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1 Introduction

A long tradition in monetary economics emphasizes the role of wealth effects, i.e. the
revaluation of real and financial assets, in the economy’s response to changes in monetary
policy. Its importance can be traced back to both classical and Keynesian economists, such
as Pigou, Patinkin, Metzler, and Tobin.1 Keynes himself described the effects of interest
rate changes as follows:

There are not many people who will alter their way of living because the rate of interest has
fallen from 5 to 4 per cent, if their aggregate income is the same as before. [...] Perhaps the
most important influence, operating through changes in the rate of interest, on the readiness to
spend out of a given income, depends on the effect of these changes on the appreciation or depreciation
in the price of securities and other assets.
- John Maynard Keynes, The General Theory of Employment, Interest, and Money (emphasis
added).

A large empirical literature documents the impact of monetary policy on asset prices.
Bernanke and Kuttner (2005) study the effects of monetary shocks on stock prices. Gertler
and Karadi (2015) and Hanson and Stein (2015) consider the effects on bonds. Cieslak
and Vissing-Jorgensen (2020) show that policymakers track the behavior of stock markets
because of their impact on households’ consumption, while Chodorow-Reich et al. (2021)
establish the importance of this channel empirically.

Despite the evidence, relatively little work has been done to theoretically study the
role of asset price fluctuations on the monetary transmission mechanism.2 An important
reason for this is that incorporating these channels represents a challenge to standard
monetary models. A robust finding of the empirical literature is that changes in asset
prices can be explained mainly by fluctuations in future excess returns, related to changes
in the risk premia, rather than changes in the risk-free rate. However, the standard ap-
proach abstracts from risk premia and generates counterfactual asset-pricing dynamics.
Moreover, models that feature richer asset-pricing dynamics require the use of complex
global or high-order perturbation methods, which lack the insights of the role of the dif-
ferent channels of transmission provided by analytically tractable models.

In this paper, we propose a new framework that generates rich asset-pricing dynamics
and heterogeneous portfolios while preserving the simplicity of the textbook New Key-
nesian model. We consider an economy populated by borrowers and savers with three

1The revaluation of government liabilities was central to Pigou (1943) and Patinkin (1965), while Metzler
(1951) considered stocks and money. Tobin (1969) focused on how monetary policy interacted with the
value of real assets.

2Important recent exceptions are Caballero and Simsek (2020) and Kekre and Lenel (2020).
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main ingredients: i) rare disasters, ii) heterogeneous beliefs, and iii) heterogeneous MPCs.
Rare disasters enable us to capture both a precautionary savings motive and realistic risk
premia. Barro (2009) and Gabaix (2012) argue that the risk of a rare disaster can suc-
cessfully explain major asset-pricing facts.3 Savers invest in stocks, government bonds,
and household debt, and have heterogeneous beliefs, as in Caballero and Simsek (2020).
As a consequence, they hold heterogeneous portfolios in equilibrium. This allows us to
capture time-variation in risk premia in response to monetary shocks. Borrowers are con-
strained in equilibrium, so borrowers and savers have heterogeneous MPCs. Borrowers
play an important role, given that they account for the bulk of the response of aggregate
consumption to changes in interest rates, as recently shown by Cloyne et al. (2020). De-
spite being stylized, the model captures quantitatively central aspects of the monetary
transmission mechanism, including the term premium, the equity premium, and corpo-
rate spreads, as well as the differential responses of borrowers and savers to monetary
shocks observed in the data.

Our first contribution is methodological and consists of an aggregation result. Given
investor heterogeneity, we must characterize not only the dynamics of aggregate output
and inflation, but also the behavior of portfolios, asset prices, net worth, and individual
consumption. This increases the dimensionality of the problem and typically makes de-
riving analytical results infeasible. We show that our economy satisfies an as if result: the
economy with heterogeneous savers behaves as an economy with a representative saver,
but the probability of disaster, as implied by market prices, is time-varying and responds
to monetary policy. This market-implied disaster probability is a key determinant of asset
prices, and it is the main channel through which investor heterogeneity affects the real
economy.

Our second contribution identifies conditions under which time-varying risk premia
plays a role in the transmission of monetary policy to the real economy. Consistent with
the empirical evidence, a contractionary monetary shock leads to an increase in risk pre-
mia and a reduction in the price of risky assets. One could then conclude that this reduc-
tion in households’ wealth leads to a reduction in consumption. However, as the discount
rate increases, the present discounted value of consumption decreases as well. The net ef-
fect of changes in risk premium is ambiguous and depends on whether households are
net buyers or net sellers of risky assets. As recently articulated by Cochrane (2020) and
Krugman (2021), a household who just consumes the dividends from their financial as-
sets can still afford the same level of consumption after a change in discount rates. The

3Rare disasters have been widely used to explain a range of asset-pricing “puzzles”; see Tsai and
Wachter (2015) for a review.
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wealth effect should then be zero in this case.
Formally, we show that the aggregate wealth corresponds to the sum of all house-

holds’ wealth net of the change in the cost of the original consumption bundle. Naturally,
the aggregate wealth effect does not depend on private debt. While private debt matters
for individual households’ consumption, the gross positions cancel out when we aggre-
gate at the household sector level. More interestingly, the aggregate wealth effect does
not depend on the equity premium either. It turns out that the difference between the
revaluation of the households’ assets and liabilities (including consumption) is given by
the government’s liabilities. The intuition is simple: in a closed economy, only the gov-
ernment is a counterpart to the household sector taken as a whole.4 Thus, whether risk
affects the aggregate wealth effect depends on the characteristics of government debt. We
show that, in the absence of a precautionary motive, there are three cases in which risk
has no impact on aggregate wealth: i) when government debt is zero, ii) when govern-
ment debt is short term, and iii) when government debt is a consol. In these cases, either
the households’ net revaluation effect is zero or it is independent of risk premia.

The presence of risk also affects the households’ precautionary motives. This effect
arises from the redistribution among savers after a monetary shock. Because optimists
hold a larger fraction of their wealth in risky assets (long-term bonds and equity), an in-
crease in the interest rate disproportionately reduces their wealth. Holding the aggregate
wealth effect constant, this redistribution of wealth is then reflected in the market-implied
probability of disaster, which increases after the monetary shock as pessimist savers in-
crease their holdings of risky assets. This is the “as-if” result in action: redistribution
between optimists and pessimists is akin to an increase in the “objective” probability of
disaster risk in a model with a representative agent. Note that the precautionary savings
channel changes the timing of consumption but not the households’ aggregate wealth.

Putting together all these results, we obtain a complete characterization of the con-
sumption channel of monetary policy in this model. We show that the transmission
of monetary policy to aggregate consumption has two components, one that affects its
present value and one that affects its timing. The present value of consumption is given by
the aggregate wealth effect. The timing of consumption depends in a prominent way on
private debt and aggregate risk. For private debt, the intuition is that monetary policy re-
distributes between borrowers and savers. Because borrowers and savers have different
MPCs with respect to transitory income shocks, a contractionary monetary policy reduces
aggregate consumption on impact. However, because all households in the economy
have an MPC of one for permanent changes in their income, savers eventually increase

4In an open economy, the foreign sector would be an additional counterpart.
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their consumption so that the present value of the changes cancel out. For aggregate risk,
while precautionary savings increase on impact, they gradually decrease as the market-
implied risk in the economy transitions back to its steady-state level. The present value
of this effect is also zero.

In the absence of an aggregate wealth effect, monetary policy has then only a limited
effect on the economy. A reduction in interest rates stimulates the economy in the present
at the expense of a more depressed economy in the future. We also show that the central
bank is unable to affect inflation when the wealth effect is zero. Moreover, future inflation
rates respond positively to changes in nominal interest rates in this case. Therefore, the
central bank’s ability to stimulate the economy and control inflation is tightly connected
to its ability to generate aggregate wealth effects.

Finally, our solution method allows us to obtain time-varying risk premia in a lin-
earized setting and provide a complete analytical characterization of the channels in-
volved. The method consists on perturbing the economy around a stationary equilibrium
with positive aggregate risk instead of adopting the more common approach of approxi-
mating around a non-stochastic steady state. By perturbing around the stochastic station-
ary equilibrium, we are able to obtain time variation in precautionary motives and risk
premia using a first-order approximation, while the standard approach would require a
third-order approximation (see e.g. Andreasen 2012).5 This hybrid approach can prove
useful in other settings where capturing risk premia is important. It is well known that
business cycle fluctuations in TFP cannot generate large risk premia without assuming
implausible large risk aversion (see Mehra and Prescott, 1985). Disaster risk has been
successful on this front, and our method shows how to incorporate it into rich macroeco-
nomic models without sacrificing tractability.

Our calibration departs from the standard practice in three important ways. First, we
set the households’ intertemporal elasticity of substitution to 0.25 (which implies a risk
aversion coefficient of 4 given our CRRA specification). This choice is lower than the usual
value of 1 or 0.5. However, our choice is closer to recent studies using microdata, such
as Best et al. (2020) who find a value of 0.1. Second, we need to calibrate the parameters
associated with the disaster risk. For the parameters governing the steady-state levels,
we follow Barro (2009). This implies an annual probability of a disaster of 1.7%. For the
time-varying component of the risk premium, we calibrate the elasticity of the disaster
shock to monetary policy to match the initial response of the term premium in Gertler and

5Moreover, by linearizing around an economy with zero monetary risk, we are able to solve for the
stochastic stationary equilibrium in closed form, avoiding the need to compute the risky steady state nu-
merically, as in Coeurdacier et al. (2011).
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Karadi (2015). We show that this calibration generates a conditional equity premium and
corporate spread that is consistent with the literature. Finally, for the fiscal response to a
monetary shock, we augment the procedure in Christiano et al. (1999) to incorporate fiscal
variables. We use the yield on the 5-year government bond to compute the government’s
intertemporal budget constraint.

To quantify the importance of the channels present in the model, we start with the
standard RANK model and add risk and household debt one at a time. We find that
the forces in RANK explain less than 20% of the consumption response on impact to a
monetary shock, risk explain around 50%, household slightly more than 20%, and the
interaction of the two slightly less than 10% Thus, risk and household debt are crucial
components of the monetary transmission mechanism.

Literature review. Wealth effects have a long tradition in monetary economics. Pigou
(1943) relied on a wealth effect to argue that full employment could be reached even in a
liquidity trap. Kalecki (1944) argued that these effects apply only to government liabili-
ties, as inside assets cancel out in the aggregate, while Tobin highlighted the role of private
assets and high-MPC borrowers.6 Recently, wealth effects have regained relevance. In an
influential paper, Kaplan et al. (2018) build a quantitative HANK model and find only
a minor role for the standard intertemporal-substitution channel, leading the way to a
more important role for wealth effects. Much of the literature has focused on the role of
heterogeneous marginal propensities to consume (MPCs) in settings with idiosyncratic
income risk. Instead, our focus is on aggregate risk and private debt.

Our work is closely related to two strands of literature. First, it relates to the analytical
HANK literature, such as Werning (2015), Debortoli and Galí (2017), and Bilbiie (2018).
While this literature focuses primarily on how the cyclicality of income interacts with dif-
ferences in MPCs, we focus instead on how heterogeneous asset positions interact with
differences in MPCs. We see these two channels as mostly complementary: even though
Cloyne et al. (2020) does not find significant differences in income sensitivity across bor-
rowers and savers, Patterson (2019) finds a positive covariance between MPCs and the
sensitivity of earnings to GDP across different demographic groups, suggesting that the
income-sensitivity channel is operative for a different cut of the data. We share with Eg-
gertsson and Krugman (2012) and Benigno et al. (2020) the emphasis on private debt,

6Tobin (1982) describes the role of inside assets: “The gross amount of these ’inside’ assets was and is
orders of magnitude larger than the net amount of the base. Aggregation would not matter if we could be
sure that the marginal propensities to spend from wealth were the same for creditors and debtors. But if
the spending propensity were systematically greater for debtors, even by a small amount, the Pigou effect
would be swamped by this Fisher effect.”
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but they abstract from a precautionary motive and focus instead on the implications of
deleveraging. Iacoviello (2005) also considers a monetary economy with private debt but
focuses instead on the role of housing as collateral. Our work is also related to Auclert
(2019), which studies the redistribution channel of monetary policy arising from portfo-
lio heterogeneity. Our paper emphasizes the redistribution channel in the context of a
general equilibrium setting with aggregate risk.

The paper is also closely related to work on how monetary policy affects the economy
through changes in asset prices, including models with sticky prices, such as Caballero
and Simsek (2020), and models with financial frictions, such as Brunnermeier and San-
nikov (2016) and Drechsler et al. (2018). In recent contributions, Kekre and Lenel (2020)
consider the role of the marginal propensity to take risk in determining the risk premium
and shaping the response of the economy to monetary policy, and Campbell et al. (2020)
use a habit model to study the role of monetary policy in determining bond and equity
premia. Our model highlights instead the role of heterogeneous MPCs, positive private
liquidity, and disaster risk in an analytical framework that preserves the tractability of
standard New Keynesian models.

Finally, a recent literature studies rare disasters and business cycles. Gabaix (2011) and
Gourio (2012) consider a real business cycle model with rare disasters, while Andreasen
(2012) and Isoré and Szczerbowicz (2017) allow for sticky prices. They focus on the effect
of changes in disaster probability while we study monetary shocks in an analytical HANK
model with rare disasters.

2 D-HANK: A Rare Disasters Analytical HANK Model

In this section, we consider an analytical HANK model with three main ingredients: i) the
possibility of rare disasters, ii) heterogeneous portfolios, and iii) heterogeneous MPCs.
First, we describe the non-linear model and later consider a log-linear approximation
around a stochastic stationary equilibrium.

