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Abstract 

In March 2020, safe asset markets experienced surprising and unprecedented price crashes. We explain 

how strategic investor behavior can create such market fragility in a model with investors valuing safety, 

investors valuing liquidity, and constrained dealers. While safety investors and liquidity investors can 

interact symbiotically with offsetting trades in times of stress, liquidity investors’ strategic interaction 

harbors the potential for self-fulfilling fragility. When the market is fragile, standard flight-to-safety can 

have a destabilizing effect and trigger a “dash-for-cash” by liquidity investors. Well-designed policy 

interventions can reduce market fragility ex ante and restore orderly functioning ex post. 
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1 Introduction

InMarch 2020, themarket forU.S. Treasuries behaved precisely the opposite of how econo-
mists expect it to behave during a crisis: investors flooded the market with an unprece-
dented level of sales, and themarket experienced sudden and significant price drops. This
extraordinary behavior of investors and prices requires a newmodel for safe assetmarkets.
We show in a model of regime shifts that a safe asset market functions as expected as long
as the market is sufficiently deep. However, under certain conditions the market can break
down, with investors rushing to sell and prices falling precipitously, if trade imbalances
have to be absorbed by dealers that are subject to balance sheet constraints. Surprisingly,
an increase in the demand for safe assets from a standard flight-to-safety can be destabi-
lizing: When the market is relatively fragile, the flight-to-safety among certain investors
can trigger the dash-for-cash among other investors. Our model helps understand the un-
precedented events in March 2020 and highlights the risks of such events repeating in the
future in safe asset markets more broadly.

Our analysis is motivated by the following facts. First, the prices of Treasuries sud-
denly collapsed in mid-March 2020, in sharp contrast to previous crisis episodes (Panel A
of Figure 1). Until the beginning of March, Treasury prices did increase and the S&P 500
decreased with the gradual realization of the severity of the COVID-19 outbreak, consis-
tent with the usual negative correlation between safe and risky assets during a flight-to-
safety episode (Nagel, 2016; Adrian, Crump, and Vogt, 2019). However, starting the week
of March 9, prices of Treasury notes and bonds declined together with stock prices as in-
vestors moved into cash or ultra-short maturity Treasury bills (i.e. the equivalent of cash).
It is well-documented, that dealer balance sheet constraints played an important role in
the Treasury price declines (He, Nagel, and Song, 2022; Duffie et al., 2023). Panel B of Fig-
ure 1 illustrates how dealer balance sheets were filling up with Treasuries through both
the run-up in Treasury prices and their crash, and the recovery of Treasury prices after
March 18 coincided with the receding of dealer balance sheet pressure as purchases by
the Federal Reserve ramped up.

However, the existing literature takes as given the Treasury sales in March 2020 and
does not address why this episode featured sales so large that they reversed the typical
appreciation of safe assets during times of stress and required Fed intervention to “support
the smooth functioning of markets” (FOMC statement on March 15).1 Panel C of Figure 1
illustrates that the dash-for-cash featured Treasury sales on a historically unprecedented

1The statement by the Fed’s Federal OpenMarket Committee (FOMC) onMarch 15 is available at https:
//www.federalreserve.gov/newsevents/pressreleases/monetary20200315a.htm
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Inter-AgencyWorking Group for Treasury Market Surveillance (2021) reports that “some
Treasury holders appeared to react to the decline in market liquidity by selling securities
for precautionary reasons lest conditions worsen further, and these sales only added to
the stress on the market.”

In sum, investors sold safe assets on an unprecedented scale for what appear to be pre-
emptive reasons. In the language of Haddad, Moreira, and Muir (2021), “selling became
viral,” with investors selling safe assets — whether Treasuries or investment grade corpo-
rate bonds — akin to depositors running on a bank, leading to more severe dislocations
for safer and more liquid assets in a reversal of the usual liquidity hierarchy.

In contrast to the existing literature showing how dealer constraints can lead to price
dislocations given exogenous sales from investors (e.g. He, Nagel, and Song, 2022), we
show how dealer constraints can endogenously induce certain investors to sell, and es-
pecially so when there is concurrent flight-to-safety demand from other investors. Our
model can generate strategic complementarities leading to regime shifts in which con-
tinuous changes in fundamentals trigger discontinuous jumps in investor behavior and,
therefore, a sudden precipitous drop in equilibrium prices. Using standard global game
techniques, we uniquely link the market outcome to fundamentals including the degree
of liquidity risk, the strength of flight-to-safety demand, and the severity of dealer con-
straints.

Our model captures the key characteristics of safe assets — safety and liquidity — as
well as the central role of constrained dealers to intermediate trade and absorb imbalances.
First, safe assets in practice are safe in the sense that they will pay par at maturity with
very high probability so investors hold them as a store of value, useful for diversification
and intertemporal smoothing (e.g. Caballero and Farhi, 2017). In our model, such “safety
investors” hold the safe asset in a portfolio together with a risky asset. In times of stress,
when fundamentals worsen for the risky asset, these investors rebalance their portfolio to
demand more of the safe asset (equivalently, markets reprice the value of safe assets to
reflect fundamentals, even in the absence of large trade volume). Such flight-to-safety has
been the focus of most existing analyses of safe assets in times of stress.

Second, safe assets in practice are liquid, meaning that, typically, they can be easily sold
when in need of cash and therefore trade at a convenience yield (e.g. Krishnamurthy and
Vissing-Jørgensen, 2012). In our model, there are “liquidity investors” who are subject to
liquidity shocks (i.e. immediate consumption needs) and therefore hold the safe asset as
liquidity insurance. When hit by the liquidity shock, these investors sell the safe asset in
order to consume. Importantly, even in times of stress, not all liquidity investors suffer liq-
uidity shocks. This leaves a group of liquidity investors without genuine liquidity needs
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who act strategically when deciding whether to sell their assets in the current environ-
ment, or whether to hold on and face the risk of a liquidity shock in the near future. An
individual investor may sell preemptively if they expect worse market conditions in the
future and if their likelihood of having to sell in the future is sufficiently high.

In addition, our model features dealers who buy and sell the safe asset and whose
main role is to intermediate over time. Dealers are competitive but subject to balance sheet
constraints such as the Supplemental Leverage Ratio rule (SLR), and therefore provide an
elastic residual demand for the safe asset. Because dealers’ demand in the future is affected
by inventory they take on today, they provide an intertemporal link between prices in
different periods. In particular, dealers’ competitive behavior to bid for a large net supply
today means that their bids in the future will necessarily be lower in equilibrium.

With these ingredients, ourmodel yields twomain results. The first result is that the liq-
uidity insurance role of safe assets, together with dealer balance sheet constraints, implies
that a safe asset market can be fragile, featuring sudden regime changes. For low liquidity
risk (lowprobability of facing a liquidity shock), a strategic liquidity investor never finds it
optimal to sell preemptively, irrespective of what other investors are doing; the only equi-
librium in this case is for all strategic investors to hold on to the safe asset such that the
only investors selling are those with a genuine liquidity need. For high liquidity risk, the
opposite is true: an individual investor finds it dominant to sell preemptively such that
the only equilibrium is for all liquidity investors to sell. In this case, the safe asset market
is flooded with sales, including by investors who do not actually have liquidity needs — a
“market run.” The stability of the market is represented by the global game threshold for
liquidity risk around which the equilibrium switches from “hold” to “run” with a higher
threshold representing a more stable or, equivalently, less fragile market. The severity of
dealer balance sheet costs has two effects on the market. First, higher balance sheet costs
increase market fragility such that a market run already occurs for lower liquidity risk.
Second, higher balance sheet costs increase the magnitude of the price crash conditional
on the run occurring.

Our second and key result is that the safety and liquidity roles of safe assets can interact
in such away that a flight-to-safety canworsen fragility,making a dash-for-cashmore likely.
Recall that in typical models of fire sales, the crucial friction is slow-moving capital: prices
can be depressed because potential buyers cannot enter the market to purchase distressed
assets. Thus, in these situations, new buyers entering the market would mitigate fire sales
and stabilize asset prices. In contrast, we find that the entry of new capital to purchase safe
assets can actually amplify fire sales.

How can this occur? In our model, safety investors form a natural partnership with liq-
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uidity investors as their trades offset during stress episodes. Demand from safety investors
absorbs sales from liquidity investors; all else equal, this leads to higher prices for safe as-
sets than would otherwise occur. However, the timing of safety investor demand is key, as
it affects the intertemporal tradeoff of strategic liquidity investors. Safety investor demand
early on in a stress episode has an ambiguous effect on fragility as it increases prices both
contemporaneously (which is destabilizing) and in the future by relaxing dealer balance
sheets (which is stabilizing). Additional demand from safety investors today can induce
liquidity investors to sell today, precisely because the market today has relatively high ca-
pacity to absorb sales; but higher prices in the future imply that being forced to sell in the
future is less costly, and this is stabilizing.

Which effect dominates — and therefore whether a flight-to-safety can trigger a dash-
for-cash — is ambiguous and depends on the inherent fragility of the market. In a rela-
tively stablemarket, strategic liquidity investors will sell preemptively only if liquidity risk
is very high (i.e. only if they are likely to be forced to sell in the future). In that case, the
stabilizing effect of the flight-to-safety dominates: the investors weight more their concern
about being forced to sell in the future but the flight-to-safety has relaxed dealer balance
sheets and increased the price the investors would face in the future. In a relatively fragile
market, however, strategic liquidity investors sell preemptively even when liquidity risk
is low (i.e. even when they are unlikely to be forced to sell in the future). In this case, the
destabilizing effect of the flight-to-safety dominates: the investors put a greater weight on
the ability to sell assets at a higher price today even though the fire-sale price tomorrow
is also less severe. This means that safety investors have an amplification effect on market
fragility: When the market is already relatively stable, they stabilize it further (flight-to-
safety prevents a dash-for-cash); but if the market is already relatively fragile, they desta-
bilize it even more (flight-to-safety triggers a dash-for-cash). Whether flight-to-safety will
trigger a dash-for-cash is unclear unconditionally, but the answer is clear conditional on
the degree of market fragility.

The behavior of Treasury markets in March 2020 is particularly striking in contrast to
the great financial crisis of 2007–2009 (GFC), during which Treasuries rallied. Our model
helps to understand the differences between these two episodes that led to such dramat-
ically different outcomes. First, our model highlights the central role of dealer balance
sheet constraints, which are a potentially unintended result of post-GFC regulations, such
as the SLR. During the GFC, dealers’ activities in Treasury markets were relatively uncon-
strained and thus investors did notworry about dealers running out of balance sheet space
and Treasury prices collapsing. Second, the size of the liquidity shock during the COVID-
19 crisis appears to have been much larger than during the GFC. As our analysis shows,
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very large increases in liquidity risk and flight-to-safety can tilt the system into a region
in which investors sell preemptively. Because the GFC did not feature dealers constrained
by balance sheet costs, and because the shock to liquidity needs was arguably smaller, the
Treasurymarket remained in the relatively stable region in which flight-to-safety prevents
a dash-for-cash, which is why the market behaved as usual despite the tremendous stress
in the financial sector. In contrast, in March 2020, the liquidity shock was larger and deal-
ers weremore constrained, somuch so that the Treasurymarket suffered a regime change,
and flight-to-safety triggered a dash-for-cash. In sum, our analysis suggests that these two
episodes did not feature fundamentally different shocks or shocks of different direction,
but rather shocks that differed in degree within different regulatory environments.

