. The sequence of states, signals,
and actions ((θn, tn, an))n∈N from (G,S)∞ has the εc-AER property almost surely if and only if,
as N → ∞, the sequence of empirical distributions (ZN )N∈N converges almost surely to Ec(εc).
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Proof. [=⇒] Fix an εc and suppose ((θn, tn, an))n∈N from (G,S)∞ has the εc-AER property
almost surely. Consider any subsequence

(
ZNl

)
l∈N of

(
ZN
)
N∈N that converges almost surely

to some ν ∈ ∆(A× TL ×ΘL). We need to show that ν ∈ Ec(εc), i.e., that ν is almost surely
consistent and coarsely εc-obedient for (GL, SL).

Consistency. The proof of consistency is the same as for part 1 of Theorem 1.

Coarse εc-obedience. To begin, note the following:

V ext
i (a′i, ti, N)− Ui(ti, N) =

1

N

N∑
n=1

[
ui
(
(a′i, a

n
−i), θ

n)
)
− ui

(
(ani , a

n
−i), θ

n)
)]
1{ti}(t

n
i )

=
1

N

∑
θ

N∑
n=1

[
ui
(
(a′i, a

n
−i), θ

n)
)
− ui(a

n, θn)
]
1{ti}(t

n
i )1{θ}(θ

n) (25)

=
∑

a,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ

)]
ZN
(
a, (ti, t−i), θ).

Now pick any i ∈ I, ti ∈ TL
i , and a′i ∈ Ai. As lim supN→∞Rext

i (a′i, ti, N) ≤ εci (a
′
i, ti) a.s., by

definition of Rext
i (a′i, ti, N), we also have

lim sup
N→∞

[
V ext
i (a′i, ti, N)− Ui(ti, N)

]
≤ εci (a

′
i, ti) a.s. (26)

Then, by (25) and (26),

lim sup
N→∞

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ)

]
ZN
(
a, (ti, t−i), θ

)
≤ εci (a

′
i, ti) a.s. (27)

Moreover, on the subsequence
(
ZNl

)
l∈N we get

lim
l→∞

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ)

]
ZN
l

(
a, (ti, t−i), θ

)
=
∑

a,t−i,θ

lim
l→∞

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ)

]
ZN
l

(
a, (ti, t−i), θ

)
(28)

=
∑

a,t−i,θ

[
ui
(
(a′i, a−i), θ)− ui(a, θ)

]
ν
(
a, (ti, t−i), θ

)
.

Together, (27) and (28) give

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ)

]
ν
(
a, (ti, t−i), θ

)
≤ εci (a

′
i, ti) a.s. (29)

As i ∈ I, ti ∈ TL
i , and a′i ∈ Ai were arbitrarily chosen, we conclude from (29) that ν is almost

surely coarsely εc-obedient for (GL, SL).
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[⇐=] Now suppose
(
ZN
)
N∈N converges almost surely to Ec(εc) for some εc. Pick any i ∈ I,

ti ∈ TL
i , and a′i ∈ Ai. By coarse εc-obedience,

lim sup
N→∞

∑
a,t−i,θ

[
ui
(
(a′i, a−i), θ

)
− ui(a, θ)

]
ZN
(
a, (ti, t−i), θ

)
≤ εci (a

′
i, ti) a.s. (30)

By (25) and (30),

lim sup
N→∞

V ext
i (a′i, ti, N)− Ui(ti, N) ≤ εci (a

′
i, ti) a.s.,

which implies
lim sup
N→∞

Rext
i (a′i, ti, N) ≤ εci (a

′
i, ti) a.s.

by definition of Rext
i (a′i, ti, N). As i ∈ I, ti ∈ TL

i , and a′i ∈ Ai were arbitrarily chosen, the
desired result follows. ■
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