2.1 The Model

Environment. Time is continuous and denoted by t ∈ R+. The economy is populated
by households, firms, and a government. There is a continuum of households which can
be of three types: borrowers, optimistic savers, and pessimistic savers, who differ in their
discount rates and their beliefs about the probability of aggregate shocks. Households
can borrow or lend at a riskless rate, but they are subject to a borrowing constraint.
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Firms can produce final or intermediate goods. Final-goods producers operate com-
petitively and combine intermediate goods using a CES aggregator with elasticity ε > 1.
Intermediate-goods producers use labor as their only input and face quadratic (Rotem-
berg 1982) pricing adjustment costs. Intermediate-goods producers are subject to an ag-
gregate productivity shock: with Poisson intensity λ ≥ 0, they receive a shock that per-
manently reduces their productivity. This shock is meant to capture the possibility of rare
disasters: low-probability, large drops in productivity and output, as in the work of Barro
(2006, 2009). We say that periods that predate the realization of the shock are in the no-
disaster state, and periods that follow the shock are in the disaster state. The disaster state
is absorbing, and there are no further shocks after the disaster is realized. Assuming an
absorbing disaster state simplifies the presentation, but it can be easily relaxed, as shown
in Appendix ??.7

The government sets fiscal policy, comprising a corporate profit tax and transfers to
borrowers, and monetary policy, specified by an interest rate rule subject to a sequence
of monetary shocks. The government issues long-term nominal bonds that pay exponen-
tially decaying coupons. We denote by QL,te−ψLt the nominal price of the bond in the
no-disaster state, which pays coupons e−ψLs for all dates s ≥ t. We denote by Q∗

L,t the cor-
responding (normalized) price of the bond in the disaster state, where the star superscript
is used throughout the paper to denote variables in the disaster state. The rate of decay
ψL is inversely related to the bond’s duration, where a perpetuity corresponds to ψL = 0
and the limit ψL → ∞ corresponds to the case of short-term bonds.

Savers’ problem. Savers face a portfolio problem where they choose how much to in-
vest in short-term bonds, long-term bonds, and corporate equity. In this section, we as-
sume that households issue only short-term risk-free bonds and the government issues
only long-term bonds. We study the case of defaultable long-term household debt in
Section 5. The nominal return on the long-term bond is given by8

dRL,t =

!
1

QL,t
+

Q̇L,t

QL,t
− ψL

"
dt +

Q∗
L,t − QL,t

QL,t
dNt,

where Nt is a Poisson process with arrival rate λ (under the objective measure).
The price of a claim on real aggregate corporate profits is denoted by QE,t and the

7Allowing for partial recovery, as in Barro et al. (2013) and Gourio (2012), introduces dynamics in the
disaster state, but it does not change the main implications for the no-disaster state, which is our focus.

8This expression follows from dRL,t =
e−ψLt

QL,te−ψLt dt + d(QL,te−ψLt)

QL,te−ψLt and dQL,t = Q̇L,tdt + (Q∗
L,t − QL,t)dNt.
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cumulative (real) return on equities evolves according to

dRE,t =

!
Πt

QE,t
+

Q̇E,t

QE,t

"
dt +

Q∗
E,t − QE,t

QE,t
dNt,

where Πt denotes real profits and Q∗
E,t is the equity price in the disaster state.

Importantly, savers have heterogeneous beliefs regarding the probability of a disaster.
Savers’ subjective beliefs about the arrival rate of the aggregate productivity shock are
given by λj, for j ∈ {o, p}, where we assume that λo ≤ λp. We follow e.g. Chen et
al. (2012) and assume that savers are dogmatic in their beliefs about disaster risk, so we
abstract from any learning process. We also assume that ρo − ρp = λp −λo, which ensures
that both types of savers are unconstrained in the long run.

Savers face a constant hazard rate of death ξ ≥ 0. Newborn savers inherit the wealth
from parents and they are optimistic with probability µo

µo+µp
and pessimistic with prob-

ability µp
µo+µp

. Let Cj,t(s) denote the time t consumption of a type-j saver born at date

s ≤ t and Cj,t =
´ t
−∞ ξe−ξ(t−s)Cj,t(s)ds denote average consumption of type-j savers,

where similar notation applies to other variables. For ease of notation, we often drop the
dependence on s and simply write Cj,t instead of Cj,t(s).9

Let Bj,t = BS
j,t + BL

j,t + BE
j,t denote the net worth of a type-j saver, the sum of short-term

bonds (BS
j,t), long-term bonds (BL

j,t), and equity holdings (BE
j,t). A type-j saver chooses

consumption Cj,t, long-term bonds BL
j,t, and equity holdings BE

j,t, given an initial net worth
Bj,t > 0, to solve the following problem:

Vj,t(Bj,t) = max
[Cj,z,BL

j,z,BE
j,z]z≥t

Ej,t

#
ˆ t∗

t
e−ρj(z−t)

C1−σ
j,z

1 − σ
dz + e−ρj(t∗−t)V∗

j,t∗(B∗
j,t∗)

$
,

subject to the flow budget constraint

dBj,t =
%
(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t − Cj,t

&
dt+

!
BL

j,t
Q∗

L,t − QL,t

QL,t
+ BE

j,t
Q∗

E,t − QE,t

QE,t

"
dNt,

as well as borrowing and short-selling constraints

Bj,t ≥ −DP, BL
j,t ≥ 0, BE

j,t ≥ 0,

where it is the nominal interest rate, πt is the inflation rate, rL,t ≡ 1
QL,t

+
Q̇L,t
QL,t

−ψL − it is the

9The perpetual youth assumption pins down the long-run wealth distribution among optimistic and
pessimistic savers, but it is otherwise not central to our results.
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excess return on long-term bonds conditional on no disasters, and rE,t ≡ Πt
QE,t

+
Q̇E,t
QE,t

− (it −
πt) is the excess return on equities conditional on no disasters. The random (stopping)
time t∗ represents the period in which the aggregate shock hits the economy. V∗

j,t∗(·)
and B∗

j,t∗ denote, respectively, the value function and net worth in the disaster state. The
savers’ problem in the disaster state corresponds to a deterministic version of the problem
above, as the disaster happens only once. The non-negativity constraint on BL

j,t captures
the assumption that only the government can issue long-term bonds. The discount rate
for savers can be written as ρj ≡ ρ̃j + ξ, where ρ̃j captures subjective discounting and ξ

captures the effect of mortality risk.
Savers are unconstrained at all times in equilibrium. The Euler equation for short-term

bonds is given by

Ċj,t

Cj,t
= σ−1(it − πt − ρj) +

λj

σ

#'
Cj,t

C∗
j,t

(σ

− 1

$
, (1)

where C∗
j,t is the consumption of a type-j saver in the disaster state. The first term captures

the usual intertemporal-substitution force present in RANK models. The second term
captures the precautionary savings motive generated by the disaster risk, and it is analogous
to the precautionary motive that emerges in HANK models with idiosyncratic risk.

The Euler equation for long-term bonds, if BL
j,t > 0, is given by

rL,t = λj

'
Cj,t

C∗
j,t

(σ

) *+ ,
price of

disaster risk

QL,t − Q∗
L,t

QL,t
) *+ ,

quantity of
risk

. (2)

This expression captures a risk premium on long-term bonds, which pins down the level
of long-term interest rates in equilibrium. The premium on long-term bonds is given by
the product of the price of disaster risk, the compensation for a unit exposure to the risk
factor, and the quantity of risk, the loss the asset suffers conditional on switching to the
disaster state.

Similarly, the Euler equation for equities, if BE
j,t > 0, is given by

rE,t = λj

'
Cj,t

C∗
j,t

(σ
QE,t − Q∗

E,t

QE,t
. (3)

The expression above pins down the (conditional) equity premium in equilibrium. As
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stocks and long-term bonds are exposed to the same aggregate shock, average returns by
unit of risk (the price of risk) is the same for both assets. Differences in expected returns
are then driven by differences in the quantity of risk.

Borrowers’ problem. In contrast to savers, borrowers supply labor and have GHH pref-
erences (Greenwood et al., 1988) over consumption and labor. Their problem is given by

Vb,t(Bb,t) = max
[Cb,z,Nb,z]z≥t

Eb,t

-

./
ˆ t∗

t

e−ρb(z−t)

1 − σ

0

1Cb,z −
N1+φ

b,z

1 + φ

2

3
1−σ

dz + e−ρb(t∗−t)V∗
b,t∗(Bb,t∗)

4

56 ,

subject to the flow budget constraint

dBb,t =

!
(it − πt)Bb,t +

Wt

Pt
Nb,t + 7Tb,t − Cb,t

"
dt,

and the borrowing constraints Bb,t ≥ −DP, where Wt is the nominal wage, Pt is the price
level, and 7Tb,t denote fiscal transfers to borrowers.

We focus on the case where the initial condition is Bb,0 = −DP and ρb is sufficiently
large, so borrowers are constrained at all periods. For simplicity, we have already im-
posed that BS

b,t = BE
b,t = 0, given that short-selling constraints would otherwise be bind-

ing if borrowers could choose BS
b,t and BE

b,t. As borrowers are constrained, their beliefs
about the disaster probability play no role in the determination of equilibrium.

The labor supply is determined by the standard condition:

Wt

Pt
= Nφ

j,t.

GHH preferences imply that there is no income effect on labor supply, roughly in line
with the evidence (see e.g. Auclert et al., 2021), and simplifies the model aggregation.10

Market-implied probabilities and the SDF. From Equations (2) and (3), we can see that,
even though savers disagree on the probability of a disaster, they agree on the value of a
unit of consumption in that state. We can then price any cash flow using the beliefs and
marginal utility of either optimistic or pessimistic savers. Instead of using the beliefs of
a specific saver, it will be convenient to define the economy’s stochastic discount factor

10GHH preferences also avoid the counterfactual implications caused by income effects on labor supply
in heterogeneous-agent models with sticky prices emphasized by Broer et al. (2020).
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(SDF) using the aggregate consumption of savers, Cs,t ≡ µo
µo+µp

Co,t +
µp

µo+µp
Cp,t, and the

corresponding disaster probability implied by asset prices, as shown in Proposition 1.11

Proposition 1 (Disaster probability). Define the market-implied disaster probability λt as fol-
lows:

λt ≡
#

µoCo,t

µoCo,t + µpCp,t
λ

1
σ
o +

µpCp,t

µoCo,t + µpCp,t
λ

1
σ
p

$σ

, (4)

and let Et[·] denote the expectation operator associated with the arrival rate λt for the disaster
shock. Then, ηt = e−

´ t
0 ρs,zdzC−σ

s,t is a valid stochastic discount factor, i.e., ηt correctly prices all
tradeable assets given the disaster probability λt and the process ρs,t.

Proof. To ensure that ηt correctly prices long-term bonds and equities, consistent with
Equations (2) and (3), the market-implied disaster probability must satisfy the condition:

λt

'
Cs,t

C∗
s,t

(σ

= λj

'
Cj,t

C∗
j,t

(σ

⇒ C∗
j,t =

8
λj

λt

9 1
σ C∗

s,t

Cs,t
Cj,t.

Plugging C∗
j,t into the definition of savers’ average consumption in the disaster state,

C∗
s,t ≡ µo

µo+µp
C∗

o,t +
µp

µo+µp
C∗

p,t, and rearranging gives Equation (4). By setting ρs,t = ρj +

λj − λt, we ensure that ηt correctly prices risk-free bonds, i.e., Et[dηt]/ηt = −(it − πt)dt.

The market-implied probability is a CES aggregator of individual probabilities, weighted
by the corresponding consumption share. Expression (4) is reminiscent of the complete-
markets formula with heterogeneous beliefs in e.g. Varian (1985). Under complete mar-
kets, individual probabilities are weighted by (constant) Pareto weights. In contrast, con-
sumption shares can potentially move over time in our setting which leads to endogenous
time-variation in the perceived probability of disaster, even though the objective probabil-
ity of disaster is constant in this economy.

Firms’ problem. Intermediate-goods producers are indexed by i ∈ [0, 1] and operate in
monopolistically competitive markets. Final good producers are price takers and combine
intermediate goods to produce the final good. Their demand for variety i is given by

Yi,t =
:

Pi,t
Pt

;−ε
Yt, and the equilibrium price level is given Pt =

:
´ 1

0 P1−ε
i,t di

; 1
1−ε .

Intermediate-goods producers operate the linear technology Yi,t = AtNi,t. Productiv-
ity in the no-disaster state is given by At = A, and productivity in the disaster state is

11A long tradition in asset-pricing relates the consumption of stockholders, savers in our economy, and
asset prices. See e.g. Mankiw and Zeldes (1991) and Parker (2001).
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given by At = A∗, where 0 < A∗ < A. Intermediate-goods producers choose the rate-of-
change of prices πi,t = Ṗi,t/Pi,t, given the initial price Pi,0, to maximize the expected dis-
counted value of real (after-tax) profits subject to Rotemberg quadratic adjustment costs:

Qi,t(Pi,t) = max
[πi,z]z≥t

Et

!
ˆ t∗

t

ηz

ηt
(1 − τt)

"
Pi,z

Pz
Yi,z −

Wz

Pz

Yi,z

A
− ϕ

2
π2

i,t

#
dz +

ηt∗

ηt
Q∗

i,t∗(Pi,t∗)

$
, (5)

subject to the demand Yi,t =
:

Pi,t
Pt

;−ε
Yt and Ṗi,t = πi,tPi,t, where Q∗

i,t(Pi) denotes the
firms’ value function in the disaster state. The price Pi,t is a state variable in the firms’
problem and πi,t is a control variable. The parameter ϕ controls the magnitude of the
pricing adjustment costs. We assume that these costs are rebated to households, so they
do not represent real resource costs. Profits are discounted using the economy’s SDF and
expectations are computed using the market-implied probability λt, which is consistent
with savers’ own valuation.

Combining the first-order condition and the envelope condition for problem (5), we
obtain the non-linear New Keynesian Phillips curve:

π̇t =

8
it − πt + λt

η∗
t

ηt

9
πt −

ε

ϕA

8
Wt

Pt
− (1 − ε−1)A

9
Yt, (6)

assuming a symmetric initial condition Pi,0 = P0, for all i ∈ [0, 1], and π∗
i,t = 0.

Government. The government is subject to a flow budget constraint

ḊG,t = (it − πt + rL,t)DG,t + µb7Tb,t − τt

8
Yt −

Wt

Pt
Nt

9
,

and a No-Ponzi condition limt→∞ E0[ηtDG,t] ≤ 0, where DG,t denotes the real value of
government debt, DG,0 = DG is given, and analogous conditions hold in the disaster
state. Transfers to borrowers are determined by the policy rule 7Tb,t = 7Tb(Yt), where the
elasticity of 7Tb(·) determines the cyclicality of government transfers to borrowers.