Our analysis has policy implications, in particular for asset purchase facilities, dealer
balance sheet regulation, and market structure. Fragility in our model hinges on the in-
tertemporal considerations of strategic liquidity investors who compare prices today to
prices in the near future. In general, there is scope for policy interventions that increase
prices both in the present and in the future. However, due to the intertemporal consid-
erations and the coordination effects, the timing of policy interventions is important and
announcements can have large effects well before the interventions are executed.We show
that an asset purchase facility can have a large effect upon announcement, even if it does
not become active until a future date, by shifting strategic investors from the run equilib-
rium to the hold equilibrium, consistent with the evidence of Haddad, Moreira, and Muir
(2021). Similarly, policy interventions that relax dealer balance sheet constraints can be
stabilizing. However, because the strategic incentive to sell is caused by fear of low prices
in the future, effective policy has to relax balance sheet constraints in the future as well.

Finally, our model shows that markets where trading occurs in a decentralized, se-
quential way and where dealers play a large role intermediating flow imbalances over
time harbor the potential for fragility. These elements generate a strategic tradeoff where
an investor can hope to receive the average in-run price when selling preemptively but has
to worry about bearing the full impact of dealer inventory when being forced to sell in the
future. Changes to market structure that lead to more pooling of trades and that reduce
the role of dealers as a bottleneck for trade flow can therefore reduce the fragility of safe
asset markets. The growth of the Treasury market since the GFC has greatly outpaced the
capacity of dealers’ balance sheets, and that trend is expected to continue (Duffie, 2020).
The strategic mechanism in our model will therefore become increasingly relevant unless
balance sheet constraints are relaxed. Episodes like March 2020 are likely to become more
frequent as dash-for-cash motivations become more pronounced.
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After discussing related literature, the rest of the paper proceeds as follows. In Sec-
tion 2, we present and analyze the baseline model of the strategic interaction among liq-
uidity investors. In Section 3, we add safety investors and derive the ambiguous effect of
flight-to-safety on market fragility. We then discuss policy implications in Section 4 and
conclude in Section 5.

Related Literature. The market turmoil in the spring of 2020 has been documented in
detail by Vissing-Jørgensen (2021) and He, Nagel, and Song (2022) for Treasuries, and
by Haddad, Moreira, and Muir (2021) and Boyarchenko, Kovner, and Shachar (2022) for
corporate bonds.5 In particular, Duffie et al. (2023) show that the typically linear relation
between yield volatility and Treasurymarket liquidity broke down inMarch 2020 and that
the residuals are well explained by the shadow cost of dealer balance sheets.

In a literature that focuses on empirically studying the events, He, Nagel, and Song
(2022) stand out as also providing a formal theoretical analysis to understand the im-
plications. Using a model based on Greenwood and Vayanos (2014) but incorporating
frictions between dealers and hedge funds, they illustrate how large net sales can gener-
ate an “inconvenience yield” for Treasuries. Specifically, He, Nagel, and Song (2022) show
that, given large exogenous sales, the presence of regulatory constraints can lead to pricing
distortions measured as the spread between Treasuries and overnight-index swap rates,
as well as spreads between dealers’ reverse repo and repo rates. Importantly, He, Nagel,
and Song (2022) take net flows as given and consider in detail the equilibrium pricing
consequences. In contrast, our paper shows how, in a strategic environment, the same reg-
ulatory constraints can lead to run behavior, thus endogenizing the large net flows. Our
focus is on the determinants of large net sales of safe assets during a crisis — the unusual
behavior not typically observed — and on the policy implications that can be derived in
such a model of regime change.

In contrast to market runs, bank runs have received much greater attention because
of the common pool problem inherent with liquidity transformation (e.g., Diamond and
Dybvig, 1983 and Goldstein and Pauzner, 2005). In the case of a market run, there is no
common pool threatened by illiquidity. The seminal papers on market runs by Bernardo
and Welch (2004) and Morris and Shin (2004) highlight how market frictions can cre-

5See also D’Amico, Kurakula, and Lee (2020), Fleming et al. (2021), Nozawa and Qiu (2021), Aramonte,
Schrimpf, and Shin (2022), and Haughwout, Hyman, and Shachar (2022). For detailed analysis of market
liquidity conditions, see Fleming and Ruela (2020), Kargar et al. (2021), O’Hara and Zhou (2021). Ahmed
and Rebucci (2022) find sizable estimates of the price impact of foreign officials’ sales of Treasuries. The
role of mutual funds in particular as large sellers of safe assets has been studied by Falato, Goldstein, and
Hortaçsu (2021) andMa, Xiao, and Zeng (2022). On the role of hedge funds, see e.g. Barth and Kahn (2021).
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ate incentives to front-run other investors by selling assets preemptively. Bernardo and
Welch (2004) introduce the intertemporal tradeoff our model relies on, but their model
does not feature strategic complementarities and therefore cannot generate regime shifts.
Ourmodelwith strategic complementarities can generate regime shifts and allows for con-
tinuous comparative statics in the analysis of flight-to-safety demand and policy implica-
tions.6 Morris and Shin (2004) consider a static model in which strategic complementari-
ties arise because investors have “stop-loss rules” and will be forced to liquidate if prices
fall sufficiently low. The preponderance of sales inMarch 2020 were from investors subject
to liquidity shocks, suggesting that a stop-loss mechanism did not drive preemptive sales
during this episode. Allen, Morris, and Shin (2006) show how higher-order beliefs can
generate “beauty contests” à la Keynes (1936) in asset markets with short-lived investors
and imperfect information.

The literature on safe assets is large; see e.g. Gorton (2017) for an overview. Krishna-
murthy andVissing-Jørgensen (2012) show that Treasuries are valued both for their safety
and their liquidity by documenting yield spreads both with respect to assets similarly liq-
uid but not safe and assets similarly safe but not liquid (see also Duffee, 1998, Longstaff,
2004, and Greenwood and Vayanos, 2010, 2014). Caballero and Farhi (2017) consider a
model where the “specialness” of public debt is its safety during bad aggregate states
and where safe assets have “negative beta,” as they tend to appreciate in times of aggre-
gate market downturns, providing investors diversification against aggregate macroeco-
nomic risks (see also Maggiori, 2017, Adrian, Crump, and Vogt, 2019, and Brunnermeier,
Merkel, and Sannikov, 2022). Safe assets valued for their safety appear in a model of lim-
ited participation and risk sharing in Gomes and Michaelides (2007) and through special
investors who need safe assets to match liability cash flows in Greenwood and Vayanos
(2010). More generally, Treasury bonds have had negative beta over longer horizons in re-
cent decades, rising in price when stock prices fall apart frommarket turmoil (Baele et al.,
2019; Campbell, Sunderam, and Viceira, 2017; Cieslak and Vissing-Jørgensen, 2020). Our
paper focuses on the correlation in times of crisis or market turmoil in which the typical
correlation (flight-to-safety) has been otherwise clear (Nagel, 2016; Adrian et al., 2019).

Safe assets’ liquidity is intimately linked to their safety: when payoffs are (nearly) risk
free, assets are information-insensitive and thus easily traded “no questions asked” (Gor-
ton and Pennacchi, 1990, Holmström, 2015, Dang, Gorton, and Holmström, 2015). Holm-
ström and Tirole (1998) model the use of safe assets as a store of value and as insurance
against liquidity shocks. Safe assets valued for their liquidity appear in Vayanos and Vila

6We discuss the differences between our model and Bernardo and Welch (2004) in Appendix B
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(1999) and Rocheteau (2011) as well as in the monetarist literature surveyed by Lagos,
Rocheteau, andWright (2017). The premium for moneyness has been studied empirically,
e.g. by Greenwood, Hanson, and Stein (2015), Carlson et al. (2016), and Cipriani and La
Spada (2021) (see also Nagel, 2016, and d’Avernas and Vandeweyer, 2021).

Gorton and Ordoñez (2022) study the interaction of public and private provision of
safe assets used as store of value and as collateral (see also Holmström and Tirole, 2011,
Stein, 2012, Gorton, Lewellen, and Metrick, 2012, Sunderam, 2014 and Krishnamurthy
and Vissing-Jørgensen, 2015). Caballero and Krishnamurthy (2008) study flight to quality
episodes triggered by uncertainty shocks. He, Krishnamurthy, and Milbradt (2019) study
the roles of strategic complementarities and substitutes among investors in determining
which asset becomes the safe asset via coordination (see also Farhi and Maggiori, 2017).
For recent empirical analysis of safe assets, both current and historical, see Chen et al.
(2022) and Choi, Kirpalani, and Perez (2022).

The role of dealers and slow-moving capital more generally in short-term price dislo-
cations is introduced, e.g. in Duffie (2010). Fontaine and Garcia (2012) and Hu, Pan, and
Wang (2013) show the effects on liquidity in Treasurymarkets (see also Vayanos and Vila,
2021). Adrian, Boyarchenko, and Shachar (2017) specifically consider the effects of dealer
balance sheet constraints on bond market liquidity. Goldberg and Nozawa (2021) show
that dealer inventory capacity is a key driver of liquidity in corporate bond markets (see
also Bruche and Kuong, 2021).

2 Baseline Model

The model is set in two periods t = 0, 1 and has three types of agents and two types of
assets, a safe asset and a risky asset. The safe asset, which is the focus of the analysis,
has a fundamental value of 1 and is traded among the agents in both periods. Among
the agents, there are risk-averse investors who hold portfolios of the safe asset and the
risky asset (“safety investors”), risk-neutral investors who hold the safe asset as protection
against liquidity shocks (“liquidity investors”), and risk-neutral dealers who participate
in the safe asset market and are subject to balance sheet costs. All agents have a discount
rate of zero and act competitively, and there is a measure one of each type. All asset prices
are determined in equilibrium. We defer discussion of the safety investors until Section 3.
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2.1 Liquidity Investors and their Strategic Interaction

Liquidity investors start out holding one unit of the safe asset and are subject to i.i.d. liq-
uidity shocks, i.e. preference shocks in the style of Diamond and Dybvig (1983), in both
periods. If a liquidity investor is hit by the shock, they need to consume immediately and
sell their entire holdings of the safe asset. The probability of a liquidity shock at date 0 is
s ∈ (0, 1) so, by the law of large numbers, a fraction s of liquidity investors are forced to
sell at date 0 at price p0. Among the remaining fraction 1 − s, each investor has to decide
whether to also sell at date 0, receiving p0 for sure, or to hold on to the safe asset and face
liquidity risk at date 1, again with probability s.7 Investors who hold on to the safe asset
at date 0 and then suffer a liquidity shock at date 1 are forced to sell at price p1. Investors
who don’t suffer a shock at either date receive a continuation value v > 1 akin to a “con-
venience yield” that reflects the benefit of the safe asset as a liquid store of value for future
investment opportunities (e.g., Holmström and Tirole, 1998, 2001).8

The liquidity shock probability s is drawn at the beginning of date 0 from a distribution
F on (0, 1). There is imperfect information about s, and each individual investor i observes
an idiosyncratic signal ŝi = s + σεεi, where the mean-zero signal noise εi is i.i.d. across all
i with distribution Gε and σε > 0. We focus on the limit of vanishing signal noise, σε → 0,
and therefore treat s as non-random in the exposition except when deriving the global
game equilibrium.

Examples of real-world liquidity investors we have in mind include foreign official
agencies that may face sudden liquidity needs to conduct foreign exchange interventions
or mutual funds that may face sudden liquidity needs due to investor withdrawals. Both
were among the largest sellers of Treasuries in 2020q1, and their sales were historically
unprecedented (Figure 1, Panel C). The consumption good in our model therefore stands
in for cash and cash-like instruments, such as bank deposits or short-maturity Treasury
bills. Due to its stylized nature, our model cannot not provide a theory of the exact ma-
turity cut-off between short-maturity bills, treated as cash, and longer-maturity notes and
bonds, which were not treated as cash during March 2020 and represent the safe asset
in our model. While we focus on the strategic interaction among liquidity investors, there
are potential additional layers of strategic interaction underlying the liquidity shocks, both
in the foreign exchange context (Morris and Shin, 1998) and in the mutual fund context

7We can also allow for different liquidity risk s0 and s1 at dates 0 and 1, respectively, where s0 is the global
game fundamental that investors observe imperfectly. As this does not meaningfully affect the analysis, we
focus on the case of one single liquidity risk s for expositional clarity.

8Joslin, Li, and Song (2021) use a conceptually similar model of liquidity investors and show that its
comparative statics match well the empirical features of the Treasury liquidity premium.
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(Chen, Goldstein, and Jiang, 2010).

Strategic Interaction. Denote by λ ∈ [0, 1] the fraction of strategic liquidity investors
who decide to sell at date 0. Together with the non-strategic sales s from investors who
receive a liquidity shock, total sales of safe assets at date 0 are

q0 = s + (1 − s) λ.

At date 1, only the remaining strategic investors who receive a liquidity shock sell their
safe assets, resulting in total sales

q1 = s (1 − s) (1 − λ) .

Given a fraction λ of strategic investors preemptively sell at date 0, we denote by pe
0(λ)

the price an investor expects to receive at date 0 from also selling preemptively and by
pe

1(λ) the price the investor expects to receive at date 1 if forced to sell by a liquidity shock
(we will derive the relevant expressions for pe

0(λ) and pe
1(λ) in Section 2.2). A strategic

liquidity investor compares the payoff from selling early, pe
0(λ), to the expected payoff

from holding, spe
1(λ) + (1 − s) v.

The equilibria of the game among strategic investors are governed by the payoff gain
from preemptively selling at date 0:

π(λ) = pe
0(λ)−

(
spe

1(λ) + (1 − s) v
)

.

Under complete information, there are three candidates for Bayesian Nash equilibria:

Hold equilibrium: If the incentive to sell is negativewhen no other strategic investors sell,
that is if π(0) < 0, then it is a pure-strategy equilibrium for no strategic investors to
sell (λ∗ = 0).

Run equilibrium: If the incentive to sell is positive when all other strategic investors sell,
that is if π(1) > 0, then it is a pure-strategy equilibrium for all strategic investors to
sell (λ∗ = 1).

Mixed equilibrium: If the incentive to sell is zero when a fraction of strategic investors
sell, that is if π(λ∗) = 0 for λ∗ ∈ (0, 1), then it is a mixed-strategy equilibrium for all
strategic investors to sell with probability λ∗.
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Recall that safe asset markets typically function smoothly — they are considered the most
deep and liquidmarkets in theworld. Thus, any empirically realisticmodel should include
the potential for hold equilibria, even aswe seek out a candidate run equilibrium. The hold
equilibrium exists if

pe
0(0) < spe

1(0) + (1 − s) v.

Since liquidity investors’ continuation value v is greater than 1 and the safe asset’s funda-
mental value is 1, the hold equilibrium exists as long as, without any strategic sales, the
price at date 1 is not considerably lower than the price at date 0 and liquidity risk at date 1
is sufficiently low. Such conditions are representative of normal times, when not many in-
vestors have liquidity needs and expected prices are not very different between date 0 and
date 1. In the hold equilibrium, the safe asset market features only those investors selling
who have a genuine need for liquidity and dealers taking the net supply into inventory.
This is an important difference to the model of Bernardo and Welch (2004), in which a
pure-strategy hold equilibrium never exists (Appendix B).

The run equilibrium exists if

pe
0(1) > spe

1(1) + (1 − s) v.

In this case, strategic investors prefer to sell early rather than risk having to sell at a worse
price in case they suffer a liquidity shock at date 1. Compared to the condition for the hold
equilibrium, more is needed for a run equilibrium to exist. First, the expected price at date
1 has to be considerably lower than the price at date 0. Second, liquidity risk at date 1 has
to be sufficiently high. The analysis of our paper shows how frictions can lead prices at
date 1 to be lower than at date 0 and therefore how a run equilibrium can arise in times of
stress.

The identifying feature of a run equilibrium are the preemptive sales by investors who
do not face a genuine liquidity need and who therefore do not “consume” the proceeds
of their sales. As noted in the introduction, the detailed analysis of Treasury markets
in March 2020 by Vissing-Jørgensen (2021) provides evidence of such preemptive sales:
Among the largest sellers, foreign official agencies sold $196 billion of Treasury bonds
but “consumed” only 24% of the proceeds in the form of a $48 billion reduction in their
total U.S. Dollar assets. This evidence, and the viral selling behavior noted by Haddad,
Moreira, and Muir (2021) with greater dislocations in the typically safer and more liquid
assets, point to a need for a model in which sales reflect strategic, self-fulling decisions.

There is the potential for both pure-strategy equilibria to exist if the incentive to sell
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π(λ) is increasing in the fraction of strategic investors who sell. In such a situation of
strategic complementarities, the safe asset market can break down due to self-fulfilling
beliefs. Each individual strategic investor sells early only because they expect other strate-
gic investors to sell early, and the run on the safe asset market could be avoided if beliefs
were coordinated instead on the hold equilibrium.

2.2 Dealers and Market Clearing

Dealers consume at the end of date 1 and are forward looking and risk neutral. They value
the safe asset at its fundamental value of 1 but face convex balance sheet costs for any
inventory q, given by cq2 with c > 0 . Dealers start out with no inventory and compete for
sales à la Bertrand by quoting prices in each period. We solve for the demand that results
from the Subgame Perfect Nash Equilibrium among dealers.

A dealer’s final payoff from purchasing quantities q0, q1 at prices p0, p1 is

(1 − p0) q0 + (1 − p1) q1 − c (q0 + q1)
2 .

Using backward induction, suppose dealers enter period 1 with q0 units of inventory pur-
chased at a price p0, which would yield a payoff of (1 − p0) q0 − cq2

0. Dealers will quote
prices to purchase additional q1 units of supply, bidding up prices until they earn zero
profits on the additional units. Bertrand competition results in a price p1 such that

(1 − p0) q0 + (1 − p1) q1 − c (q0 + q1)
2︸ ︷︷ ︸

payoff after taking on q1

= (1 − p0) q0 − cq2
0︸ ︷︷ ︸

payoff without q1

. (1)

Solving for p1, this implies that the equilibriumprice at date 1, given pre-existing inventory
q0, is

p1(q0, q1) = 1 − 2cq0 − cq1 (2)

which can be rewritten as a demand from dealers given by9

qD
1 =

1
c
(1 − p1)− 2q0. (3)

Now consider the pricing behavior at date 0. Dealers will compete for the supply q0

9Note that our framework does not restrict dealer demand at date 1 to be positive. If there is additional
demand at date 1 such as from an asset purchase facility discussed in Section 4, we can have dealers sell part
of their date-0 inventory such that qD

1 < 0. Since the quadratic balance sheet costs are symmetric around
zero, we can also consider negative dealer demand at date 0 (e.g. if they start with an initial endowment of
inventory or if they are able to go short the safe asset).
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anticipating their behavior at date 1, as derived above. Bertrand competition means they
will bid up prices until their total payoff is zero:

(1 − p0) q0 + (1 − p1) q1 − c (q0 + q1)
2 = 0. (4)

Substituting condition (1) that follows from Bertrand competition at date 1 into the zero-
profit condition (4) implies that forward-looking dealers will bid up prices at date 0 until

(1 − p0) q0 − cq2
0 = 0.

Solving for p0, this yields an equilibrium date-0 price

p0(q0) = 1 − cq0, (5)

which implies a demand from dealers given by

qD
0 =

1
c
(1 − p0) . (6)

Comparing the equilibrium prices p1 in (2) and p0 in (5), note that date-0 sales q0 have
twice the impact on p1 as on p0, which is one element that can lead to p1 being sufficiently
lower than p0, which is necessary for a run equilibrium to exist. Even though dealers are
forward looking, competing away their profits at date 0 leads them to pay relatively high
prices at date 0. Once the market opens on date 1, the inventory they took on at date 0
reduces their willingness to pay and prices are much lower.

Role of Regulatory Constraints. Our modeling of balance sheet costs captures the ef-
fects of the Supplementary Leverage Ratio (SLR), an unweighted capital requirement for
banks that was introduced as part of the Basel III reforms after the GFC as a backstop to
risk-weighted capital regulation and became effective in 2014. Since the largest dealers in
the U.S. are part of bank holding companies, the SLR constrains their activity, including in
the Treasury market, a potentially unintended consequence of the regulatory reform. Im-
portantly, both the direct holdings of Treasuries and reverse repo positions take updealers’
balance sheet space and are subject to the SLR (for more details, see, e.g. Duffie, 2016). Bo-
yarchenko et al. (2020) show that the constraints pass through to unregulated arbitrageurs
who rely on the balance sheet of regulated dealers (see also Du, Hébert, and Li, 2022 and
Siriwardane, Sunderam, and Wallen, 2022).

The balance sheet costs matter in markets for safe assets such as Treasuries, as they
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rely heavily on dealers for intermediating trades. Brain et al. (2019) document that Trea-
sury market trading volume is split roughly evenly between dealer-to-client trades and
inter-dealer trades; this suggests that, on average, a trade originating with one investor
and ending with another investor passes through two dealers. The effects of balance sheet
constraints are also quantitatively meaningful. For example, He, Nagel, and Song (2022)
show that Treasury and repo spreads are significantly wider in the post-SLR period. In
March 2020, the ability of dealers to provide liquidity in Treasuries was severely impaired
as market depth dropped by a factor of more than 10 in the inter-dealer market (Duffie,
2020) while trading volume roughly doubled, reaching historically unprecedented levels
(Fleming and Ruela, 2020). Duffie et al. (2023) show strong explanatory power of dealer
balance sheet utilization for Treasury market illiquidity after controlling for yield volatil-
ity. Furthermore, the SLR constraint was initially not alleviated by the Fed’s purchases of
Treasuries because they were exchanged for reserves which, though perfectly liquid and
safe, are treated the same under the SLR. Only on April 14 did the Fed temporarily ex-
empt both Treasuries and reserves from the SLR rule (announced on April 1). Infante,
Favara, and Rezende (2022) document the effect of the SLR and its temporary relaxation
on dealers’ Treasury market activity. We return to these issues in our discussion of policy
implications in Section 4.