In the no-disaster state, monetary policy is determined by the policy rule

it = rn + φππt + ut, (7)

where φπ > 1, ut is a monetary shock, and rn denotes the real rate when πt = ut = 0
at all periods. We assume that in the disaster state there are no monetary shocks, that is,
i∗t = r∗n + φππ∗

t . By abstracting from the policy response after a disaster, we isolate the
impact of changes in monetary policy during “normal times.”
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Market clearing. The market-clearing conditions for goods, bonds, and equities are
given by

∑
j∈{b,o,p}

µjCj,t = Yt, ∑
j∈{b,o,p}

µjB
S
j,t = 0, ∑

j∈{b,o,p}
µjB

L
j,t = DG,t, ∑

j∈{b,o,p}
µjB

E
j,t = QE,t,

and labor market clearing is µbNb,t = Nt, where Yt =
:
´ 1

0 Y
ε

ε−1
i,t di

; ε−1
ε

and Nt =
´ 1

0 Ni,tdi.

2.2 Equilibrium dynamics

Stationary equilibrium. We define a stationary equilibrium as an equilibrium in which
all variables are constant in each aggregate state. In particular, the economy will be in a
stationary equilibrium in the absence of monetary shocks, that is, ut = 0 for all t ≥ 0.
Since variables are constant in each state, we drop time subscripts and write, for instance,
Cj,t = Cj and C∗

j,t = C∗
j . For ease of exposition, we follow Bilbiie (2018) and assume that

T̃b implements Cb = Y and C∗
b = Y∗, and discuss the general case in the appendix.

The natural interest rate, the real rate in the stationary equilibrium, is given by

rn = ρs − λ

!8
Cs

C∗
s

9σ

− 1
"

,

where 0 < C∗
s < Cs, ρs ≡ ρj + λj − λ, and we assume that rn > 0.

The precautionary motive depresses the natural interest rate relative to the one that
would prevail in a non-stochastic economy, and the magnitude depends on the extent
to which savers can self-insure. In particular, everything else constant, a higher level of
private debt DP implies a weaker precautionary motive and a higher natural interest rate.

From Equation (2), we obtain the term spread, the difference between the yield on the
long-term bond and the short-term rate,

iL − rn = λ

8
Cs

C∗
s

9σ QL − Q∗
L

QL
,

where iL is the yield on the long-term bond in the stationary equilibrium.12 We show in
Appendix ?? that the term spread iL − rn is strictly positive. Thus, our model generates an
upward-sloping yield curve, where the yield on the long-term bond exceeds the natural
(short-term) rate, consistent with the data.13

12Note that the yield on the bond is given by iL,t = Q−1
L,t − ψL and, in a stationary equilibrium, the

expected excess return conditional on no disaster rL equals the term spread iL − rn.
13The upward-sloping yield curve is caused by the lack of precautionary savings in the disaster state.
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Similarly, the equity premium (conditional on no-disaster) is given by14

rE = λ

8
Cs

C∗
s

9σ QE − Q∗
E

QE
,

where Q∗
E < QE. Therefore, the equity premium is positive in the stationary equilibrium.

Households have heterogeneous portfolios in equilibrium. Borrowers are against the
borrowing constraint and hold no equities or long-term bonds. Optimistic savers are
more exposed to disaster risk than pessimist investors. The exact composition of the
portfolio of each saver is indeterminate, as we have one redundant asset. For concrete-
ness, we focus on the case BE

o = BE
p , so optimists are more exposed to long-term bonds

i.e. BL
o > BL

p . This leads to a simpler presentation in the analysis that follows.

Log-linear dynamics. Following the practice in the literature on monetary policy, we fo-
cus on a log-linear approximation of the equilibrium conditions. However, instead of lin-
earizing around the non-stochastic steady state, we linearize the equilibrium conditions
around the (stochastic) symmetric stationary equilibrium described above. Formally, we
perturb the allocation around the economy where ut = 0 and λ > 0, while the standard
approach would perturb around the economy where ut = λt = 0. This enables us to
capture the effects of (time-varying) precautionary savings and risk premia in a linear
setting, as shown below.15

Let lower-case variables denote log-deviations from the stationary equilibrium, e.g.,
yt ≡ log Yt/Y and cj,t ≡ log Cj,t/Cj. Borrowers’ consumption is given by

cb,t = (1 − α)(wt − pt + nb,t) + Tb,t − (it − πt − rn)dP, (8)

where 1 − α ≡ WNb
PY , Tb,t ≡

!Tb,t−!Tb
Y , and dP ≡ DP

Y . Given Tb,t = T′
b(Y)yt and using the facts

wt − pt = φyt and nb,t = yt, we obtain

cb,t = χyyt − (it − πt − rn)dP, (9)

where χy ≡ T′
b(Y) + (1 − α)(1 + φ). The coefficient χy controls the cyclicality of income

We would obtain similar results by introducing expropriation and inflation in a disaster, as in Barro (2006).
14The unconditional equity premium equals rE minus the expected loss on a disaster. Using λ to compute

the expected loss, the (unconditional) equity premium would be given by λ
!"

Cs
C∗

s

#σ
− 1

$
QE−Q∗

E
QE

.
15This method differs from the procedure considered by Coeurdacier et al. (2011) or Fernández-

Villaverde and Levintal (2018), as we linearize around a stochastic steady state of an economy with no
monetary shocks, instead of the stochastic steady state of the economy with both shocks.
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inequality among borrowers and savers and its role has been extensively studied by the
literature on analytical HANK models. We focus throughout the paper on the case in
which 0 < χy < µ−1

b , such that the consumption of both agents increases with yt.16 The
second term is not present in the commonly studied case of zero private liquidity, dP = 0,
and it captures the impact of monetary policy on the consumption of borrowers through
changes in borrowing costs. This term plays an important role in the analysis that follows.

Next, consider the savers’ problem. Linearizing Equation (1) and aggregating across
savers, we obtain

ċs,t = σ−1(it − πt − rn) +
λ

σ

8
Cs

C∗
s

9σ <
λ̂t + σcs,t

=
. (10)

where λ̂t ≡ log λt
λ . Importantly, time-varying disaster risk introduces a new precaution-

ary savings channel, which ultimately shapes how nominal rates impact consumption.
Combining condition (9) for borrowers’ consumption, Equation (10) for savers’ Euler

equation, and the market-clearing condition for goods, we obtain the evolution of aggre-
gate output. Proposition 2 characterizes the dynamics of aggregate output and inflation,
given the paths of it − rn and λ̂t. Proofs omitted in the text are provided in Appendix A.

Proposition 2 (Aggregate dynamics). The dynamics of output and inflation is described by the
conditions:

i. Aggregate Euler equation:

ẏt = σ̃−1(it − πt − rn) + δyt + vt, (11)

where σ̃−1 ≡ 1−µb
1−µbχy

σ−1 − µbdPrn
1−µbχy

, δ ≡ λ
:

Cs
C∗

s

;σ
− µbdPκ

1−µbχy
and vt ≡ µbdP

1−µbχy
(ρ(it − rn)−

i̇t) +
1−µb

1−µbχy
λ
σ

:
Cs
C∗

s

;σ
λ̂t.

ii. New Keynesian Phillips curve:

π̇t = ρπt − κyt, (12)

where ρ ≡ ρs + λ and κ ≡ ϕ−1(ε − 1)φY.

Condition (11) represents the aggregate Euler equation for this economy. The aggregate
Euler equation has three terms. The first term is the product of the aggregate elasticity of
intertemporal substitution (EIS) and the real interest rate. The aggregate EIS depends on

16The role of χy, including the case where χy > µ−1
b , was originally considered by Bilbiie (2008).
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the cyclicality of inequality among borrowers and savers, as captured by χy.17 Positive
private liquidity, as captured by dP > 0, reduces the aggregate EIS.

The second term, δyt, captures how future real interest rates affect output. Assuming
vt = 0, we can write output as yt = −σ̃−1 ´ ∞

t e−δ(s−t)(is − πs − rn)ds. Hence, a positive
value of δ tends to dampen (or discount) the effect of future real interest rates, while a
negative value of δ tends to amplify (or compound) the effect of future interest rate. The
case δ > 0 corresponds to the discounted Euler equation of McKay et al. (2017), where
aggregate disaster risk plays the role of idiosyncratic income risk. In contrast, if dP is
sufficiently large, then δ < 0 and the effect of future interest rate changes is amplified. The
aggregate Euler equation (11) can in general feature either compounding or discounting,
depending on the relative magnitude of λ and dP.

The third term in the aggregate Euler equation, vt, captures a direct effect of monetary
policy on borrowers and savers. First, in an economy with household debt, monetary
policy directly affects borrowers’ disposable income, the high-MPC agents in this econ-
omy. Second, the time-varying component of the disaster risk directly impacts the savers’
precautionary savings motive. Therefore, monetary policy has real effects even in the
absence of intertemporal-substitution forces.

Finally, Proposition 2 derives the New Keynesian Phillips curve. The linearized Phillips
curve coincides with the one obtained from models with Calvo pricing. As in a textbook
New Keynesian model, inflation is given by the present discounted value of future output
gaps, πt = κ

´ ∞
t e−ρ(s−t)ysds. One distinction relative to the standard formulation is that

future output gaps are not discounted by the natural rate rn but by a higher rate ρ > rn.
This is a consequence of the riskiness of the firm’s value, so the appropriate discount rate
incorporates an adjustment for risk.

Asset prices. The response of asset prices to monetary policy depends crucially on the
behavior of the price of disaster risk, as shown in Equations (2) and (3). In its log-linear
form, the price of disaster risk is given by

pd,t ≡ σcs,t + λ̂t. (13)

Note that this expression has two terms. The first term captures the change in the ef-
fective size of the shock, represented by the increase in the savers’ marginal utility of
consumption if the disaster shock is realized. The second term represents the change in
the market-implied disaster probability after a monetary shock.

17This is a well-known result in the literature, see e.g. Werning (2015) and Bilbiie (2017).
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Given the price of risk, we can price any financial asset in this economy. For example,
the (linearized) price of the long-term bond in period zero is given by18

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt

) *+ ,
path of nominal interest rates

−
ˆ ∞

0
e−(ρ+ψL)trL pd,tdt

) *+ ,
term premium

. (14)

The yield on the long-term bond, expressed as deviations from the stationary equilibrium,
is given by −Q−1

L qL,0, which can be decomposed into two terms: the path of nominal
interest rates, as in the expectations hypothesis, and a term premium, capturing variations
in the compensation for holding long-term bonds. The term premium depends on the
price of risk, pd,t, and the asset-specific loading rL. Because the term premium responds
to monetary shocks, the expectation hypothesis does not hold in this economy.

The pricing condition for equity is analogous to the one for bonds:

qE,0 =
Y

QE

ˆ ∞

0
e−ρtΠ̂tdt

) *+ ,
dividends

−
ˆ ∞

0
e−ρt [it − πt − rn + rE pd,t] dt

) *+ ,
discount rate

, (15)

where Π̂t = −τ̂tΠ/Y + (1 − τ)[yt − (1 − α)(wt − pt + nt)]. This expression shows that
equity prices respond to changes in monetary policy through two channels: a dividend
channel, capturing changes in firms’ profits, and a discount rate channel, capturing changes
in real interest rates and risk premia. Risk premia depends on the price of risk, pd,t, like
in the expression for the long-term bond, but it has a loading rE rather than rL, capturing
the different exposure to risk of the two assets.

Fiscal policy. The government’s fiscal instruments are Tt ≡ µbTb,t and τ̂t. Given that Tt is
pinned down by aggregate output, the government must choose τ̂t such that its No-Ponzi
condition is satisfied. Therefore, we will often refer to τ̂t as the fiscal backing corresponding
to a given monetary shock. Having a corporate profit tax enable us to indirectly have a
lump-sum tax on savers, while keeping their portfolio problem as simple as possible.

Market-implied disaster probability. Log-linearizing Equation (4), we obtain

1
σ

λ
1
σ λ̂t = µc,oµc,p

8
λ

1
σ
p − λ

1
σ
o

9 <
cp,t − co,t

=
, (16)

18Linearizing Equation (2) and rearranging, we obtain q̇L,t − (ρ + ψL)qL,t = it − rn + rL pd,t. Integrating
this condition forward gives us Equation (14).
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where µc,j ≡
µjCj

µoCo+µpCp
.

The market-implied disaster probability increases when the monetary shock redis-
tributes consumption towards pessimistic investors. We show in Appendix B.3 that the
relative aggregate consumption of the two types of savers evolves according to

ċp,t − ċo,t = −ξ(bp,t − bo,t), (17)

where ξ ≥ 0 is the mortality parameter.
Hence, relative consumption and ultimately λ̂t depends on relative net worth bp,t −

bo,t. In turn, the dynamics of bp,t − bo,t depends on the portfolio of optimistic and pes-
simistic savers, asset prices, and aggregate variables, as shown in Appendix B.3. In gen-
eral, these variables must be simultaneously solved for, which involves solving a poten-
tially large dynamic system. In this case, obtaining analytical results would be infeasible.
In the next proposition, we show that this system actually satisfies a form of approximate
block recursivity property, where we are able to solve for λ̂t and bp,t − bo,t independently
of (yt, πt), provided that the effect of cs,t on risk premia is small.

Proposition 3 (Approximate block recursivity). Suppose the term rkσcs,t is small for k ∈
{L, E}, i.e. rkσcs,t = O(||it − rn||2). Then, the market-implied probability of disaster λ̂t can be
solved independently of the aggregate variables (yt, πt), and it is given by

λ̂t = e−ψλtλ̂0, (18)

where ψλ ≥ 0 is strictly increasing in ξ, it is equal to zero if ξ = 0 and it approaches infinity if
ξ → ∞. If it − rn = e−ψmt(i0 − rn), then the initial value of λ̂t is given by

λ̂0 = ελ(i0 − rn), (19)

where ελ ≥ 0 and the inequality is strict if λp > λo.