For tractability, we model balance sheet constraints as a convex function of net dealer
demand and abstract from bid-ask spreads. In reality, dealers can rarely net out offsetting
trades instantaneously, and so sales or purchases that are not perfectly synchronized at the
same dealer will increase balance sheet costs across the financial system, making the role
of balance sheet constraints more pronounced.While wemodel balance sheet costs as con-
vex, in reality the SLR may at times impose hard quantity constraints with effectively infi-
nite costs of expanding balance sheet further (Duffie, 2020). To the extent that regulatory
constraints at times become totally binding, our results would be further strengthened. In
sum, our modeling decisions bias the analysis toward less significant balance sheet costs.
Note that we abstract from the intended benefits of the SLR for the stability of the banking
system as these are outside the scope of our model.10

Expected Prices. Similar to Morris and Shin (2004) and consistent with the decentral-
ized nature of the Treasury dealer-to-client market (Brain et al., 2019), we assume that

10The macro-finance literature shows how leverage regulation can have macroprudential benefits, de-
creasing the probability and severity of crises and fire sales (e.g. Phelan, 2016, Dávila and Korinek, 2017).
While the SLR is intended as a “non-risk based backstop measure” (Basel Committee on Banking Supervi-
sion, 2014), it’s potential to interfere with Treasury market functioning had been anticipated, e.g. by Duffie
(2016)
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trades are executed sequentially. For aggregate sales q0, each seller’s position in the queue
is uniformly distributed on [0, q0] such that the expected position in the queue is q0/2 and
each investor expects to sell at the expected price pe

0 = 1 − c (q0/2).11 Substituting in total
supply q0 = s + (1 − s) λ, we have an expected payoff from selling at date 0 given by

pe
0(λ) = 1 − c

2
(
s + (1 − s) λ

)
. (7)

The expected price at date 0 is decreasing in the share of strategic investors λ who sell but
also in the non-strategic sales s which directly reflect the severity of the liquidity risk at
date 0.

At date 1, a seller expects to receive the average price pe
1 = 1 − 2cq0 − cq1/2. Substitut-

ing in total date 1 supply q1 = s (1 − s) (1 − λ) as well as total date 0 supply q0, which is
now in dealers’ inventory, we have an expected payoff from selling at date 1 given by

pe
1(λ) = 1 − 2c

(
s + (1 − s) λ

)︸ ︷︷ ︸
date 0 inventory

− c
2

s (1 − s) (1 − λ)︸ ︷︷ ︸
date 1 sales

. (8)

Because strategic sales λ move sales from date 1 to date 0, they have a direct negative
effect on pe

0 with a coefficient −1
2 c (1 − s) and a direct positive effect on pe

1 with a coeffi-
cient 1

2 c (1 − s) s. These direct effects are stabilizing since they make selling at date 0 less
attractive and selling at date 1 more attractive. However, strategic sales λ also affect pe

1

indirectly with a coefficient −2c (1 − s) through inventory on dealer balance sheets. This
indirect effect is destabilizing since it makes selling at date 1 less attractive.

Why is the destabilizing indirect effect of strategic sales so much stronger than the
stabilizing direct effect, at a ratio of 2 to 1/2? There are two reasons: First, existing inventory
q0 has twice the price impact on dealer demand at date 1 as new inventory q1 has. Second,
while investors anticipate the full effect of existing inventory in case they have to sell at
date 1, they internalize only half the effect of sales on price at date 0 since they expect to
sell at the average in-run price.

2.3 Incentive to Sell Preemptively

Using the expressions for pe
0 and pe

1, we can derive the payoff gain π(λ), which captures
the incentive of an individual strategic liquidity investor to sell at date 0 if a fraction λ of

11We show in Appendix D that our results maintain if all trades are pooled and executed jointly as long
as balance sheet constraints are sufficiently tight.
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other strategic investors sells:

π(λ) =

pe
0(λ)︷ ︸︸ ︷

1 − c
2
(
s + (1 − s) λ

)
− s

(
1 − 2c

(
s + (1 − s) λ

)
− c

2
s (1 − s) (1 − λ)

)
︸ ︷︷ ︸

pe
1(λ)

− (1 − s) v. (9)

As discussed in Section 2.1, the level and slope of the payoff gain determine the equilib-
rium (or equilibria) of the strategic interaction among liquidity investors.

Proposition 1 (Strategic liquidity investors’ incentive to sell preemptively at date 0).

• There are strategic complementarities if and only if liquidity risk is sufficiently high:

π′(λ) > 0 ⇔ (4 − s) s > 1

⇔ s > s̃ ≡ 2 −
√

3 ≈ 0.27.

• Higher liquidity risk increases the incentive to sell whenever there are strategic complemen-
tarities, π′(λ) > 0 ⇒ ∂π/∂s > 0.

• Greater dealer balance sheet costs increase the incentive to sell whenever there are strategic
complementarities, π′(λ) > 0 ⇒ ∂π/∂c > 0.

• A greater continuation value uniformly decreases the incentive to sell, ∂π/∂v < 0.

Proof. See Appendix C.

As discussed in Section 2.2, strategic sales λ have a stabilizing direct effect that de-
creases pe

0 and increases pe
1, and they have a destabilizing indirect effect through dealer

balance sheets that decreases pe
1 — the latter effect is considerably stronger, with a ratio of

2 to 1/2. When evaluating the effects of higher λ on the incentive to sell π in (9), we have
to account for the fact that effects on pe

1 are discounted by the liquidity shock probability
s since they are only relevant if the investor actually suffers a liquidity shock at date 1. We
therefore have a destabilizing indirect effect of λ on the incentive to sell π with a coefficient

2c (1 − s) s,
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and a stabilizing total direct effect with a coefficient (in absolute value)

1
2

c (1 − s)
(
1 + s2),

resulting in a ratio of
2s

1
2

(
1 + s2

) .

Consider the relative strength of the two effects and how they depend on the mag-
nitude of liquidity risk s. The stabilizing effect in the denominator is present whether or
not there is liquidity risk, i.e. the coefficient is non-zero even for s = 0 and then increases
slowly with liquidity risk, as it is quadratic in s — combining the individual investor’s
date-1 liquidity risk and the aggregate date-1 liquidity risk. In contrast, the destabilizing
effect through dealer balance sheets is linear in s —reflecting only the individual investor’s
risk of facing the constrained dealers — and it increases faster due to the stronger effect of
strategic sales on pe

1 than on pe
0. For sufficiently high s, the destabilizing effect dominates,

resulting in strategic complementarities. This is in contrast to the model of Bernardo and
Welch (2004) which only features strategic substitutes (Appendix B).

Besides increasing the slope π′(λ), higher liquidity risk also increases the level of the
incentive to sell. This is intuitive, as higher s for given λ means additional non-strategic
sales as well as strategic sales, which load up dealer balance sheets at date 0 and destabi-
lize the market. Consistent with the important role dealer balance sheets play for market
fragility, they tend to increase the incentive to sell preemptively and do so for sure if strate-
gic complementarities are present. In sum, the inventive to sell at date 0 and therefore the
potential for market fragility is increasing in howmuch liquidity risk investors face and in
the balance sheet constraints faced by dealers who absorb sales at both dates.

Figure 2 illustrates the incentive to sell and the resulting equilibria of the complete in-
formation game for different levels of liquidity risk. For low s, π(λ) is uniformly negative
and decreasing, and the unique equilibrium is the hold equilibrium (λ∗ = 0). As s in-
creases, the level and slope of π(λ) increase, until it first becomes flat at s = s̃ ≡ 2 −

√
3

and then intersects the horizontal axis, at which point the game has multiple equilibria
(hold, sell and mixed). For sufficiently high s, π(λ) is uniformly positive and the unique
equilibrium is for everyone to sell (λ∗ = 1). Note that Figure 2 shows strategic comple-
mentarities arising at a point where the payoff gain is negative, that is

π(λ | s = s̃) =
c
2

s̃2 − (1 − s̃) (v − 1) < 0,
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Figure 2: Incentive to sell and equilibria. The figure shows the payoff gain π(λ) for different
values of liquidity risk s. Circles indicate equilibria of the game under complete information.
Parameters: c = 0.25, v = 1.2.

so the dashed horizontal line is below the horizontal axis. In the following, we will focus
on this case by imposing the following assumption on c and v.

Assumption 1. We assume that c
2 s̃2 − (1 − s̃) (v − 1) < 0.

Consistent with the comparative statics in Proposition 1, the point at which the payoff
gain π changes from decreasing to increasing is more likely to be below the horizontal axis
if v is larger or c is smaller. What happens if Assumption 1 is not satisfied? In that case, the
unique equilibrium is still to hold for sufficiently small s and to sell for sufficiently large s.
However, for an intermediate range of s, the unique equilibrium is inmixed strategies since
the payoff gain crosses the horizontal axis with negative slope. Since our emphasis is on
the potential for fragility, we focus the analysis on the case where multiple pure-strategy
equilibria arise in an intermediate range of s andwe can have regime shifts. This allows for
the use of global game techniques and results in a unique equilibrium for every s ∈ [0, 1]
with the switch from the hold to the run equilibrium at an endogenous threshold. Since
the threshold is a continuous function of other model parameters, comparative statics and
policy analysis follow naturally.

2.4 Global Game and Unique Equilibrium

Under complete information, there can be multiple equilibria in the strategic interaction
among liquidity investors— a hold equilibrium and a run equilibrium (and amixed equi-
librium). We now introduce noise into investors’ payoffs to break the common knowledge
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underpinning the multiplicity and use global game techniques to derive a unique equilib-
rium. In particular, we assume that investor i does not observe the degree of liquidity risk
s perfectly, instead receiving a signal ŝi = s + σεεi with εi i.i.d. across all i and σε positive
but arbitrarily small. As a result, a strategic investor faces fundamental uncertainty about
the likelihood of a liquidity shock, s, as well as strategic uncertainty about the fraction of
other strategic investors who sell preemptively, λ.12

We can write the payoff gain explicitly as a function of the fundamental s as well as
the fraction of strategic investors who sell, π(λ, s). Making use of standard global game
results (e.g. Morris and Shin, 2003), we can derive a unique Bayesian Nash equilibrium
for the game among strategic investors.

Proposition 2 (Unique global game equilibrium). For signal noise σε → 0, the unique Bayesian
Nash equilibrium among strategic investors is in switching strategies around a threshold s∗ defined
by ∫ 1

0
π(λ, s∗) dλ = 0.

For liquidity risk below the threshold, s < s∗, all strategic investors hold on to their safe assets and
only investors with genuine liquidity needs sell. For liquidity risk above the threshold, s > s∗, all
strategic investors sell their safe assets and the market suffers a run.

Proof. See Appendix C.