Note that the effect of changes in the price of risk on risk premia is given by rk(σcs,t +

λ̂t). If the term rkσcs,t is second-order on the size of the monetary shock, then this term
can be ignored and Proposition 3 shows that we can solve for λ̂t independently of (yt, πt).
As the dynamics of (yt, πt) depends on λ̂t, but λ̂t does not depend on (yt, πt), we say the
system is (approximately) block recursive. We show in the appendix that the solution
ignoring the terms rkσcs,t tracks very closely the numerical solution where these terms
are taken into account. This is intuitive as it is exactly because changes in cs,t have a small
effect on risk premia that introducing heterogeneity among savers is important.
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Equations (18) and (19) imply that market incompleteness is important for monetary pol-
icy to affect λ̂t and ultimately risk premia in our setting. The first form of market incom-
pleteness refers lack of hedge instruments against monetary shocks. An increase in nom-
inal interest rates will then redistribute away from investors more exposed to long-term
assets, which is why λ̂0 is increasing in i0 − rn. The second form of market incompleteness
comes from the presence of mortality risk. If ξ = 0, then ψλ = 0, and monetary shocks
would have a permanent effect on λ̂t. It can be shown that bp,t − bo,t = e−ψλt(bp,0 − bo,0),
so the net worth of optimistic investors would be permanently affected if ξ = 0, regard-
less of how temporary the monetary shocks are. Mortality risk pins down the long-run
wealth distribution and ξ effectively controls how fast the net worth of optimistic in-
vestors relative to pessimistic investors mean revert after the shock.19

Having solved for the dynamics of the market-implied disaster probability λ̂t and
the relative net worth of the two types of savers bp,t − bo,t, it remains to determine the
dynamics of aggregate ouput and inflation, which we consider next.

3 Monetary Policy and Wealth Effects

In this section, we study how monetary policy affects the economy through the revalu-
ation of real and financial assets. The main result presents a decomposition that isolates
the role of intertemporal substitution, precautionary savings, and wealth effects in the
transmission of monetary shocks. To derive this decomposition, we proceed in two steps.
First, we express the evolution of output and inflation in terms of equilibrium policy vari-
ables, that is, the path of nominal interest rates {it} and the corresponding fiscal backing
{τ̂t}. Second, we derive an implementability result that shows how to map the path of
policy variables to the underlying monetary shock ut in the interest rate rule (7).

3.1 The dynamic system

We can express output and inflation in terms of policy variables by solving the system of
differential equations described in Proposition 2:

#
ẏt

π̇t

$
=

#
δ −σ̃−1

−κ ρ

$ #
yt

πt

$
+

#
νt

0

$
, (20)

19See Gârleanu and Panageas (2015) for a discussion of how introducing overlapping-generation (OLG)
leads to a well-defined long-run wealth distribution.
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where νt ≡ σ̃−1(it − rn) + vt depends only on the path of nominal interest rates. The
eigenvalues of the system are given by

ω =
ρ + δ +

%
(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
, ω =

ρ + δ −
%
(ρ + δ)2 + 4(σ̃−1κ − ρδ)

2
.

The following assumption, which we assume holds for all subsequent analysis, guaran-
tees that the eigenvalues are real-valued and have opposite signs, i.e., ω > 0 and ω < 0.

Assumption 1. The following condition holds: ρδ < σ̃−1κ.

Assumption 1 implies that the system lacks exactly one boundary condition.20 Next,
we show that the missing boundary condition can be provided by an aggregate intertem-
poral budget constraint (IBC). From the savers’ transversality condition, and using market-
implied probabilities to compute expectations, we obtain the individual IBC:

E0

!
ˆ ∞

0

ηt

η0
Cj,tdt

"
= Bj,0.

Aggregating across savers and borrowers, we obtain the (non-linear) aggregate IBC:

E0

!
ˆ ∞

0

ηt

η0
Ctdt

"
= DG,0 + QE,0 + E0

!
ˆ ∞

0

ηt

η0

8
Wt

Pt
Nt + µbT̃b,t

9
dt
"

,

using Ct ≡ µbCb,t + (1− µb)Cs,t and the market clearing condition for bonds and equities.
The expression above says that the value of the stream of aggregate consumption

equals the net value of assets held by the household sector: government bonds, stocks,
and human wealth (the value of labor income after transfers). Private debt does not ap-
pear in the right-hand side, as it does not represent net wealth for the household sector.

To linearize the expression above, it is convenient to define QC,t ≡ Et

%
´ ∞

t
ηz
ηt

Czdz
&
,

the value of the consumption claim, and QH,t ≡ Et

%
´ ∞

t
ηz
ηt

:
Wz
Pz

Nz + µbT̃b,z

;
dz
&
, the value

of human wealth. We can solve for the price of these two claims in the same way as we
priced stocks and bonds (see Equations 14 and 15). The linearized intertemporal budget
constraint can then be written as follows:

QCqC,0 = QHqH,0 + DGqL,0 + QEqE,0, (21)

20Assumption 1 implies that the equilibrium is indeterminate under an interest-rate peg, as local de-

terminacy requires φπ ≥ σ̃−1κ−ρδ

σ̃−1κ+
µpdPρ

1−µbχy κ
≡ φπ , and φπ > 0 under Assumption 1. It can also be shown that

φπ < 1 due to a precautionary motive, in line with findings by Bilbiie (2018) and Acharya and Dogra (2020).
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where qC,0 ≡ log QC,0/QC and qH,0 ≡ QH,0/QH.
From equation (21), we have that the aggregate IBC is a necessary equilibrium condi-

tion. The next lemma establishes the sufficiency of the aggregate IBC for pinning down
the equilibrium. That is, it shows that if [yt, πt]∞0 satisfies system (20) and the IBC (in its
log-linear form), then we can determine the consumption, portfolio, and labor supply of
households as well as wages and prices such that all equilibrium conditions are satisfied.

Lemma 1. Suppose that, given a path for the nominal interest rate and fiscal backing [it, τt]∞0 ,
[yt, πt]∞0 satisfy system (20) and the aggregate intertemporal budget constraint (21). Then, [yt, πt]∞0
can be supported as part of a competitive equilibrium.

Therefore, the equilibrium dynamics can be characterized as the solution to the dy-
namic system (20), subject to the boundary condition (21). Notice that, for a given λ > 0,
heterogeneous beliefs affect the aggregate dynamics only through λ̂t. Hence, the econ-
omy with heterogeneous savers behaves as an economy with a representative saver, but
the probability of disaster is time varying and respond to monetary shocks.

3.2 Aggregate wealth effect and risk-premium neutrality

Monetary policy affects system (20) directly through νt, capturing intertemporal substitu-
tion and precautionary effects, and indirectly through the boundary condition (21), cap-
turing the revaluation of real and financial assets. Lemma 2 shows that asset revaluation
is a key determinant of the average consumption response to monetary shocks.

Lemma 2. The present discounted value of aggregate consumption is given by

ˆ ∞

0
e−ρtctdt = Ω0, (22)

where Ω0 denotes the aggregate wealth effect, given by

Ω0 ≡
ˆ ∞

0
e−ρt &Π̂t + (1 − α)(wt − pt + nt) + Tt

'
dt + dGqL,0 + dG

ˆ ∞

0
e−ρt (it − πt − rn + rL pd,t) dt.

Proof. Using the pricing condition for qk,0, k ∈ {C, H, E}, and Equation (21), we obtain

ˆ ∞

0
e−ρtctdt − QC

Y

ˆ ∞

0
e−ρt [it − πt − rn + rC pd,t] dt =

ˆ ∞

0
e−ρt &Π̂t + (1 − α)(wt − pt + nt) + Tt

'
dt

−QH + QE

Y

ˆ ∞

0
e−ρt [it − πt − rn] dt −

(
QH

Y
rH +

QE

Y
rE

)
ˆ ∞

0
e−ρt pd,tdt +

DG

Y
qL,0.
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Using the fact that QC = QH + DG + QE and Q∗
C = Q∗

H + DG
Q∗

L
QL

+ Q∗
E, we obtain QC

Y −
QH+QE

Y = DG
Y ≡ dG and QC

Y rC − QHrH+QErE
Y = dGrL, given rk = λ

:
Cs
C∗

s

;σ Qk−Q∗
k

Qk
. Combining

these expressions with the equation above, we obtain (22) after some rearrangement.

Lemma 2 implies that the present discounted value of aggregate consumption equals
Ω0, which we refer to as the aggregate wealth effect. We show in Appendix C.4 that Ω0 cor-
responds to (minus) the amount of wealth required to compensate all households for the
price and income changes caused by the monetary shock, so their consumption bundle
in the stationary equilibrium is just affordable. This result justifies referring to Ω0 as a
wealth effect, given it corresponds to the Slutsky wealth compensation (see Mas-Colell et
al. 1995) associated with the monetary shock.

The first term in Ω0 captures the effect of changes in cash flows, namely (after-tax)
profits and wages. Naturally, households become wealthier if profits and wages increase
in response to a monetary shock, everything else constant. The last two terms capture the
net effect of changes in discount rates, i.e. interest rates and risk premia. Importantly, the
effect of discount rates depend on the level and riskiness of government debt.

Risk-premium neutrality. Asset revaluations caused by monetary policy have received
significant attention recently. For instance, Cieslak and Vissing-Jorgensen (2020) show
that policymakers pay attention to the stock market due to its potential (consumption)
wealth effect. In contrast, Cochrane (2020) and Krugman (2021) argue that wealth gains
on "paper" are not relevant for households who simply consume their dividends. The
next proposition isolate the necessary conditions under which the latter view is correct.

Proposition 4 (Risk-premium neutrality). Suppose the government uses a consumption tax to
neutralize the precautionary motive induced by λ̂t, that is, consider τc

t satisfying ˙̂τc
t = λ

:
Cs
C∗

s

;
λ̂t,

where τ̂c
t ≡ log(1+ τc

t ) and τc
t = τc,∗

t . Then, [yt, πt]∞0 is independent of λ̂t if one of the following
conditions are satisfied: i) dG = 0; ii) dG > 0 and ψL = ∞; iii) dG > 0 and ψL = 0.

Proof. Savers’ Euler equation for the riskless bond is now given by ċs,t = σ−1(it − πt −
rn − ˙̂τc

t ) +
λ
σ

:
Cs
C∗

s

;σ <
λ̂t + σcs,t

=
, which is independent of λ̂t if ˙̂τc

t = λ
:

Cs
C∗

s

;σ
λ̂t. As τc

t =

τc,∗
t , Euler equations for risky assets are not affected. Assuming the revenue is rebated

back to households, borrowers are not affected. The dynamic system (20) is then unaf-
fected, except νt is independent of λ̂t. If dG = 0, the last two terms in Ω0 are equal to
zero. If dG > 0 and ψL = 0, λ̂t in the last two terms in Ω0 exactly cancel out. If ψL = ∞,
government bonds are safe and rL = 0. Ω0 is independent of λ̂t in all three cases.
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Proposition 4 provides conditions under which time variation in the market-implied
disaster probability λt does not impact the monetary transmission mechanism. Under
such conditions, heterogeneity in portfolios among savers may help to improve the model’s
asset-pricing implications, but they have no bearing on how monetary shocks ultimately
affect the real economy. In particular, it is possible that a monetary contraction leads to a
substantial drop in assets prices, due to the increase in risk premium, but the impact on
output and inflation would be the same as in an economy with a representative saver and
no such impact on risk premium.

As it is often the case with neutrality results, the purpose of Proposition 4 is not to
argue that the conditions for neutrality are realistic, but to provide a clear benchmark
that help us understand when neutrality does or does not hold. For instance, even in
the absence of a direct impact on the aggregate wealth effect, time variation in λ̂t would
affect output through the precautionary savings motive. This precautionary motive is the
result of the reallocation of risk among investors and, as seen in the next section, can have
potentially large real effects. Proposition 4 assumes that such effects are neutralized by
tax policy, which is unlikely to happen in practice.21

The second set of conditions in Proposition 4 refer to characteristics of the govern-
ment liability. But why does the presence of government debt matters to determine
how changes in stocks prices and human wealth ultimately affect the economy? The
reason goes back to the intuition provided by Cochrane (2020) and Krugman (2021). If
dG = 0, then the household sector simply consumes the "dividends" from stocks and hu-
man wealth. An increase in risk premium depresses the value of real assets, but it also
reduces the value of the consumption claim by the same amount, so no change in aver-
age consumption is required for the IBC to be satisfied. If dG > 0 and ψL = 0, a similar
logic applies: dividends received by the household sector now includes the coupons from
government bonds, but again there is no need to trade at any period and changes in risk
premium do not affect Ω0. Finally, if dG = 0 and ψL = ∞, the household sector as a whole
only trades on safe bonds, so changes in risk premium have again no effect on Ω0.

The logic above is reminiscent of the one recently provided by Fagereng et al. (2022).
They show that the welfare effect of changes in discount rates equals the present dis-
counted value of trades times the change in prices. Proposition 4 says that changes in risk
premium do not affect Ω0 directly when the household sector do not trade risky assets.
They also show that such effects represent pure redistribution, i.e., they exactly cancel
out when the counterparts to the household sector, foreigners and the government, are

21The precautionary motive is present with CRRA preferences as the prudence coefficient, − u′′′
u′′ , is posi-

tive in this case (see Kimball 1990). This adjustment would not be needed for preferences satisfying u′′′ = 0.
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taken into account. In our closed economy, the government is the only counterpart to
the household sector as a whole, which explains the special role played by government
liablities.

Finally, notice that we have considered the impact of changes in discount rates on Ω0

for a given path of cash flows. If policy variables [it, τ̂t]∞0 react directly to λ̂t, then it is
possible to obtain a substantial effect on Ω0 through its first term, even if dG = 0.

3.3 Intertemporal substitution, risk, and wealth effects

The next proposition characterizes the output response to a sequence of monetary policy
shocks for a given value of the aggregate wealth effect Ω0. We provide a full characteri-
zation of Ω0 in Section 3.4. For ease of exposition, we focus on the case of exponentially
decaying nominal interest rates; that is, we assume it − rn = e−ψmt(i0 − rn), where ψm

determines the persistence of the path of interest rates.

Proposition 5 (Aggregate output in D-HANK). Suppose that it − rn = e−ψmt(i0 − rn). The
path of aggregate output is then given by

yt = σ−1ŷm,t

) *+ ,
ISE

+ χpŷλ,t
) *+ ,

time-varying
risk

+
µbdP

1 − µb
ψ̃mŷm,t

) *+ ,
inside wealth effect

+ (ρ − ω)eωtΩ0,
) *+ ,

GE multiplier×
aggregate wealth effect

(23)

where χp ≡ λ
σ

:
Cs
C∗

s

;σ
ελ, ψ̃m ≡ ρ − rn + ψm, and ŷk,t is given by

ŷk,t =
1 − µb

1 − µbχy

(ρ − ω) eωt − (ρ + ψk) e−ψkt

(ω + ψk) (ω + ψk)
(i0 − rn), (24)

and satisfies
´ ∞

0 e−ρtŷk,tdt = 0, ∂ŷk,0
∂i0

< 0, for k ∈ {m, λ}.

Proposition 5 shows that output can be decomposed into four terms: an intertemporal-
substitution effect (ISE), a time-varying risk channel, a revaluation of assets in zero net
supply (the inside wealth effect), and a revaluation of assets in positive net supply (the
aggregate wealth effect). These effects encompass some of main channels of transmission
considered by the literature. By setting λp = λo = dP = 0, the model behaves as a TANK
model with zero liquidity, as in Bilbiie (2019) and Broer et al. (2020). The case dP > 0
captures the implications of household debt, as in e.g. Benigno et al. (2020). Positive
disaster probability λp = λo > 0 introduces a precautionary motive, analogous to HANK
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The dynamics of ŷt Channel specific strength Outside Wealth Effect

Figure 1: Aggregate output decomposition in D-HANK

models (Kaplan et al. 2018), while λp > λo > 0 allow us to capture the effect of time-
varying risk premia, as in Caballero and Simsek (2020) and Kekre and Lenel (2020).

The first term captures the standard intertemporal substitution channel present in
RANK models. It depends on the EIS σ−1 and ŷm,t given in (24). Notice that, even
though only a fraction 1 − µb of agents substitute consumption intertemporally, the ISE
does not necessarily gets weaker as we reduce the mass of savers in the economy. As
we reduce 1 − µb, less agents are capable of intertemporal substitution, but the amplifi-
cation from hand-to-mouth agents gets stronger. The two effects exactly cancel out when
χy = 1. Another important property of the ISE is that it is equal to zero on average, i.e.
´ ∞

0 e−ρtŷm,t = 0. An increase in interest rates shifts demand from the present to the future,
but it does not change by itself the overall level of aggregate demand.

The second term captures the effect of time-varying risk. It is equal to zero in the
absence of belief heterogeneity, i.e. λo = λp. As risk gets reallocated after the monetary
shock, a disaster leads to a larger increase in the marginal utility of both types of savers,
which strengthens the precautionary motive. As with the EIS, the precautionary motive is
amplified by the presence of hand-to-mouth agents and it shifts demand from the present
to the future without changing its overall level, that is,

´ ∞
0 e−ρtŷλ,tdt = 0. In contrast to

the EIS, the persistence of the precautionary effects is controlled by ψλ instead of ψm.
The third term captures the effect of assets in zero net supply, namely household debt.

A temporary increase in interest rates tends to reduce the consumption of borrowers and
increase the consumption of savers. These two effects cancel out exactly when consid-
ering average consumption over time. However, as savers smooth consumption, they
increase their consumption in the short run by less than borrowers reduce their consump-
tion. Through this channel, monetary policy again shifts demand from the present to the
future. As with the ISE, the persistence of such effects depend on ψm, which controls the
persistence of the monetary shock.
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The fourth term in expression (23) plays an important role, as the aggregate wealth
effect determines the average response of output to the monetary shock. Everything else
constant, an increase in Ω0 would tend to raise output in all periods by ρΩ0, creating
a parallel shift in output over time. In general equilibrium, a positive aggregate wealth
effect leads to inflation, which reduces the real rate and shift consumption to the present.
Therefore, an increase in Ω0 disproportionately affect the initial level of output. The GE
multiplier in period 0, ρ−ω

ρ , is more than 15 in our calibration, leading to a substantial
amplification, as shown in the right panel of Figure 1.

Inflation. The next proposition characterizes the response of inflation to monetary pol-
icy shocks in the context of our heterogeneous-agent economy.

Proposition 6 (Inflation in D-HANK). Suppose it − rn = e−ψmt(i0 − rn). The path of inflation
is given by

πt = σ−1π̂m,t + χpπ̂λ,t +
µbdP

1 − µb
ψ̃mπ̂m,t + κeωtΩ0, (25)

where π̂k,t =
1−µb

1−µbχy

κ(eωt−e−ψkt)
(ω+ψk)(ω+ψk)

(i0 − rn), π̂k,0 = 0 and ∂π̂k,t
∂i0

≥ 0, for k ∈ {m, λ}.

Inflation can be analogously decomposed into four terms. The first three terms capture
the impact of the ISE, the time-varying risk, and the inside wealth effect, while the last
term captures the impact of the aggregate wealth effect. Because π̂k,0 = 0, the first three
terms are initially zero. This implies that initial inflation is determined entirely by the
aggregate wealth effect. Moreover, πt is actually increasing in i0 if Ω0 = 0.

In a nutshell, Proposition 5 and 6 imply that monetary policy has a very limited impact
on the economy in the absence of an aggregate wealth effect, i.e. if Ω0 = 0. In this case,
a stimulus on output in the short run would come at the expense of a more depressed
economy in the future, while the central bank would lose its ability to affect initial infla-
tion. Therefore, the aggregate wealth effect plays a key role in the central bank’s ability to
control inflation or stimulate the economy.

3.4 The determination of the aggregate wealth effect

We consider next the determination of the aggregate wealth effect Ω0. The aggregate
wealth effect can be written as

Ω0 ≡
ˆ ∞

0
e−ρt

(
−τ̂t

Π
Y

+ (1 − χτ)yt

)
dt + dGqL,0 + dG

ˆ ∞

0
e−ρt (it − πt − rn + rL pd,t) dt,

where χτ ≡ τ[1 − (1 − α)(1 + φ)]− µbT′
b(Y) is the cyclicality of tax revenues.
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The expression above shows that Ω0 depends on the path of policy variables [it, τ̂t]∞0
as well as the path of output and inflation [yt, πt]∞0 . Propositions 5 and 6 show that yt and
πt depend on both policy variables and Ω0. By combining Equations (23) and (25) with
the expression for Ω0, we can solve for Ω0 in terms of policy variables.

Proposition 7. Suppose χτ +
dGκ
ρ−ω > 0. Then, Ω0 is a function of [it, τ̂t]∞0 given by

Ω0 =
ρ − ω

(ρ − ω)χτ + dGκ

(
−Π

Y

ˆ ∞

0
e−ρtτ̂tdt + dG

"
qL,0 +

ˆ ∞

0
e−ρt(it − π̃t − rn + rLλ̂t)dt

#)
, (26)

where π̃t ≡ σ−1π̂m,t + χpπ̂λ,t +
µbdP
1−µb

ψ̃mπ̂m,t is a function of [it]∞0 .

Proof. Using
´ ∞

0 e−ρtytdt = Ω0 and
´ ∞

0 e−ρtπtdt =
´ ∞

0 e−ρtπ̃tdt + κ
ρ−ω Ω0, we obtain

*
χτ +

dGκ

ρ − ω

+
Ω0 = −Π

Y

ˆ ∞

0
e−ρtτ̂tdt + dGqL,0 + dG

ˆ ∞

0
e−ρt (it − π̃t − rn + rL pd,t) dt,

after rearranging the expression for Ω0. Given our assumption, we can divide both sides
by χτ +

dGκ
ρ−ω . This gives Equation (26), using the fact that rL pd,t = rLλ̂t up to a first-order

approximation. From Equation (14) and rL pd,t = rLλ̂t, qL,0 is a function of only [it]∞0 .

Proposition 7 shows that Ω0 is uniquely pin down by [it, τ̂t]∞0 , given χτ +
dGκ
ρ−ω > 0.

This assumption simply states that monetary policy affects the fiscal authority either
through tax revenues or through the cost of servicing the debt (or both). This proposi-
tion has an important implication: there is only two ways through which monetary policy
impacts the aggregate wealth effect. First, monetary policy affects Ω0 through its fiscal
backing. Second, monetary policy affects Ω0 through a net discount rate effect, similar to
the one discussed in the context of Proposition 4. Importantly, this net revaluation effect
is only present when dG > 0.

Net discount rate effect. Suppose
´ ∞

0 e−ρtτ̂tdt = 0. If we also assume that dG = 0,
then the household sector consumes the value of profits and wages, i.e the dividends
on stocks and human wealth, every period. As there is no trade at the aggregate level,
the intuition in Cochrane (2020) and Krugman (2021) applies in this case and changes
in discount rates (interest rates and risk premia) generate no aggregate wealth effect. As
shown in Propositions 5 and 6, this implies that monetary policy has only a limited impact
in the economy. While Cochrane (2020) and Krugman (2021) focused on the implications
of changes in discount rates on inequality, Proposition 7 shows that this basic intuition
has also important implications on how monetary policy affects the economy. However,
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this logic does not apply when dG > 0. It can be shown that, in this case, ∂Ω0
∂i0

< 0 if
the maturity of the government debt is sufficient long. Moreover, this effect gets stronger
with ελ, the response of the price of risk to changes in interest rates.

Fiscal backing. Suppose dG = 0. In this case, a monetary tightening creates a nega-
tive wealth effect, and ultimately reduces π0, if and only if

´ ∞
0 e−ρtτ̂tdt > 0. A monetary

tightening must necessarily be followed by a fiscal tightening. Moreover, given the fiscal
backing and χτ, the aggregate wealth effect is independent of the path nominal interest
rates it or the market-implied probability of disaster λ̂t. Hence, the strength of the infla-
tion response to monetary shocks depends crucially on the expectation of the response
of the fiscal authority. This illustrates the importance of disciplining monetary policy’s
fiscal backing empirically, as otherwise the model can generate a response an arbitrarily
large response impact of monetary shocks based on a (potentially counterfactual) fiscal
response.

The case χτ + dGκ
ρ−ω = 0. The analysis above relied on the assumption χτ + dGκ

ρ−ω >

0. If we relax this assumption, then the fiscal backing must satisfy Π
Y
´ ∞

0 e−ρtτ̂tdt =

dG
>
qL,0 +

´ ∞
0 e−ρt(it − π̃t − rn + rLλ̂t)dt

?
. In the commonly assumed case χτ = dG = 0,

this implies that the fiscal backing is zero. Moreover, Ω0 would be independent of [it, τ̂t]∞0 .
In the case χτ = dG = 0, monetary policy can effectively choose Ω0 in the absence of a
net discount rate effect even without the help of the fiscal authority. Proposition 7 shows
this is possible only in this knife-edge case. If χτ > 0 and/or dG > 0, the empirically
relevant case, then monetary policy requires the help of fiscal policy in the absence of a
net discount rate effect.

3.5 Implementability condition

Propositions 5, 6, and 7 demonstrate how policy variables [it, τ̂t]∞0 affect output and in-
flation. However, both the nominal interest rate and the associated fiscal backing are
endogenous variables. The next proposition shows how we can choose the monetary rule
that implements a particular equilibrium path of nominal interest rates and fiscal backing
by appropriately choosing the exogenous process for the monetary shock ut.

Proposition 8 (Implementability). Let yt be given by (23) and πt be given by (25), for a given
path of nominal interest rates it − rn = e−ψmt(i0 − rn), where ψm ∕= −ω, and the associated fiscal
backing τ̂t. Let [it, yt, πt]∞0 denote the (bounded) solution to the system comprising the Taylor rule
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(7), the aggregate Euler equation (11), and the New Keynesian Phillips curve (12), and suppose
the monetary shock ut is given by

ut = ϑe−ψmt(i0 − rn) + θeωt. (27)

Then, there exists parameters ϑ and θ such that it = it, yt = yt, and πt = πt.

Proposition 8 shows that there exists a sequence of monetary shocks that implements
any given path [it, τ̂t]∞0 in equilibrium, so one can equivalently express the solution either
in terms of policy variables or in terms of the underlying process for ut. Equivalence
results like Proposition 8 are well-known in the literature on fiscal-monetary interactions
(see e.g. Cochrane 2019). This approach is useful in our context because, as shown in
Proposition 7, the fiscal backing can amplify or dampen the impact of the net revaluation
of real and financial assets. To isolate the role of asset revaluations, one must control for
the response of fiscal policy, which we do so by expressing the solution directly in terms
of policy variables.22 Proposition 8 shows that this approach is without loss of generality,
as one can always choose ut to uniquely determine it and the fiscal backing.

The formulation in Equation (27) generalizes the process for monetary shocks fre-
quently used in the literature, where the parameter θ is usually set to zero. While ϑ

simply scales the shock such that the initial nominal interest rate equals a given i0, θ pins
down the outside wealth effect Ω0 and the underlying fiscal backing.23 The extra degree
of freedom given by the parameter θ is important to discipline the aggregate wealth ef-
fect empirically, as it allow us to simultaneously match the persistence of the equilibrium
interest rate and the corresponding fiscal backing.

4 The Quantitative Importance of Wealth Effects

In this section, we study the quantitative importance of wealth effects in the transmission
of monetary shocks. We calibrate the model to match key unconditional and conditional
moments, including asset-pricing dynamics and the fiscal response to a monetary shock.
We find that household heterogeneity and time-varying risk are the predominant chan-
nels of transmission of monetary policy.

22Another advantage of this approach comes from the approximate block recursivity discussed in Propo-
sition 3. Using the Taylor rule to replace it, we must then solve simultaneously for [yt, πt, λ̂t, bp,t − bo,t].

23 Note that a contractionary shock increases nominal rates if ψm < |ω|, while it reduces nominal rates
if ψm > |ω|. Thus, the nominal interest rate do not react to a monetary shock when ψm = |ω|.
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4.1 Calibration

The parameter values are chosen as follows. The discount rate of savers is chosen to
match a natural interest rate of rn = 1%. We assume a Frisch elasticity of one, φ = 1, and
set the elasticity of substitution between intermediate goods to ε = 6, common values
adopted in the literature. The fraction of borrowers is set to µb = 30%, and the parameter
dP is chosen to match a household debt-to-disposable income ratio of 1 (consistent with
the U.S. Financial Accounts). The parameter dG is chosen to match a public debt-to-GDP
ratio of 66%, and we assume a duration of five years, consistent with the historical average
for the United States. The tax rate is set to τ = 0.27 and the parameter T′

b(Y) is chosen
such that χy = 1, which requires countercyclical transfers to balance the procyclical wage
income. A value of χy = 1 is consistent with the evidence in Cloyne et al. (2020) that
the net income of mortgagors and non-mortgagors reacts similarly to monetary shocks.
The pricing cost parameter ϕ is chosen such that κ coincides with its corresponding value
under Calvo pricing and an average period between price adjustments of three quarters.
The half-life of the monetary shock is set to three and a half months to roughly match
what we estimate in the data, and we set φπ = 1.5.