While Appendix C contains the full proof, we provide the following outline for in-
tuition. An investor who receives a signal exactly equal to the switching point has to be
indifferent between holding and selling,

E
[
π(λ, s)

∣∣ ŝi = s∗
]
= 0, (10)

where the expectation is with respect to both λ and s. Note from equation (9) that π(λ, s)
is linear in λ and cubic in s. We have E[s | ŝi = s∗] = s∗, and, in the limit σε → 0, we have
E
[
s2 | ŝi = s∗

]
→ (s∗)2 and E

[
s3 | ŝi = s∗

]
→ (s∗)3, so fundamental uncertainty vanishes,

and strategic uncertainty in the form of the distribution of λ becomes uniform on [0, 1].
We therefore have

lim
σε→0

E
[
π(λ, s)

∣∣ ŝi = s∗
]
=

∫ 1

0
π(λ, s∗) dλ,

12We acknowledge that the uniqueness of the global game equilibrium is potentially not robust in the
presence of public information (Angeletos and Werning, 2006). However, the fact that prices in the Trea-
sury market are not as transparent to the non-dealer investors as, e.g. in the equity market, alleviates these
concerns in our setting.
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Figure 3: Effect of balance sheet costs on market stability and equilibrium price. Panel A
shows market stability measured by the equilibrium threshold s∗ as a function of the dealer
balance sheet cost c. Panel B shows the equilibrium price at date 0 p∗0 as a function of liquidity
risk s for different values of dealer balance sheet cost c. Parameters: v = 1.2.

where
∫ 1

0 π(λ, s) dλ is a cubic polynomial in s. We show in the proof of Proposition 2 that
∂
∂s

∫ 1
0 π(λ, s) dλ > 0 with

∫ 1
0 π(λ, 0) dλ < 0 and

∫ 1
0 π(λ, 1) dλ > 0 so there is a unique

threshold s∗ that satisfies the indifference condition
∫ 1

0 π(λ, s∗) dλ = 0.
The equilibrium switches from hold to sell when liquidity risk s crosses the threshold

s∗ and a higher threshold implies a larger range of liquidity risk [0, s∗] where the market
remains in the hold equilibrium. Given the distribution F of liquidity risk s, the ex-ante
probability of the hold equilibrium is therefore Pr[s ≤ s∗] = F(s∗) and the ex-ante proba-
bility that the market suffers a run is Pr[s > s∗] = 1− F(s∗). The threshold s∗ is therefore a
well-defined measure of market stability or 1 − s∗ a measure of fragility, and we can refer
to a market with higher s∗ as more stable or, equivalently, less fragile.

Corollary 1. Market stability as measured by the global game threshold s∗ is decreasing in dealer
balance sheet costs, ∂s∗/∂c < 0 and increasing in liquidity investors’ continuation value, ∂s∗/∂v >

0.

Proof. See Appendix C.

Market stability naturally inherits the properties of the incentive to sell listed in Propo-
sition 1. Consider the effect of dealer balance sheet costs c onmarket stability s∗ illustrated
in Figure 3A. If dealers faced no balance sheet costs (c = 0), the market would be perfectly
stable (s∗ = 1) and strategic investors would never sell preemptively, even for very high
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liquidity risk s. However, as balance sheet costs c increase from zero,market stability s∗ de-
creases rapidly and then levels off at higher values of c. In contrast, preemptive sales in the
model of Bernardo andWelch (2004) are decreasing in dealer balance sheet costs such that
market runs in their model are less prevalent for higher balance sheet costs (Appendix B).

The threshold equilibrium implies that the behavior of strategic liquidity investors and
therefore the equilibrium price drops precipitously around the threshold s∗. In particular,
total supply at date 0 increases from s to 1 as s crosses the thresholds∗, so the equilibrium
price from equation (5) becomes13

p∗0(s) =

1 − cs for s < s∗,

1 − c for s > s∗.
(11)

Figure 3B illustrates the equilibrium price p∗0 . When liquidity risk is very low, all strate-
gic investors hold on to their safe assets and only investors who receive a liquidity shock
sell — the equilibrium price is therefore steadily decreasing in s, representing the sales of
non-strategic investors. However, once liquidity risk crosses the threshold s∗, all strategic
investors preemptively sell their safe assets — the market is flooded and the equilibrium
price drops precipitously. Figure 3B further illustrates the equilibrium price for two dif-
ferent levels of dealer balance sheet costs c. As balance sheet costs increase, the threshold
s∗ and therefore market stability decreases (Corollary 1). In addition, the drop in mar-
ket prices at the discontinuity is much larger for higher balance sheet costs. This is due
to the fact that the drop in equation (11) is given by c (1 − s∗), where c and s∗ interact
multiplicatively.

2.5 Investor Welfare and Inefficient Runs

Because liquidity investors value the safe asset at v > 1 when held to maturity, selling the
asset without a genuine liquidity need is generally inefficient. As a result, our model fea-
tures panic-based run equilibria in which liquidity investors would be better off if they
could coordinate to hold instead. However, the welfare consequences of the hold and
run equilibria are somewhat subtle because investors who would have suffered liquid-
ity shocks at date 1 can be better off if they sell in a panic-based run equilibrium at date
0. Nonetheless, our model predicts that the market will always feature run equilibria at
times when investors would be better off if all investors could coordinate to hold.

13The expression in (11) represents the zero-noise limit case (σε → 0) where the price drops discon-
tinuously at s∗. For small but positive σε, the price drop would be continuous but very steep in a small
neighborhood around s∗.
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If all strategic investors sell at date 0, they (and the non-strategic investors) receive
an expected payoff pe

0(λ = 1) = 1 − c/2. Expected payoffs if all strategic investors hold
are more complicated: investors with a liquidity shock at date 0 receive pe

0(λ = 0) =

1 − (c/2) s; investors with a liquidity shock at date 1 receive pe
1(λ = 0) = 1 − 2cs −

(c/2) s (1 − s); and investors who do not receive a liquidity shock at either date receive
v. Altogether, the difference in investor welfare between the hold allocation and the run
allocation is a function of liquidity risk s and given by

∆(s) ≡ s
(

1 − c
2

s
)
+ (1 − s) s

(
1 − 2cs − c

2
s (1 − s)

)
+ (1 − s)2 v −

(
1 − c

2

)
. (12)

The first three terms are the payoffs in the hold allocation (λ = 0) and the last term is the
payoff in the run allocation (λ = 1).

With no liquidity shocks, we have ∆(0) = v− 1+ c/2 > 0, which includes the elevated
value of the asset plus the saved balance sheet cost. With guaranteed liquidity shocks, we
have ∆(1) = 0 since all investors are forced to sell early — there is no one who could hold.
However, ∆(s) is a polynomial of degree 4 and not necessarily strictly positive for s ∈ [0, 1].
Figure 4A plots ∆(s) for different values of the balance sheet cost c and illustrates that ∆(s)
has a root s∗∗ ∈ (0, 1) for c > 0, so there is a range of s near 1 where ∆(s) < 0, i.e. where
investor welfare is higher in the run allocation.

How can the run allocation welfare-dominate if liquidity investors value the safe asset
at v > 1 and the price they sell at is strictly less than 1? The issue is precisely the main
feature of our model: investors’ fear of being forced to liquidate at date 1 at depressed
prices. In a hold allocation, a fraction (1 − s) s of investors will be forced to sell at date 1,
after a fraction s have already sold at date 0. We have already noted in Proposition 1 that,
for high s, investors would prefer to sell early, even if the price pe

0 is depressed by strategic
sales fromother investors—and this is all themore so in a hold allocationwith no strategic
sales. Thus, with sufficient liquidity risk, agents are better off selling early, when prices are
high, rather than in the future, when dealers’ balance sheets would be bloated.

While the welfare difference ∆(s) compares the hold and run allocations, only one of
the two is an equilibrium for any level of s: hold for s below the global game threshold s∗

and sell for s above s∗. An important question therefore is whether our model features in-
efficient run equilibria, with investors selling strategically when the hold allocation would
have yielded higher welfare. This amounts to determining whether the welfare difference
∆(s) is positive for s at or above the threshold s∗ or equivalently, whether s∗ < s∗∗.

Proposition 3 (Inefficient Runs). The model features inefficient run equilibria in which investors
would be better off coordinating on the hold allocation. In particular, we have s∗ < s∗∗ and therefore
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A: Welfare gain from hold allocation.
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B: Region of inefficient runs.
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Figure 4: Investor welfare and inefficient runs. Panel A shows the difference in welfare be-
tween the hold and run allocations as a function of liquidity risk s for different values of
dealer balance sheet cost c. Panel B shows the welfare threshold s∗∗ and the equilibrium
threshold s∗ as a function of dealer balance sheet cost c. The shaded region indicates the
“panic region”: the values of liquidity risk s such that the global game features a run equi-
librium but the hold equilibrium leads to higher welfare. Parameters: v = 1.2.

∆(s) > 0 for s ∈ (s∗, s∗∗).

Proof. See Appendix C.

Figure 4B illustrates the result. The figure plots the equilibrium threshold s∗ and the
welfare cutoff s∗∗ as functions of the dealer balance sheet cost c. The shaded region plots
the “panic region”: the values of liquidity risk s in which the global game features a run
equilibrium but the hold allocation would lead to higher investor welfare. Outside the
shaded region, agents coordinate on the equilibrium that leads to the highest welfare.
Our results imply that there is scope for policy in order to shrink the inefficient (shaded)
region by increasing s∗. By decreasing the frequency of the run equilibrium, policy could
tilt outcomes in favor of higher welfare (the hold equilibrium) whenever liquidity risk is
not too high.

3 Model with Safety Investors

We now introduce a second type of investors who are risk averse and hold a portfolio of
the safe asset and the risky asset. These “safety investors” are subject to aggregate shocks
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to the expected payoff of the risky asset which lead them to shift their desired portfolio
composition. We are interested in the situation where, in a bad state of the world, safety
investors increase their demand for the safe asset in a flight-to-safety, offsetting the flow of
sales from liquidity investors or leading to repricing even in the absence of large trade vol-
ume. Examples of real-world safety investors we have in mind include pension funds who
face a traditional risk–return tradeoff and were among the largest net buyers of Treasuries
in 2020q1 (Financial Accounts Table FU.210).

Although we impose general equilibrium through market clearing for both the safe
and risky asset, our modeling of safety investors is deliberately simple in order to inte-
grate them into the model of strategic interaction among liquidity investors. In addition,
while safety investors could be active both at date 0 and at date 1, we focus attention on
the case where safety investors have interesting effects. Additional safe asset demand at
date 1 unambiguously increases the price at date 1, which reduces the incentive to sell
preemptively and has a natural stabilizing effect on the strategic interaction at date 0. In
contrast, additional demand at date 0 increases both the price at date 0 as well as the price
at date 1 — by reducing dealer inventory — with an ambiguous overall effect on market
stability at date 0. We therefore restrict attention to the case in which safety investors are
active only at date 0. Appendix E discusses the general case.

3.1 Safety Investors’ Safe Asset Demand

Safety investors’ utility is linear in consumption at date 0 and quadratic in future wealth,

u(c0, w) = c0 + w − 1
2

κw2,

where the curvature parameter κ > 0 commingles risk aversion and intertemporal substi-
tution andwe assume w < 1/κ. In addition to the safe asset with future payoff 1, there is a
risky asset with future payoff z distributed according to Hz, where we denote the expected
payoff as µz =

∫
z dHz(z) and the variance as σ2

z =
∫

z2 dHz(z)− µ2
z.