We calibrate the disaster risk parameters in two steps. For the stationary equilibrium,
we choose a calibration mostly based on the parameters adopted by Barro (2009). We set
λ (the steady-state disaster intensity) to match an annual disaster probability of 1.7%, and
A∗ to match a drop in output of 1− Y

Y∗ = 0.39.24 The risk-aversion coefficient is set to σ =

4, a value within the range of reasonable values according to Mehra and Prescott (1985),
but substantially larger than σ = 1, a value often adopted in macroeconomic models. Our
calibration implies an equity premium in the stationary equilibrium of 6.1%, in line with
the observed equity premium of 6.5%. Moreover, by setting σ = 4 we obtain a micro EIS
of σ−1 = 0.25, in the ballpark of an EIS of 0.1 as recently estimated by Best et al. (2020). We
discuss the calibration of ελ, which determines the elasticity of asset prices to monetary
shocks, in the next subsection.

For the policy variables, we estimate a standard VAR augmented to incorporate fiscal
variables and compute empirical IRFs applying the recursiveness assumption of Chris-
tiano et al. (1999). From the estimation, we obtain the path of monetary and fiscal vari-
ables: the path of the nominal interest rate, the change in the initial value of government
bonds, and the path of fiscal transfers. We provide the details of the estimation in Ap-
pendix D. Figure 2 shows the dynamics of fiscal variables in the estimated VAR in re-

24As discussed in Barro (2006), it is not appropriate to calibrate A∗/A to the average magnitude of a
disaster, given that empirically the size of a disaster is stochastic. We instead calibrate A∗/A to match
E[(Cs/C∗

s )
σ] using the empirical distribution of disasters reported in Barro (2009).
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Figure 2: Estimated fiscal response to a monetary policy shock

Note: IRFs computed from a VAR identified by a recursiveness assumption, as in Christiano et al. (1999). Variables included: real
GDP per capita, CPI inflation, real consumption per capita, real investment per capita, capacity utilization, hours worked per capita,
real wages, tax revenues over GDP, government expenditures per capita, federal funds rate, 5-year constant maturity rate and the real
value of government debt per capita. We estimate a four-lag VAR using quarterly data for the period 1962:1-2007:3. The real value of
government debt and the 5-year rate are ordered last, and the fed funds rate is ordered third to last. Gray areas are bootstrapped 95%
confidence bands. See Appendix D for the details.

sponse to a contractionary monetary shock. Government revenues fall in response to the
contractionary shock, while government expenditures fall on impact and then turn posi-
tive, likely driven by the automatic stabilizer mechanisms embedded in the government
accounts. The present value of interest payments increases by 69 bps and the initial value
of government debt drops by 50 bps.25 In contrast, the present value of transfers Tt drops
by 12 bps.26 Moreover, we cannot, at the 95% confidence level, reject the possibility that
the present discounted value of the primary surplus does not change in response to mon-
etary shocks and that the increase in interest payments is entirely compensated by the
initial reaction in the value of government bonds.

4.2 Asset-pricing implications of time-varying risk

Recall that the price of the long-term government bond is given by

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn + rL pd,t)dt,

where pd,t = σcs,t + ελ(it − rn) is the price of the disaster risk. We use this expression
and calibrate ελ to match the initial response of the 5-year yield on government bonds.

25The present discounted value of interest payments is calculated as ∑T
t=0

"
1−λ
1+ρs

# t
4
!
d

g
t (îL,t − π̂t)

$
, where

T is the truncation period, îL,t is the IRF of the 5-year rate estimated in the data, and π̂t is the IRF of inflation.
We choose T = 60 quarters, when the main macroeconomic variables, including government debt, are back
to their pre-shock values. Other present value calculations follow a similar logic.

26In the data, expenditures also include the response of government consumption and investment. When
run separately, however, we cannot reject the possibility that the sum of these two components is equal to
zero in response to monetary shocks.

31



Government bond yield Corporate spread Stocks

Figure 3: Asset-pricing response to monetary shocks with time-varying risk.

Consistent with Gertler and Karadi (2015) and our own estimates reported in Appendix
D, we find that a 100 bps increase in the nominal interest rate leads to an increase in the
5-year yield of roughly 20 bps. This procedure leads to a calibration of ελ of 2.25, which
implies an annual increase in the probability of disaster of roughly 95 bps after a 100 bps
increase in the nominal interest rate. Figure 3 shows the response of the yield on the long
bond and the contributions of the path of future interest rates and the term premium.
We find that the bulk of the reaction of the 5-year yield reflects movements in the term
premium, a finding that is consistent with the evidence.

The model is also able to capture the responses of asset prices that were not directly
targeted in the calibration. Consider first the response of the corporate spread, the differ-
ence between the yield on a corporate bond and the yield on a government bond (without
risk of default) with the same promised cash flow. This corresponds to how the GZ spread
is computed in the data by Gilchrist and Zakrajšek (2012). Let e−ψFt denote the coupon
paid by the corporate bond. We assume that the monetary shock is too small to trigger a
corporate default, but the corporate bond defaults if a disaster occurs, where lenders re-
cover the amount 1− ζF in case of default. We calibrated ψF and ζF to match a duration of
6.5 years and a credit spread of 200 bps in the stationary equilibrium, which is consistent
with the estimates reported by Gilchrist and Zakrajšek (2012). Note that the calibration
targets the unconditional level of the credit spread. We evaluate the model on its ability to
generate an empirically plausible conditional response to monetary shocks.

The price of the corporate bond can be computed analogously to the computation of
the long-term government bond:

qF,0 = −
ˆ ∞

0
e−(ρ+ψF)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψF)t

!
λ

8
Cs

C∗
s

9σ QF − Q∗
F

QF
pd,t

"
dt,

where QF and Q∗
F denote the price of the corporate bond in the stationary equilibrium in
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Decomposition in TVR-HANK Output in RANK and HANK

Figure 4: Output in RANK and HANK.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1.

the no-disaster and disaster states, respectively. Given the price of the corporate bond,
we can compute the corporate spread. Figure 3 shows that the corporate spread responds
to monetary shocks by 8.9 bps. We introduce the excess bond premium (EBP) in our VAR
and find an increase in the EBP of 6.5 bps and an upper bound of the confidence interval
of 10.9 bps, consistent with the model’s prediction. Thus, even though this was not a tar-
geted moment, time-varying risk is able to produce quantitatively plausible movements
in the corporate spread.

Another moment that is not targeted by the calibration is the response of stocks to
monetary shocks. We find a substantial response of stocks to changes in interest rates,
which is explained mostly by movements in the risk premium. In contrast to the em-
pirical evidence, we find a positive response of dividends to a contractionary monetary
shock. This is the result of the well-known feature of sticky-prices models that profits
are strongly countercyclical. This counterfactual prediction could be easily solved by in-
troducing some form of wage stickiness. Despite the positive response of dividends, the
model generates a decline in stocks of 2.15% in response to a 100 bps increase in interest
rates, which is smaller than the point estimate of Bernanke and Kuttner (2005) but is still
within their confidence interval.27 Fixing the degree of countercyclicality of profits would
likely bring the response of stocks closer to their point estimate.

4.3 Wealth effects in the monetary transmission mechanism

Figure 4 (left) presents the response of output and its components to a monetary shock
in the New Keynesian model with heterogeneous agents and time-varying risk. We find

27We follow standard practice in the asset-pricing literature and report the response of a levered claim
on firms’ profits, using a debt-to-equity ratio of 0.5, as in Barro (2006).
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that output reacts by −1.05% to a 100 bp increase in the nominal interest rate, which
is consistent with the empirical estimates of e.g. Miranda-Agrippino and Ricco (2021).
In terms of its components, time-varying risk (TVR) and the outside wealth effect are
the two main components determining the output dynamics, representing 39% and 47%
of the output response, respectively. In contrast, the ISE accounts for only 6.5% of the
output response, indicating that intertemporal substitution plays only a minor role in the
monetary transmission mechanism.

These findings stand in sharp contrast to the dynamics in the absence of heterogeneity
and time-varying risk. Figure 4 (right) plots the response of output for different combina-
tions of heterogeneity (µb > 0 and µb = 0) and time-varying risk (ελ > 0 and ελ = 0). By
shutting down the two channels, denoted by “RANK” in the figure, the initial response
of output would be −0.14%, a more than a sevenfold reduction in the impact of monetary
policy. There are two reasons for this result. First, our calibration of σ = 4 implies an EIS
that is one fourth of the standard calibration. This significantly reduces the quantitative
importance of the ISE, even if the intertemporal substitution channel represents a large
fraction of the output response in the RANK model. Second, our estimate of the fiscal re-
sponse is substantially lower than the one implied by a standard Taylor equilibrium that
imposes an AR(1) process for the monetary shock. We discuss the role of fiscal backing
and the implications for the New Keynesian model in Section 4.5 below.

Figure 4 (right) also plots the response of output when there is household heterogene-
ity but not time-varying risk (“HANK” in the figure), and the response of output when
there is time-varying risk but not household heterogeneity (“TVR-RANK” in the figure).
We find that heterogeneity increases the response of output by 22 bps while time-varying
risk increases it by 54 bps. Notably, by combining both features, we get an increase in the
response of output of 86 bps, which is 10 bps larger than the sum of the individual effects.
Thus, heterogeneity and time-varying risk reinforce each other. In terms of the fraction
of the response of output that can be attributed to each channel, we find that 20.5% can
be attributed to household heterogeneity, 51.5% corresponds to time-varying risk, and
9.7% is the amplification effect of heterogeneity together with time-varying risk (which is
around 50% larger than the contribution of the ISE), while the remainder represents the
channels in the RANK model.

Finally, time-varying risk is essential for properly capturing the heterogeneous re-
sponse of borrowers and savers to monetary policy. Figure 5 shows that borrowers are
disproportionately affected by monetary shocks. However, the magnitude of the relative
response of borrowers and savers is too large in the economy without time-varying risk.
The drop in borrowers’ consumption is 7 times greater than the decline in savers’ con-
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Constant Risk (ελ = 0) Time-Varying Risk (ελ > 0)

Figure 5: Consumption of borrowers and savers with constant risk and time-varying risk.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1.

sumption with a constant disaster probability, while it is 3 times greater in the economy
with time-varying risk. Cloyne et al. (2020) estimate a relative peak response of mort-
gagors and homeowners of roughly 3.6. Therefore, allowing for time-varying risk is also
important if we want to capture the heterogeneous impact of monetary policy.

4.4 The limitations of the constant disaster risk model

Consider the response of asset prices to a monetary shock in an economy that features
constant disaster risk (i.e. λ > 0 but ελ = 0). Figure 6 (left) shows that the yield on the
long bond increases by 6.5 bps, which implies a decline of the value of the bond of 32 bps
(given a 5-year duration), less than half of the response estimated by the VAR in Section
4.1. Moreover, movements in the long bond yield are almost entirely explained by the
path of nominal interest rates, while the term premium is indistinguishable from zero.
This stands in sharp contrast to the evidence reported in Gertler and Karadi (2015) and
Hanson and Stein (2015). Similarly, it can be shown that most of the response of stocks in
the model is explained by movements in interest rates instead of changes in risk premia,
a finding that is inconsistent with the evidence documented in e.g. Bernanke and Kuttner
(2005).

Figure 6 (right) shows how the presence of constant disaster risk affects the response
of output to monetary shocks for the HANK and RANK economies. We find that risk has
only a minor impact on the response of output. Aggregate risk increases the value of the
discounting parameter δ, which reduces the GE multiplier and dampens the initial impact
of the monetary shock. Given that the term premium barely moves, disaster risk plays
only a small role in determining the outside wealth effect. In contrast, the important role
of heterogeneity can be seen by comparing the response of the D-HANK and D-RANK
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Figure 6: Long-term bond yields and output for economies with and without risk.

Note: In both plots, the path of the nominal interest rate is given by it − rn = e−ψm t(i0 − rn), where i0 − rn equals 100 bps, and the
fiscal backing corresponds to the value estimated in Section 4.1. D-HANK and D-RANK correspond to heterogeneous-agent and
representative agent economies with constant disaster risk (i.e. λ > 0 and ελ = 0). HANK and RANK correspond to economies with
no disaster risk (i.e. λ = 0).

economies.
Therefore, while introducing a constant disaster probability allows the model to cap-

ture important unconditional asset-pricing moments, such as the (average) risk premium
or the upward-sloping yield curve, the model is unable to match key conditional moments,
in particular, the response of asset prices to monetary policy. The limitations of the model
with constant disaster probability in matching conditional asset-pricing moments were
recognized early on in the literature, leading to an assessment of the implications of
time-varying disaster risk, as in Gabaix (2012) and Gourio (2012). This justifies our focus
on time-varying disaster risk and how it affects the asset-pricing response to monetary
shocks and, ultimately, its impact on real economic variables.

4.5 The role of fiscal backing and the EIS

We have found that time-varying risk and heterogeneity substantially amplify the im-
pact of monetary policy on the economy. To properly assess the importance of these two
channels, however, it was crucial to control for the implicit fiscal backing, as discussed in
Section 3.4.

Figure 7 illustrates this point. In the three panels, we show the impact of a monetary
shock that leads to an increase in nominal interest rates on impact of 100 bps. In the left
panel, we consider a RANK economy (µb = λ = 0) with the standard value for the EIS
(σ−1 = 1) and fiscal backing implicitly determined by a Taylor rule with a monetary
shock that follows a standard AR(1) process, corresponding to the textbook New Keyne-
sian model. In the middle panel, we consider the same economy but the fiscal backing
is set to the value estimated in the data, corresponding to a Taylor equilibrium with a

36



RANK (Standard) RANK (Fiscal Data) D-HANK

Figure 7: Output in RANK vs D-HANK with time-varying risk.