Given initial wealth w0, safety investors choose consumption c0 and a portfolio with
holdings qS

0 of the safe asset and qz of the risky asset subject to the budget constraint c0 +

p0qS
0 + pzqz ≤ w0 to maximize E[u(c0, w)], where future wealth is given by w = qS

0 + zqz.
After substituting in for c0 using the budget constraint, we have first-order conditions for
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qS
0 and qz given by

0 = E
[
1 − κ

(
qS

0 + zqz

)]
− p0

= 1 − κ
(

qS
0 + zqz

)
− p0,

and

0 = E
[
z − κ

(
qS

0 + zqz

)
z
]
− pz

= µz − κ
(

µzqS
0 +

(
µ2

z + σ2
z

)
qz

)
− pz,

which are both linear in qS
0 and qz. Solving, we arrive at safety investors’ demand for the

safe asset and the risky asset given by

qS
0 =

1
κσ2

z

(
σ2

z + µz pz −
(

µ2
z + σ2

z

)
p0

)
qz =

1
κσ2

z
(µz p0 − pz) ,

while their consumption at date 0 is given as the residual c0 = w0 −
(

pzqz + p0qS
0
).

To close the model and impose general equilibrium, we assume that safety investors
have to hold the entire supply Z > 0 of the risky asset, i.e. qz = Z. In this case, the risky
asset price is pz = µz p0 − κσ2

z Z and drops after a negative shock to the risky asset’s ex-
pected payoff µz (as the S&P 500 did in March 2020). Substituting in the equilibrium pz,
safety investors’ demand for the safe asset simplifies to

qS
0 =

1
κ
(1 − κµzZ − p0) , (13)

which is linear in p0 and has a similar structure to dealers’ demand in equation (6). For
ease of exposition, we write safety investors’ demand as

qS
0 = a − bp0,

with a = 1/κ − µzZ and b = 1/κ. We are interested in shocks to the risky asset’s expected
payoff µz, which enter safety investors’ safe asset demand only through the intercept a. A
decrease in µz is therefore equivalent to an increase in a and implies a flight-to-safety as a
level shift in safety investors’ demand for the safe asset.
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3.2 Effect of Safety Investors on Market Stability

Combining the demand from dealers, qD
0 = 1

c (1 − p0), with the demand from safety in-
vestors, qS

0 = a − bp0, total demand for safe assets at date 0, qD
0 + qS

0 , can be rewritten
as

p0(q0) =
1 + ac
1 + bc

− c
1 + bc

q0. (14)

With total supply of q0 = s + (1 − s) λ, a liquidity investor who sells at date 0 expects to
receive

pe
0(λ) =

1 + ac
1 + bc

− 1
2

c
1 + bc

(
s + (1 − s) λ

)
.

An increase in the additional demand from safety investors (higher a) therefore uniformly
increases the expected price at date 0.

At date 1, only dealers buy the safe asset so demand is unchanged from equation (2)
in Section 2. However, dealer inventory is no longer the entire date-0 supply q0 as some of
these sales have been absorbed by safety investors. Specifically, dealer inventory is given
by

qD
0 =

1
c
(
1 − p0(q0)

)
=

1
c q0 − b

c
(
1 − a

b
)

1
c + b

.

Combining dealer demand at date 1 from equation (2) with inventory qD
0 and date-1 sup-

ply q1 = s (1 − s) (1 − λ), a liquidity investor who sells at date 1 expects to receive

pe
1(λ) = 1 − 2c

s + (1 − s) λ + b − a
1 + bc︸ ︷︷ ︸

date-0 inventory

− c
2

s (1 − s) (1 − λ)︸ ︷︷ ︸
date-1 sales

.

Our focus now is how changes in additional sales a affect the two expected prices and
the strategic interaction of liquidity investors captured by the payoff gain:

π(λ, s) =

pe
0(λ)︷ ︸︸ ︷

1 + ac
1 + bc

− 1
2

c
1 + bc

(
s + (1 − s) λ

)
− s

(
1 − 2c

s + (1 − s) λ + b − a
1 + bc

− c
2

s (1 − s) (1 − λ)

)
︸ ︷︷ ︸

pe
1(λ)

− (1 − s) v.

The question is if (or when) additional demand from safety investors is stabilizing (de-
creases π) or destabilizing (increases π).

Proposition 4. Flight-to-safety demand at date 0 increases the incentive to sell preemptively if and
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only if liquidity risk is low, ∂π/∂a > 0 ⇔ s < 1/2. The effect of additional demand is monotonic
in liquidity risk, ∂2π

/
(∂s∂a) < 0.

Proof. See Appendix C.

Where does the ambiguous effect of a on π originate? Similar to strategic sales by liq-
uidity investors, purchases from safety investors have a direct effect and an indirect effect
on the payoff gain π. The direct effect of an increase in demand a is an increase in the
date-0 price pe

0 and therefore an increase in the payoff gain π with a coefficient

c
1 + bc

.

This effect is destabilizing since a higher price at date 0 incentivizes strategic investors to
sell preemptively.

The indirect effect works through relaxing dealer balance sheet constraints, which in-
creases the date-1 price pe

1 and therefore reduces the payoff gain π with a coefficient (in
absolute value)

s
2c

1 + bc
.

This stabilizing effect on pe
1 is twice as high as the destabilizing effect on pe

0 because of the
larger effect of existing date-0 inventory on dealer demand than of new date-1 inventory.
However, the effect on pe

1 is discounted by the liquidity shock probability s since it is only
relevant if the investor actually suffers a liquidity shock at date 1. For low liquidity risk,
s < 1/2, the destabilizing effect of a higher date-0 price dominates the stabilizing effect of
a higher date-1 price, such that flight-to-safety increases the incentive to sell preemptively.
Vice versa for high liquidity risk, s > 1/2, the stabilizing effect dominates such that flight-
to-safety decreases the incentive to sell.

The payoff gain with safety investor demand retains the standard global game con-
ditions of Morris and Shin (2003) so, for vanishing signal noise, the unique equilibrium
remains in switching strategies around a threshold s∗ defined by the indifference condi-
tion

∫ 1
0 π(λ, s∗) dλ = 0 as in Proposition 2. In particular, recall that π is increasing in s so

an exogenous decrease in π leads to a higher threshold s∗, capturing higher market stabil-
ity. The ambiguous effect of safety investor demand on the payoff gain π (Proposition 4)
therefore directly translates into an analogous effect on market stability.

Corollary 2. Flight-to-safety demand at date 0 is stabilizing if the market is relatively stable and
destabilizing if the market is relatively fragile, ds∗/da > 0 ⇔ s∗ > 1/2.

Proof. See Appendix C.
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Figure 5: Effect of flight-to-safety on equilibrium market stability. The figure shows the
effect of an increase in safety investor demand from aL to aH onmarket stability s∗ for different
levels of dealer balance sheet cost c.

Figure 5 illustrates the ambiguous effect of flight-to-safety demand on market stability
by comparing two markets with different levels of dealer balance sheet cost c. When bal-
ance sheet costs are low, the market is relatively stable: the threshold s∗ where the price
drops precipitously is above 1/2. In this case, liquidity investors sell preemptively at date
0 only if liquidity risk s is very high (i.e. only if they are very likely to be forced to sell at
date 1). In this environment of high liquidity risk, the stabilizing effect of flight-to-safety
demand increasing the price at date 1 dominates and the threshold s∗ is increasing in a,
so that runs become less likely as safety demand increases from aL to aH.

When balance sheet costs are high, in contrast, the market is relatively fragile with the
threshold s∗ below 1/2. In this case, liquidity investors already sell preemptively when
liquidity risk s is still low (i.e. when they are unlikely to be forced to sell at date 1). In
this environment of low liquidity risk, the destabilizing effect of flight-to-safety demand
increasing the price at date 0 dominates and the run threshold s∗ is decreasing in a so
higher safety demand is destabilizing. In fact, for a given level of liquidity risk that is
close to but below the run threshold, an increase in safety investor demand can reduce the
threshold sufficiently to tilt the market into the run equilibrium such that flight-to-safety
triggers a dash-for-cash.

The interaction of liquidity investors and safety investors therefore results in a feedback
effect in market stability. If the market is resilient to begin with (e.g. as with low balance
sheet costs before the GFC), then liquidity investors and safety investors interact symbiot-
ically: In times of stress, the additional demand for safe assets from safety investors has a
stabilizing effect on the strategic interaction of liquidity investors and attenuates the risk
of market breakdown. However, if themarket is relatively fragile (e.g. due to the post-GFC
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increase in dealer balance sheet costs), the relationship reverses: Additional demand from
safety investors in times of stress further destabilizes the strategic interaction of liquidity
investors, increasing their incentive to sell preemptively and thereby increasing the risk of
market breakdown.

3.3 Correlated Liquidity and Safety Shocks

Now suppose the risks faced by liquidity investors and safety investors are correlated. In
times of stress, liquidity investors face a higher risk of suffering a liquidity shock (i.e. s is
high), and safety investors face a low payoff of the risky asset (i.e. µz is low and therefore
a is high). To understand the net effect of increases in s and a on the safe asset market, we
can derive the equilibrium price at date 0 as a function of s and a. As before, total supply
in the global game equilibrium is s for s < s∗ (all strategic investors hold) and 1 for s > s∗

(all strategic investors sell). Substituting into the price with demand from safety investors
in equation (14), the equilibrium price becomes

p∗0(s, a) =

 1
1+bc

(
1 − c (s − a)

) for s < s∗(a),
1

1+bc
(
1 − c (1 − a)

) for s > s∗(a).
(15)

Figure 6 illustrates the equilibrium price for combinations of s and a with a contour
plot. The figure shows a case in which the market is relatively fragile: The threshold s∗

is always below 1/2, so the cliff where the price drops as the equilibrium switches from
hold to run is decreasing in (s, a)-space: for liquidity risk s close to s∗, an increase in safety
investor demand a can push the market over the cliff and trigger a price crash. In the hold
equilibrium (i.e. for s < s∗), the expression in equation (15) shows that equal-sized in-
creases in s and a exactly offset each other and leave the price unchanged so the contour
lines in Figure 6 have a slope of 1. This implies that whenever safety demand a increases
more than 1:1 with liquidity risk s and liquidity risk remains below the threshold s∗, we
observe a classic flight-to-safety with p∗0 increasing (i.e. safe assets appreciating). This
corresponds to the period frommid-February to early March 2020, where stock prices de-
creased and Treasury prices increased (Figure 1, Panel A). However, if the balance shifts
and the increase in liquidity risk s outweighs the increase in safety demand a, the price p∗0
can decrease and suddenly drop as s crosses the threshold s∗ and the equilibrium shifts to
a dash-for-cash. This corresponds to the period in mid-March 2020 when Treasury prices
reversed their increase and dropped together with stock prices.
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A further destabilizing element of our model is the sequential trade execution in the
spirit of the OTC market structure between investors and dealers. As a result, a strategic
investor expects to receive the average in-run price when selling preemptively at date 0
but bears the full impact of dealer inventory from date 0 when being forced to sell at date
1. Changes to market structure that lead to more pooling of trades and that reduce the
role of dealers as a bottleneck for inter-temporal flow imbalances can therefore reduce the
fragility of safe asset markets. Note, however, that our model features a run equilibrium
even in the absence of sequential trade execution if dealer constraints are sufficiently tight
(see Appendix D). Pooling of trades therefore attenuates incentives to sell preemptively
but is not sufficient to rule out fragility.

Dealer Constraints. Dealer balance sheet costs play a crucial role in the strategic inter-
action of liquidity investors, since dealer inventory is the key link between the price at
date 0 and the price at date 1. When considering only the interaction of liquidity investors,
higher dealer balance sheet costs result in a more fragile safe asset market (i.e. a market
that is more prone to runs and sudden price crashes; Figure 3B). Also taking into account
the effect of additional demand from safety investors, an increase in dealer balance sheet
costs can tip the market from a relatively stable region in which risk agents have a stabi-
lizing effect to a relatively fragile region in which risk agents have a destabilizing effect
(Figure 5). However, a policy that aims to relax dealer balance sheet constraints in times
of stress has to be designed with care due to the subtleties of the strategic interaction. For
example, if the policy relaxes dealer constraints only at date 0 (or relatively more at date
0), then it can increase the incentive to sell preemptively at date 0. If the market is in a run
equilibrium, such a policy will appear to not have an effect, and if it is in the hold equilib-
rium then a short-run relaxation of constraints can precipitate a run. In addition, policy
has to target the constraint that is actually binding.

Figure 7 illustrates these subtleties by showing the sequence of Fed interventions aimed
at the Treasury market in the spring of 2020. Going into March, the Fed was conducting
limited Treasury repo operations (lending against Treasuries) as part of its regular mon-
etary policy implementation and was actually shrinking the offering size of these opera-
tions.14 As conditions deteriorated starting March 9, repo offering sizes were increased to
over $1 trillion by March 12 but, as shown in Figure 7, take-up by dealers was only mod-
erate at around $100 billion and the liquidity provision through repos was not effective

14On February 4 the New York Fed’s Open Market Trading Desk decreased term repo operation offering
size from $35 billion to $30 billion and again on February 13 from $30 billion to $25 billion, concurrent with
a reduction in overnight repo from $120 billion to $100 billion (Federal Reserve Bank of New York, 2021).
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A: Facility size and market stability.
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B: Announcement and equilibrium price.
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Figure 8: Effects of date-1 purchase facility announced at date 0. Panel A shows the effect
of the facility size qF

1 on date-0 market stability as measured by the equilibrium threshold s∗.
Panel B shows the effect of the announcement of a facility with qF

1 = 0.5 on the equilibrium
price at date 0. Parameters: v = 1.2, c = 0.5.

maker announces at date 0 an asset purchase facility that will purchase a quantity qF
1 of

the safe asset at date 1. This leaves demand at date 0 unchanged but adds to dealer demand
at date 1, such that the payoff gain becomes

π(λ) = 1 − c
2
(
s + (1 − s) λ

)
− s

(
cqF

1 + 1 − 2c
(
s + (1 − s) λ

)
− c

2
s (1 − s) (1 − λ)

)
︸ ︷︷ ︸

pe
1affected by qF

1

− (1 − s) v.

The payoff gain is uniformly decreasing in the size of the facility qF
1 , and this stabilizing

effect, given by ∂π/∂qF
1 = −sc, is larger (in absolute value) for both higher degrees of

liquidity risk s and higher dealer balance sheet costs c.
Figure 8 illustrates the effects of the purchase facility. Panel A shows the effect of the

facility size qF
1 on market stability at date 0 as measured by the equilibrium threshold s∗.

Consistent with the stabilizing effect of qF
1 being increasing in liquidity risk s, we see that

market stability is increasing and convex in qF
1 until s∗ reaches 1 and themarket is perfectly

stable. Panel B of Figure 8 shows the announcement effect of a facility on the date-0 price
p∗0 . Upon announcement, the equilibrium threshold s∗ increases from the value without
a facility, s∗pre, to the value with a facility, s∗post > s∗pre. For intermediate levels of liquidity
risk, s ∈

[
s∗pre, s∗post

], the announcement leads to a switch from the run equilibrium to the
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Only after the Fed roughly doubled its daily purchases on March 19 and then committed
to maintaining them as long as necessary onMarch 23 did prices recover and foreign sales
subside.17 This is consistent with the market switching back to the hold equilibrium once
investors were confident that they would not face worse prices in the future.

The corporate bond market provides a clean illustration of the announcement effects
implied by our model. While corporate bonds are not considered as safe (or liquid) as
Treasuries, highly rated ones are on a spectrum of relative safety slightly below agency
MBS (He and Song, 2022) and also feature flight-to-safety (Baele et al., 2019). Haddad,
Moreira, and Muir (2021) document that, in March 2020, prices of corporate bonds suf-
fered a crash similar to that in Treasuries. Surprisingly, the dislocations were worse for
bonds considered safer, which is consistent with safe asset fragility as shown in ourmodel.
Further, Haddad, Moreira, and Muir (2021) show in detail that the Fed’s purchase facili-
ties for corporate bonds had large positive effect on prices at the time they were announced in
March even though purchases would not start until June (see also Boyarchenko, Kovner,
and Shachar, 2022).

5 Conclusion

We focus on three key features of safe asset markets: investors who value the assets’ safety,
investors who value the assets’ liquidity, and dealers who face balance sheet constraints.
Combining these features, we show that safe asset markets can be fragile in that they are
susceptible to sudden price crashes due to coordination effects among investors valuing
liquidity that are amplified by investors valuing safety.

Our model helps us understand the unprecedented events in the U.S. Treasury market
at the onset of the COVID-19 pandemic in March 2020 as a “perfect storm” of the three
features: First, financial regulation in the wake of the GFC had significantly tightened
dealer balance sheet constraints, increasing the inherent fragility of themarket. Second, the
pandemic threatened a global economic slowdown, leading to a powerful flight-to-safety
demand, further destabilizing the market. Third, lockdowns created unprecedented liq-
uidity needs among consumers and official agencies. The result, according to our model,
was a market run that featured indiscriminate sales by liquidity investors, including those

17The statement by the Fed’s Federal Open Market Committee (FOMC) on March 23 reads “The
Federal Reserve will continue to purchase Treasury securities and agency mortgage-backed securities
in the amounts needed to support smooth market functioning and effective transmission of mone-
tary policy to broader financial conditions.” Available at https://www.federalreserve.gov/newsevents/
pressreleases/monetary20200323a.htm.
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without genuine liquidity needs who feared having to sell at even worse conditions in the
future.

The issues of dealer balance sheet constraints is almost surely only going to get worse
over time as the federal deficit grows and Treasury supply increases. So long as dealers’
balance sheet capacity grows more slowly than the stock of Treasuries, the market rely-
ing on dealer balance sheet capacity will have insufficient ability to intermediate trades
(Duffie, 2020). Ourmodel implies that thiswill exacerbate preemptive selling and increase
the frequency of dash-for-cash episodes.
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Appendix

A Data

Treasury yield: Themarket yield on U.S. Treasury securities at 10-year constant maturity,
daily frequency, from the Federal Reserve’s H.15 via FRED series DGS10.

S&P 500: The S&P 500 index, daily frequency, from Standard & Poors via FRED series
SP500.

Fed holdings of Treasuries: Federal Reserve outright holdings of Treasury notes andbonds
(both nominal and TIPS), weekly frequency as of Wednesday, from the Federal Re-
serve’s H.4.1 via FRED series WSHONBNL and WSHONBIIL.

Dealer net positions of Treasuries: PrimaryDealers’ net position in Treasuries (both nom-
inal and TIPS) from the New York Fed’s Primary Dealer statistics available at https:
//www.newyorkfed.org/markets/counterparties/primary-dealers-statistics.

Dealer reverse repo against Treasuries: PrimaryDealers’ gross reverse repurchase agree-
ments against Treasuries (both nominal andTIPS), including other financing activity
and securities borrowed, from theNewYork Fed’s PrimaryDealer statistics available
at https://www.newyorkfed.org/markets/counterparties/primary-dealers-statistics.

Net purchases of Treasuries: Net purchases of Treasuries (all types), quarterly frequency
(not seasonally adjusted), from the Federal Reserve’s FinancialAccounts Table FU.210
available in the CSV files at https://www.federalreserve.gov/releases/z1. The
label “foreign investors” refers to the sector “rest of the world” in the original table.

Fed Treasury Purchases: Federal Reserve Treasury purchases (all types), daily frequency,
from the New York Fed’s Treasury securities operations, available at https://www.
newyorkfed.org/markets/desk-operations/treasury-securities.

Foreign Official Treasury Purchases: Net Treasury purchases inferred from changes in
Treasury securities held in custody for foreign officials and international accounts,
weekly frequency as ofWednesday, from the Federal Reserve’s H.4.1 via FRED series
WMTSECL1.

Fed Treasury Repos: Federal Reserve Treasury repurchase agreements (overnight and
term) in temporary open market operations, daily frequency, from the New York
Fed via FRED series RPTSYD.
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B Comparison to Bernardo and Welch (2004)

Our model deviates from Bernardo and Welch (2004), hereafter BW, in a few important
details which allow us to apply global game methods in a model of regime shifts and to
derive a state-contingent interaction between flight-to-safety and dash-for-cash.

The first difference between the two models is as follows: While dealers and investors
both value the (risky) asset in BW at its expected value µ, dealers value the (safe) asset
in our model at its par value of 1 while liquidity investors value the asset at v > 1 due to
it’s insurance properties. Such a difference in valuations is natural when thinking of a safe
asset that conveys specific benefits to certain investors. In terms ofmodeling, the difference
allows for the existence of a hold equilibrium under complete information in our model,
while BW only have a mixed or a run equilibrium. The possibility of a hold equilibrium
is both empirically plausible and technically important: Empirically plausible because we
do not think that investors routinely sell assets preemptively during normal times as the
BW model implies; technically important because it provides the second pure-strategy
equilibrium that is necessary for a true model of regime shifts.

The second difference is that the BWmodel features only strategic substituteswhile our
model allows for strategic complementarities. The possibility of strategic complementari-
ties is another necessary ingredient for amodel of regime shifts as it allows formultiplicity
of equilibria under complete information.

As a result of these differences, the unique equilibrium in the BW model features pre-
emptive sales λ∗(s) that are continuously increasing in the degree of liquidity risk s from
λ∗(0) = 0 to λ∗(s) = 1 at some s ≤ 1; therefore the date 0 price is continuously decreas-
ing in s until s (and then constant). In contrast, the unique global game equilibrium in
our model features preemptive sales that jump discontinuously from λ∗(s) = 0 for s be-
low the switching point s∗ to λ∗(s) = 1 for s above s∗; therefore the date 0 price drops
precipitously as s crosses the threshold. Furthermore, preemptive sales in BW are decreas-
ing in dealer balance sheet costs (due to the strategic substitutability) while fragility and
therefore preemptive sales in our model are increasing in dealer balance sheet costs.

Finally, ourmodel features safety investorswhose demand for the asset has an ambigu-
ous effect on liquidity investors’ strategic sales. In the BW model, market depth at date 0
is destabilizing and market depth at date 1 is stabilizing but the net effect of more market
depth at both dates does not vary with the degree of liquidity risk— it is either uniformly
positive or uniformly negative. In contrast, our modeling of safety investors — who in-
crease market depth both at date 0 and at date 1— combined with our regime shift model
of liquidity investors generates one of our key results: more market depth at both dates
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is stabilizing if the market is relatively stable (high s∗) but destabilizing if the market is
relatively unstable (low s∗).