Note: The first two panels show output in RANK (µb = λ = 0) with unit EIS (σ−1 = 1). In the left panel, fiscal backing is determined
by a Taylor rule, while in the middle panel fiscal backing corresponds to the value estimated in the data. The right panel corresponds
to the D-HANK economy with time-varying risk and the estimated fiscal backing.

monetary shock that follows the more general specification from equation (27). The right
panel shows our D-HANK model with time-varying risk and the calibrated value of the
EIS, σ−1 = 0.25.

The response of the textbook economy is only slightly smaller than that of our D-
HANK economy despite the lack of time-varying risk or heterogeneous agents. An im-
portant reason for this is the difference in the value of the (implicit) fiscal backing, which
is almost ten times larger in the textbook economy compared with the one we estimated
in the data. When the fiscal backing is the same as in the data, the response of output
drops by almost half. The EIS also plays an important role. Even with fiscal backing di-
rectly from the data, the response of output is still significant, only slightly less than that
in our D-RANK with time-varying risk (see Figure 4). But this same response comes from
very different channels. In the RANK economy, the ISE accounts for roughly 40% of the
output response, while in our D-RANK the ISE accounts for less than 7% of that response.

These results suggest that the quantitative success of the RANK model is likely the
result of a counterfactually large fiscal backing in response to monetary shocks and a
strong intertemporal-substitution channel, which compensate for missing heterogeneous
agents and risk channels. Once we discipline the fiscal backing with data and calibrate
the EIS to the estimates obtained from microdata, our model suggests that heterogeneous
agents and, in particular, time-varying risk are crucial for generating quantitatively plau-
sible output dynamics. However, it is important to note that our model made several
simplifications to incorporate indebted agents and time-varying aggregate risk without
sacrificing the tractability of standard macro models. A natural extension would be to
incorporate these channels into a medium-sized DSGE model to better assess the quanti-
tative properties of the New Keynesian model.
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5 The Effect of Risk and Maturity of Household Debt

We have assumed so far that households borrow using short-term riskless debt. In prac-
tice, however, most household debt takes the form of long-term risky debt. In this case,
the effect of monetary policy on borrowers depends on how the term spread and credit
spread, the compensation for holding interest rate and default risk, respond to changes in
the short-term interest rate. In this section, we extend the baseline model to allow for de-
fault risk and long-term maturities on household debt and show how these two features
affect the transmission of monetary policy shocks to the real economy.

5.1 The model with long-term risky household debt

We describe next the model with long-term risky household debt. We highlight the main
differences with the model described in Section 2 and present a detailed description in
Appendix ??. Households issue long-term debt that promises to pay exponentially de-
caying coupons given by e−ψPt at period t ≥ 0, where ψP ≥ 0. Importantly, households
cannot commit to always repay their debts. In response to a large shock, i.e. the oc-
currence of a disaster, households default and lenders receive a fraction 1 − ζP of the
promised coupons, where 0 ≤ ζP ≤ 1. We assume that fluctuations in the no-disaster
state are small enough such that they do not trigger a default. Thus, households default
only in the disaster state.

We denote the price of household debt in the no-disaster (disaster) state by QP,t (Q∗
P,t),

so the nominal return on household debt is given by

dRP,t =

!
1

QP,t
+

Q̇P,t

QP,t
− ψP

"
dt +

Q∗
P,t − QP,t

QP,t
dNt,

where iP,t ≡ 1
QP,t

− ψP is the yield on the bond. In a stationary equilibrium, the spread
between the interest rate on household debt and the short-term interest rate controlled by
the central bank is given by

rP = λ

8
Cs

C∗
s

9σ Q∗
P − QP

QP
.

Note that the interest rate on household debt incorporates both a credit and a term
spread.28 We assume that households can borrow up to DP,t = QP,tF, which effectively

28Let iND
P,t denote the yield on a non-defaultable bond with coupons decaying at rate ψp. The term spread

corresponds to iND
P,t − it and the credit spread to iP,t − iND

P,t , so rP = (iND
P − rn) + (iP − iND

P ).
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puts a limit on the face value of household debt F.29 In a log-linear approximation of the
economy around a zero-inflation stationary equilibrium, borrowers are constrained at all
periods, and their consumption is given by

cb,t = (1 − α)(wt − pt + nb,t) + Tb,t −
8

ψP

iP + ψP
(iP,t − iP)− πt

9
dP. (28)

Equation (28) generalizes the expression for borrowers’ consumption given in Section 2.
Monetary policy affects borrowers indirectly through its effect on the yield on household
debt iP,t. If we assume that debt is short-term, ψP → ∞, and riskless, ζP = 0, we obtain
iP,t = it and the expression above boils down to equation (8). At the other extreme, we
have the case of a perpetuity, ψP = 0. In this case, households simply pay the coupon
every period and there is no need to issue new debt. Therefore, they are completely
insulated from movements in nominal interest rates.

The price of household debt evolves according to

q̇P,t = (ρ + ψP)qP,t + it − rn + rP pd,t.

The price of the bond depends on the future path of short-term interest rates and the risk
premium. Quantitatively, the fluctuations in the risk premium are dominated by the time-
varying risk component, while the term σcs,t gives a negligible contribution, as shown
in Figure 6. Motivated by this fact, we assume that rPσcs,t is negligible in a first-order
approximation, such that we can write the price of the bond as follows30

qP,t = − 1 + rPελ

ρ + ψP + ψm
(it − rn), (29)

where ψm is the decaying rate of nominal interest rates.
Combining the behavior of borrowers’ consumption with savers’ Euler equation (10)

and the Phillips curve (12), we can derive the response of aggregate output to monetary
shocks. In particular, we can extend the decomposition in Proposition 5 to the case of
long-term risky debt.

Proposition 9 (Aggregate output with long-term risky debt). Suppose that it − rn = e−ψmt(i0 −

29This formulation guarantees that, after an increase in nominal rates, the value of household debt and
the borrowing limit decline by the same amount. This specification of the borrowing constraint, combined
with the assumption of impatient borrowers, guarantees that borrowers are constrained at all periods.

30Formally, we assume that the parameter rPσ is of the same order as the (small) monetary shock, rPσ =
O(i0 − rn). Therefore, the term rPσcs,t is second-order in i0 − rn and it can be ignored in a first-order
approximation. The solution in the absence of this assumption is available upon request.
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rn) and rPσ = O(i0 − rn). The path of aggregate output is then given by

yt = σ−1ŷt

) *+ ,
ISE

+ χdελŷt

) *+ ,
time-varying

risk

+
µbχrdP

1 − µb

ψP(1 + rPελ)

ρ + ψP + ψm
ψ̃mŷt

) *+ ,
inside wealth effect

+ (ρ − ω)eωtΩ0,
) *+ ,

GE multiplier×
outside wealth effect

. (30)

Proposition 9 shows that default risk and debt maturity have opposite effects on the
magnitude of the inside wealth effect. For instance, in the case of short-term debt, the
term ψP(1+rPελ)

ρ+ψP+ψm
simplifies to 1 + rPελ > 1, so the inside wealth effect is amplified relative

to the case of riskless debt. The interest rate on household debt now moves in response to
changes in the short-term interest rate as well as changes in the risk premium. In contrast,
the inside wealth effect is dampened for long-term bonds. In the limit case of a perpetuity,
ψP = 0, the inside wealth goes to zero. Given that households do not issue new debt, they
are not affected by the change in interest rates, which eliminates the (inside) wealth effect.

5.2 Quantitative implications

We consider next the quantitative implications of default risk and maturity on household
debt. As shown in Proposition 9, these two features have opposing effects on the response
of output to monetary policy. To assess the quantitative impact of risk and maturity, we
show in Figure 8 the inside wealth effect (left panel) and aggregate output (right panel) as
a function of the duration of household debt for different values of the haircut parameter
ζP. Greenwald et al. (2021) estimate the duration of mortgage debt as 5.2 years, the du-
ration of student debt as 4.50, and the duration of consumer debt as 1.0 year. Therefore,
we focus on values of duration up to five years in Figure 8. We consider three different
values for the haircut parameter: riskless debt (ζP = 0); risky debt with a spread in the
stationary equilibrium of roughly 4.0% with a 5-year duration (ζP = 0.10); risky debt
with a spread of 5.0% with a 5-year duration (ζP = 0.25).

Default risk substantially amplifies the effect of monetary policy on output when debt
is short term. The inside wealth effect is almost three times larger in the case of ζP = 0.25
compared to ζP = 0.0, which corresponds to an increase in the initial response of output
of almost 25%. However, this effect is strongly attenuated when household debt is long
term. For even relatively small values of duration, the inside wealth effect is smaller than
in the case of short-term riskless debt. For instance, in the case of a five-year duration,
the response of output is roughly 10% smaller than the response in the case of short-term
riskless debt.
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Figure 8: Inside wealth effect and output as a function of duration and haircut ζP.

It is important to note that even though the inside wealth effect is substantially damp-
ened with long-term debt, the presence of household debt still generates amplification
through its impact on the compounding parameter δ, as shown in Proposition 2. The re-
sponse of output when household debt is zero is roughly 35% smaller than in the economy
with (positive) riskless debt, a much larger drop relative to the one caused by introducing
long-term bonds.

6 Conclusion

In this paper, we provide a novel unified framework to analyze the role of heterogeneity
and risk in a tractable linearized New Keynesian model. The methods introduced can be
applied beyond the current model. For instance, they can be applied to a full quantitative
HANK model with idiosyncratic risk, extending the results of Ahn et al. (2018) to allow
for time-varying risk premia. Alternatively, one could introduce a richer capital structure
for firms and study the pass-through of monetary policy to households and firms. These
methods may enable us to bridge the gap between the extensive existing work on het-
erogeneous agents and monetary policy and the emerging literature on the role of asset
prices in the transmission of monetary shocks.
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Appendix: For Online Publication

A Proofs

Proof of Proposition 2. Consider first the New Keynesian Phillips curve
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Linearizing the above expression, and using W
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"
Cs

C∗
s

#σ#
πt − ϕ−1(ε − 1)Y(wt − pt).

Using the fact that wt − pt = φyt, we obtain π̇t = (ρs + λ)πt − κyt, where κ ≡ ϕ−1(ε − 1)φY and

we used that rn + λ
,

Cs
C∗

s

-σ
= ρs + λ.

Consider next the generalized Euler equation. From the market-clearing condition for goods

and borrowers’ consumption, we obtain cs,t =
1−µbχy

1−µb
yt +

µbdP
1−µb

(it − πt − rn). Combining this con-

dition with the Phillips Curve and savers’ Euler equation, and using the fact that rn = ρ−λ
,

Cs
C∗

s

-σ
,

we obtain ẏt = σ̃−1(it − π − rn) + δyt + vt, where the constants σ̃−1, δ, and vt are defined in the

proposition.

Proof of Lemma 1. Suppose [yt, πt]∞0 satisfies system (20) and the intertemporal budget constraint

(21) in the no-disaster state. We will show that [yt, πt]∞0 can be supported as an equilibrium.

Consider first the disaster state. The savers’ budget constraint implies Ts,t = −ρsbsbs,t∗ . All the

remaining variables are equal to zero in the disaster state.

Consider now the no-disaster state. The real wage is given by wt − pt = (φ + σ)yt. Borrowers’

consumption is given by cb,t = χyyt − χrdP(it − πt − r − n), while savers’ consumption are given

by cs,t =
1−µbχy

1−µb
yt +

µbχrdP
1−µb

(it − πt − rn), and the labor supply is given by nj,t = φ−1(wt − pt) −
φ−1σcj,t.

By construction, the market-clearing condition for goods and labor are all satisfied. Because

yt satisfies the aggregate Euler equation, the savers’ Euler equation is also satisfied. Because πt

satisfies the New Keynesian Phillips curve, the optimality condition for firms is satisfied. Bond

holdings by savers and government debt evolve according to

bsḃs,t = rnbsbs,t + (1 − α)(wt − pt + ns,t) + Ts,t +
(1 − τ)yt − (1 − α)(wt − pt + nt)

1 − µb
+

(i − πt − rn)bs + (rL,t − rL)bL
s + rLbL

s bL
s,t − cs,t,

dGḋG,t = dG(rn + rL)dG,t + Tt − τyt + (it − πt − rn + rL,t − rL)dG,
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where bs,0 = bL
s

bs
qL,0 and dG,0 = dGqL,0. The value of cb,t is such that the flow budget constraint for

borrowers also holds.

Aggregating the budget constraint of borrowers and savers and using the market clearing

condition for goods and labor, we obtain

(1 − µb)bsḃs,t = rn(1 − µb)bsbs,t + Tt − τyt + (i − πt − rn)
.
(1 − µb)bs − µbdP

/
+

(rL,t − rL + rLbL
s,t)(1 − µb)bL

s .

Note that bsbs,t = bS
s bS

s,t + bL
s bL

s,t. We set bS
s,t = 0, so the market for short-term bonds clear at

all periods. It remains to show that the market for long-term bonds also clears. Subtracting the

government’s flow budget constraint from the condition above, we obtain

(1 − µb)bL
s ḃL

s,t − dGḋG,t = (rn + rL)((1 − µb)bL
s bL

s,t − dGdG,t),

using bsbs,t = bL
s,tb

L
s,t and (1 − µb)bs − µbdP = (1 − µb)bL

s = dG. Integrating this expression, we

obtain (1 − µb)bL
s bL

s,t − dGdG,t = e(rn+rL)t
.
(1 − µb)bL

s bL
s,0 − dGdG,0

/
= 0, where the equality uses

the market clearing condition in period 0. Therefore, the market clearing condition for long-term

bonds is satisfied in all periods. The only condition that remains to be checked is the No-Ponzi

condition for the government or, equivalently, the aggregate intertemporal budget constraint. Be-

cause condition (21) is satisfied, the No-Ponzi condition for the government is also satisfied.