C Proofs

Proof of Proposition 1. We can rewrite the payoff gain π(λ) as

π(λ) =
c
2

s2 +
c
2

s (s (4 − s)− 1)− (1 − s) (v − 1) +
c
2
(1 − s) (s (4 − s)− 1) λ,

and differentiate with respect to λ to get

π′(λ) =
c
2
(1 − s) (s (4 − s)− 1) ,

with c > 0, s ∈ (0, 1), v > 1, and λ ∈ [0, 1], which imply the following comparative statics:

• We have π′(λ) > 0 if and only if s (4 − s) − 1 > 0 which has one root in the unit
interval given by s̃ ≡ 2 −

√
3.

• Differentiating π with respect to s, we have

∂π

∂s
=

c
2
((10 − 3s) (1 − λ) s + (5λ − 1)) + v − 1,

which is positive unless λ is small. For s > 1
3

(
5 −

√
22

)
≈ 0.103, it is positive for all

λ and therefore also for s > 2 −
√

3.

• Differentiating π with respect to c, we have

∂π

∂c
=

1
2

s2 +
1
2
(s (4 − s)− 1) (s + (1 − s) λ) ,

which is positive if s (4 − s)− 1 > 0.

• Differentiating π with respect to v, we have

∂π

∂v
= − (1 − s) < 0

which is negative. □
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Proof of Proposition 2. In order to apply the standard global game result that there is
a unique equilibrium and that it is in switching strategies, we have to show that the pay-
off gain π(λ, s) satisfies certain properties (Morris and Shin, 2003). Proposition 1 estab-
lishes State Monotonicity and Action Monotonicity, that is π(λ, s) is increasing in s and
increasing in λ for s > s̃, which is satisfied if there are multiple equilibria of the complete-
information game. The payoff gain satisfies Strict Laplacian State Monotonicity since we
have∫ 1

0
π(λ, s) dλ =

c
2

s2 +
c
2

s (s (4 − s)− 1)− (1 − s) (v − 1) +
c
4
(1 − s) (s (4 − s)− 1) ,

(16)
which satisfies ∫ 1

0
π(λ, 0) dλ = − (v − 1)− c

4
< 0,

and ∫ 1

0
π(λ, 1) dλ =

3c
2

> 0,

as well as

∂

∂s

∫ 1

0
π(λ, s) dλ = cs +

c
4
((s (4 − s)− 1) + (1 + s) (4 − 2s)) + (v − 1) > 0,

for s > s̃ and therefore a unique s∗ ∈ (s̃, 1) solves
∫ 1

0 π(λ, s∗) dλ = 0. Finally, π(λ, s)
satisfies Uniform Limit Dominance since we have

π(λ, 0) = − (v − 1)− c
2

λ < 0,

and
π(λ, 1) =

3c
2

> 0.

Under these properties, Morris and Shin (2003) show that, in the limit σε → 0, the global
game has a unique equilibrium and that the equilibrium is in switching strategies around
a threshold s∗ defined by the indifference condition

∫ 1
0 π(λ, s∗) dλ = 0 where distribution

of λ conditional on signal ŝi = s∗ is uniform on [0, 1]. □

Proof ofCorollary 1. Implicit differentiation of the equilibriumcondition
∫ 1

0 π(λ, s∗) dλ =

0 using (16) yields

ds∗

dc
= −

1
2 (s

∗)2 + 1
2 s∗ (s∗ (4 − s∗)− 1) + 1

4 (1 − s∗) (s∗ (4 − s∗)− 1)
cs∗ + c

4 ((s
∗ (4 − s∗)− 1) + (1 + s∗) (4 − 2s∗)) + (v − 1)

< 0
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and
ds∗

dv
=

1 − s∗

cs∗ + c
4 ((s

∗ (4 − s∗)− 1) + (1 + s∗) (4 − 2s∗)) + (v − 1)
> 0

as stated in the corollary. □

Proof of Proposition 3 First, the equilibrium threshold s∗ satisfies
∫ 1

0 π(λ, s∗) dλ = 0.
We can rewrite equation (16) as

∫ 1

0
π(λ, s) dλ =

c
4

(
−s3 + 5s2 + 3s − 1

)
− (1 − s) (v − 1) . (17)

Second, we can rewrite the difference between welfare in the hold and run allocation in
equation (12) as

∆(s) = (1 − s)
( c

2

(
s3 − 5s2 + s + 1

)
+ (1 − s) (v − 1)

)
, (18)

which satisfies ∆(0) > 0 and ∆(1) = 0, and has one root in (0, 1) for c > 0 which we
denote s∗∗.

We want to show that ∆(s∗) > 0, which means that s∗ < s∗∗ and therefore the hold
allocation is better than the run allocation and yet investors play the run equilibrium in
the global game for s ∈ (s∗, s∗∗). From equation (17), the equilibrium threshold s∗ satisfies
(writing s without the star for simplicity)

c
4

(
−s3 + 5s2 + 3s − 1

)
= (1 − s) (v − 1) .

Substituting this into (18), we can calculate ∆(s∗) and we have (writing s without the star
for simplicity)

∆(s∗) ∝ (1 − s)
( c

2

(
s3 − 5s2 + s + 1

)
+

c
4

(
−s3 + 5s2 + 3s − 1

))
,

∝ s3 − 5s2 + 5s + 1,

= (1 − s)
(
−s2 + 4s − 1

)
+ 2.

The first term has one root in (0, 1) given by 2−
√

3 ≡ s̃ and is strictly positive for s ∈ (s̃, 1).
We have s∗ > s̃ from the proof of Proposition 2 and thus ∆(s∗) > 0 and therefore ∆(s) > 0
for all s ∈ (s∗, s∗∗). Thus, we have an inefficient region. □
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Proof of Proposition 4. We can rewrite the payoff gain with additional demand as

π(λ) =
c
2

s2 +
c (a − b)
1 + bc

(1 − 2s)− (1 − s) (v − 1) +
c
2

(
1

1 + bc
(4s − 1)− s2

)
(s + (1 − s) λ) ,

and differentiate with respect to a to obtain

∂π

∂a
=

c
1 + bc

(1 − 2s) ,

and
∂2π

∂s∂a
= − 2c

1 + bc
.

We therefore have ∂π/∂a > 0 if and only if s < 1/2 as well as ∂2π
/
(∂s∂a) < 0. □

Proof of Corollary 2. The global game threshold is defined by
∫ 1

0 π(λ, s∗) dλ = 0 and
implicit differentiation yields

ds∗

da
= −

∫ 1
0

∂
∂a π(λ, s∗) dλ∫ 1

0
∂

∂s∗ π(λ, s∗) dλ
,

and therefore ds∗/da > 0 if and only if s∗ > 1/2. □

D Pooled Trade Execution and Cubic Balance Sheet Costs

Suppose that instead of the quadratic balance sheet costs of the main text, we consider
cubic balance sheet costs cq3. With inventory q0 the equilibrium condition at date 1 is given
by

(1 − p0) q0 + (1 − p1) q1 − c (q0 + q1)
3 = (1 − p0) q0 − cq3

0.

which results in demand

p1(q0, q1) = 1 − c
(

3q2
0 + 3q0q1 + q2

1

)
.

At date 0, the price p0 at which dealers take on inventory q0, anticipating the competition
at date 1, is given by the equilibrium condition

(1 − p0) q0 − cq3
0 = 0,
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which implies a demand given by

p0(q0) = 1 − cq2
0.

With pooled trade execution, the expected price does not have the factor 1/2 of the
average in-run price of the main text. Substituting in date-0 supply q0 = s + (1 − s) λ and
date-1 supply q1 = s (1 − s) (1 − λ), we have expected prices

pe
0(λ) = 1 − c (s + (1 − s) λ)

2

pe
1(λ) = 1 − c

(
3 (s + (1 − s) λ)

2
+ 3 (s + (1 − s) λ) (s (1 − s) (1 − λ)) + (s (1 − s) (1 − λ))

2
)

.

The payoff gain then is, as before

π(λ) = pe
0(λ)− spe

1(λ)− (1 − s) v

with derivatives given by

π′(λ) = c (1 − s)
(

2s4 − 8s3 + 9s2 − 2s − 2 (1 − s)4 λ
)

π′′(λ) = −2c (1 − s)5

Since π′′(λ) < 0 we have π′(λ) > 0 for all λ if π′(1) > 0. With

π′(1) = c (1 − s)
(
−3s2 + 6s − 2

)
,

we have π′(1) > 0 iff s > 1 − 1
/√

3 ≈ 0.42.
In sum, with pooled trade execution and cubic balance sheet costs, we have strategic

complementarities for s > 1− 1
/√

3 (i.e. a threshold slightly higher than the threshold s̃ =
2−

√
3 in themain text). Figure 10 illustrates the payoff gain and the resulting equilibria of

the complete information game for different levels of liquidity risk (analogous to Figure 2
in the main text).

51



0 0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

0

0.05

0.10

0.15

Strategic sales λ

In
ce
nt
iv
e
to
se
ll
π
(λ
)

s  0.3

s  1-
1

3

s  0.5

s  0.6

Figure 10: Pooled trade execution and cubic balance sheet costs.The figure shows the payoff
gain π(λ) for different values of liquidity risk s. Circles indicate equilibria of the game under
complete information. Parameters: v = 1.2, c = 0.25.

E Case with Safety Investors Active at Both Dates

Suppose we have additional demand qS
0 = a0 − b0p0 at date 0 and qS

1 = a1 − b1p1 at date
1. Things are unchanged at date 0 with expected price

pe
0(λ) =

1 + a0c
1 + b0c

− 1
2

c
1 + b0c

(s + (1 − s) λ) .

At date 1, dealers demand qD
1 = 1

c (1 − p1)− 2qD
0 with inventory qD

0 as in themain text.
With additional demand, total demand at date 1 can be written as

p1(q1) =
1 + a1c − 2cqD

0
1 + b1c

− c
1 + b1c

q1.

With total supply q1 = s (1 − s) (1 − λ) substituting in dealer inventory

qD
0 =

s + (1 − s) λ + b0 − a0

1 + b0c

we have an expected price

pe
1(λ) =

1 + a1c − 2c
(

s+(1−s)λ
1+b0c − a0−b0

1+b0c

)
1 + b1c

− 1
2

c
1 + b1c

s (1 − s) (1 − λ)
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Collecting terms, we have expected prices given by

pe
0(λ) =

1 +
(

a0 − 1
2 s
)

c

1 + b0c
− 1

2
c

1 + b0c
(1 − s) λ

pe
1(λ) =

1 +
(

a1 − 1
2 s (1 − s)

)
c

1 + b1c
+

2c (a0 − b0 − s)
(1 + b1c) (1 + b0c)

− 1
1 + b1c

(
2c

1 + b0c
− c

2
s
)
(1 − s) λ

As before, a0 has twice the effect on pe
1 as on pe

0 but pe
1 is discounted by s, so for a0 to be

stabilizing, we need s > 1/2. In contrast, a1 only affects pe
1, so it is always stabilizing.
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