Proof of Propositions 5 and 6. We can write dynamic system (20) in matrix form as Żt = AZt + Bνt,

where B = [1, 0]′. Applying the spectral decomposition to matrix A, we obtain A = VΩV−1

where V =

!
ρ−ω

κ
ρ−ω

κ

1 1

$
, V−1 = κ

ω−ω

!
−1 ρ−ω

κ

1 − ρ−ω
κ

$
, and Ω =

!
ω 0

0 ω

$
. Decoupling the system,

we obtain żt = Ωzt + bνt, where zt = V−1Zt and b = V−1B.

Solving the equation with a positive eigenvalue forward and the one with a negative eigen-

value backward, and rotating the system back to the original coordinates, we obtain

yt = V12

,
V21y0 + V22π0

-
eωt − V11V11

ˆ ∞

t
e−ω(z−t)νzdz + V12V21

ˆ t

0
eω(t−z)νzdz

πt = V22

,
V21y0 + V22π0

-
eωt − V21V11

ˆ ∞

t
e−ω(z−t)νzdz + V22V21

ˆ t

0
eω(t−z)νzdz,

where Vi,j is the (i, j) entry of matrix V−1. Integrating e−ρtyt and using the intertemporal budget
constraint,

Ω0 = V12

"
V21y0 + V22π0

# 1
ρ − ω

− 1
ρ − ω

V11V11
ˆ ∞

0

"
e−ωt − e−ρt

#
νtdt +

1
ρ − ω

V12V21
ˆ ∞

0
e−ρtνtdt.
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Rearranging the above expression, we obtain

V12

"
V21y0 + V22π0

#
= (ρ − ω)Ω0 +

ρ − ω

ρ − ω
V11V11

ˆ ∞

0
e−ωtνtdt,

where we used the fact V11V11

ρ−ω + V12V21

ρ−ω = 0. Output is then given by yt = ỹt + (ρ−ω)eωtΩ0, where

ỹt = − ω−ρ
ω−ω

´ ∞
t e−ω(z−t)νzdz + ω−δ

ω−ω

´ t
0 eω(t−z)νzdz − ρ−ω

ω−ω eωt ´ ∞
0 e−ωzνzdz. Inflation is given by πt =

π̃t + κeωtΩ0, where π̃t =
κ

ω−ω

´ ∞
t e−ω(z−t)νzdz + κ

ω−ω

´ t
0 eω(t−z)νzdz − κ

ω−ω eωt ´ ∞
0 e−ωzνzdz.

If it − rn = e−ψmt(i0 − rn), then i̇t = −ψm(it − rn). This allows us to write ỹt = σ−1ŷm,t +
µbχrdp
1−µb

ψ̃mŷm,t + χpελŷλ,t and π̃t = σ−1π̂m,t + χpελπ̂λ,t +
µbχrdp
1−µb

ψ̃mπ̂m,t, where ψ̃m ≡ ρ − rn + ψm,

ŷk,t = 1−µb
1−µbχy

.
− ψk+ρ

(ψk+ω)(ψk+ω)
e−ψkt + ρ−ω

(ψk+ω)(ψk+ω)
eωt

/
(i0 − rn), and π̂k,t = κ(eωt−e−ψkt)

(ω+ψk)(ω+ψk)
(i0 − rn).

Note that
´ ∞

0 e−ρtŷk,tdt = 0, ∂ŷk,0
∂i0

= − 1
ψk+ω < 0, and limt→∞ ŷk,t = 0. Moreover, π̂0 = 0, ∂π̂k,t

∂i0
≥ 0

with strict inequality if t > 0.

Proof of Proposition 7. From Propositions 5 and 6, we have yt = χŷt + (ω − δ)eωtΩ0, and πt =

χπ̂t + κeωtΩ0, where χ ≡ σ−1 + χdελ + µbχr
1−µb

ψ̃mdP. Moreover, we can rewrite the price of disaster

risk as pd,t = p̂d,t + χpd,ΩeωtΩ0, where p̂d,t ≡ σ
1−µbχy

1−µb
χŷt + σ

µbχrdP
1−µb

(it − χπ̂t − rn) + ελ (it − rn)

and χpd,Ω ≡ σ
,

1−µbχy
1−µb

(ρ − ω)− µbχrdP
1−µb

κ
-

. Finally, the price of the long-term bond in period 0

can be written as qL,0 = q̂L,0 + χqL,ΩΩ0, where q̂L,0 ≡ −
´ ∞

0 e−(ρ+ψL)t [it − rn + rL p̂d,t] and χqL,Ω ≡
− rL

ρ+ψL−ω χpd,Ω. Introducing these expressions into (??), and using that
´ ∞

0 e−ρtytdt = Ω0, we obtain

Ω0 = (1 − χΩ)Ω0 + dG q̂L,0 +

ˆ ∞

0
e−ρt

.
Tt + dG(it − χπ̂t − rn + rL p̂d,t)

/
dt,

where χΩ ≡ τ + κdG
ρ−ω − ψLrLdG

(ρ−ω)(ρ+ψL−ω)
χpd,Ω.

Proof of Proposition 8. We divide this proof in three steps. First, we derive the condition for local

uniqueness of the solution under the policy rule (7). Second, we derive the path of [yt, πt, it]∞0
for a given path of monetary shocks. Third, we show how to implement a given path of nominal

interest rates it − rn = e−ψmt(i0 − rn) and a given value of Ω0, which maps to a given value of fiscal

backing
´ ∞

0 e−ρtTtdt.

Equilibrium determinacy. First, note that we can write νt as νt = σ̃−1
.
1 + 1−µb

1−µbχy
σ̃χdελ

/
φππt +

µbχrdP
1−µbχy

φπκyt + ν̃t, where ν̃t ≡
.

1−µb
1−µbχy

σ−1 + 1−µb
1−µbχy

χdελ

/
ut − µbχrdP

1−µbχy
((rn − ρ)ut + u̇t).

The dynamic system for yt and πt can now be written as

!
ẏt

π̇t

$
=

!
δ̃ −σ̃−1(1 − φ̃π)

−κ ρ

$ !
yt

πt

$
+

!
1

0

$
ν̃t,
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where δ̃ ≡ δ+ µbχrdP
1−µbχy

φπκ and φ̃π ≡
.
1 + 1−µb

1−µbχy
σ̃χdελ

/
φπ. The eigenvalues of the system are given

by ωT =
ρ+δ̃+

√
(ρ+δ̃)2+4(σ̃−1(1−φ̃π)κ−ρδ̃)

2 and ωT =
ρ+δ̃−

√
(ρ+δ̃)2+4(σ̃−1(1−φ̃π)κ−ρδ̃)

2 . The system has a
unique bounded solution if both eigenvalues have positive real parts. A necessary condition for
the eigenvalues to have positive real parts is

ρ + δ +
µbχrdP

1 − µbχy
φπκ > 0 ⇐⇒ φπ > −(ρ + δ)

%
µbχrdPκ

1 − µbχy

&−1

= 1 −
'

ρ + λ

'
Cs

C∗
s

(σ( 1 − µbχy

µbχrdPκ
.

If the condition above is violated, then the real part of ωT is negative. Another necessary condition

for the eigenvalues to have positive real parts is

σ̃−1(1 − φ̃π)κ < ρ

!
δ +

µbχrdP

1 − µbχy
φπκ

$
⇐⇒ φπ > 1 −

χdελ + ρλ
κ

1−µbχy
1−µb

,
Cs
C∗

s

-σ

χdελ + σ−1 .

If this condition is violated, then the eigenvalues are real-valued and ωT < 0. This establishes the

necessity of the condition

φπ > max

0
12

13
1 −

χdελ + ρλ
κ

1−µbχy
1−µb

,
Cs
C∗

s

-σ

χdελ + σ−1 , 1 −
"

ρ + λ

"
Cs

C∗
s

#σ# 1 − µbχy

µbχrdPκ

4
15

16
.

If µbχy < 1, then φπ > 1 is sufficient to guarantee the local uniqueness of the solution.

Solution to the dynamic system. The dynamic system for [yt, πt]∞t=0 is given by

!
ẏt

π̇t

$
=

!
δ̃ −σ̃−1(1 − φ̃π)

−κ ρ

$ !
yt

πt

$
+

!
1

0

$
ν̃t.

In matrix form, the system is given by ˙̃Zt = ÃZ̃t + Bν̃t, where B = [1, 0]′. Applying the spec-

tral decomposition to matrix Ã, we obtain Ã = ṼΩTṼ−1 where Ṽ =

!
ρ−ωT

κ
ρ−ωT

κ

1 1

$
, Ṽ−1 =

κ
ωT−ωT

!
−1 ρ−ωT

κ

1 − ρ−ωT
κ

$
, and ΩT =

!
ωT 0

0 ωT

$
. Decoupling the system, we obtain ˙̃zt = ΩT z̃t + b̃ν̃t,

where z̃t = Ṽ−1Z̃t and b̃ = Ṽ−1B. Solving the system forward, and rotating the system back to the

original coordinates, we obtain

yt = −Ṽ11Ṽ11
ˆ ∞

t
e−ωT(z−t)ν̃zdz − Ṽ12Ṽ21

ˆ ∞

t
e−ωT(z−t)ν̃zdz

πt = −Ṽ21Ṽ11
ˆ ∞

t
e−ωT(z−t)ν̃zdz − Ṽ22Ṽ21

ˆ ∞

t
e−ωT(z−t)ν̃zdz.
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We rewrite the above expression as follows:

yt = − ωT − ρ

ωT − ωT

ˆ ∞

t
e−ωT(z−t)ν̃zdz +

ωT − ρ

ωT − ωT

ˆ ∞

t
e−ωT(z−t)ν̃zdz

πt = − κ

ωT − ωT

ˆ ∞

t

,
e−ωT(z−t) − e−ωT(z−t)

-
ν̃zdz,

where ν̃t ≡
.

1−µb
1−µbχy

σ−1 + 1−µb
1−µbχy

χdελ

/
ut − µbχrdP

1−µbχy
((rn − ρ)ut + u̇t). Using that ut = e−ψmtu0, we

obtain

yt = − ρ + ψm

(ωT + ψm)(ωT + ψm)

1 − µb

1 − µbχy

*
σ−1 + χdελ +

µbχrdP

1 − µb
ψ̃m

+
ut

πt = − κ

(ωT + ψm)(ωT + ψm)

1 − µb

1 − µbχy

*
σ−1 + χdελ +

µbχrdP

1 − µb
ψ̃m

+
ut,

where (ωT + ψm)(ωT + ψm) = σ̃−1κ(φ̃π − 1) + (δ̃ + ψm)(ρ + ψm) > 0.

The wealth effect is given by Ω0 = − 1
(ωT+ψm)(ωT+ψm)

1−µb
1−µbχy

,
σ−1 + χdελ + µbχrdP

1−µb
ψ̃m

-
u0.

The nominal interest rate is given by it = rn + (δ+ψm)(ρ+ψm)−σ̃−1κ

(δ̃+ψm)(ρ+ψm)+σ̃−1κ(φ̃π−1)
ut. Note that if ψm =

−ω > 0, then it − rn, using the fact that ωω = ρδ − σ̃−1κ and ω + ω = ρ + δ. Despite the zero

interest rate, the impact on output and inflation is non-zero. In particular, the outside wealth effect

is given by Ω0 = − 1
(ωT−ω)(ωT−ω)

,
1−µb

1−µbχy
(σ−1 + χdελ) +

µbχrdP
1−µbχy

(ρ − rn − ω)
-

u0.

Implementability condition. Suppose ut = ϑe−ψmt(i0 − rn) + θeωt and denote by (it, yt, πt)

the value of the nominal interest rate, output, and inflation under the Taylor rule. Given the

linearity of the system, the solution will be sum of the solutions for u1,t = ϑe−ψmt(i0 − rn) and

u2,t = θeωt. After some algebra, we get that the nominal interest rate is given by it − rn =

e−ψmt(i0 − rn), using the fact that the nominal interest rate is zero under u2,t, and choosing ϑ =
(δ̃+ψm)(ρ+ψm)+σ̃−1κ(φ̃π−1)

(δ+ψm)(ρ+ψm)−σ̃−1κ
= (ωT+ψm)(ωT+ψm)

(ω+ψm)(ω+ψm)
.

The outside wealth effect, Ω0 =
´ ∞

0 e−ρtytdt, is given by

Ω0 = −
1−µb

1−µbχy

,
σ−1 + χdελ + µbχrdP

1−µb
ψ̃m

-

(ωT + ψm)(ωT + ψm)
ϑ(i0 − rn)−

1−µb
1−µbχy

,
σ−1 + χdελ + µbχrdP

1−µbχy
(ρ − rn − ω)

-

(ωT − ω)(ωT − ω)
θ

To implement a Ω0 = Ω0, we must choose θ = (ωT+|ω|)(ωT+|ω|)
1−µb

1−µbχy

!
σ−1+χdελ+

µbχrdP
1−µb

(ρ−rn+|ω|)
" (ΩAR(1)

0 − Ω0),

where ΩAR(1)
0 = − 1

(ωT+ψm)(ωT+ψm)
1−µb

1−µbχy

,
σ−1 + χdελ + µbχr

1−µb
ψ̃m

-
ϑ(i0 − rn).

Given the process for ut and the values of ϑ and θ, output can be written as yt = σ−1ŷt +

χdελŷt +
µbχrdP
1−µb

ψ̃mŷt + (ω − δ)eωtΩ0, which coincides with (23), where we used ρ − ω = ω − δ.

This result also implies that πt = πt, as πt = κ
´ ∞

0 e−ρtytdt = κ
´ ∞

0 e−ρtytdt = πt.
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Fiscal transfers. Given that yt and πt are proportional to ut, we can write it − rn − πt =

χr,uut, pd,t = χp,uut, and qL,0 = χqL,uu0. Rearranging the aggregate intertemporal budget con-

straint, we obtain the present discounted value of transfers:
´ ∞

0 e−ρtµsTs,tdt = (τ − µbT′
b(Y))Ω0 −

dGχqL,u(ϑ(i0 − rn) + θ)− dg(χr,u + rLχp,u)
.

ϑ(i0−rn)
ρ+ψm

+ θ
ρ−ω

/
.

Proof of Proposition 9. From the market clearing condition for goods, we obtain the consumption

of savers: cs,t =
1−µbχy

1−µb
yt +

µbχrdP
1−µb

,
ψP

iP+ψP
(iP,t − iP)− πt

-
dP. Assuming exponentially decaying

interest rates, we can write the expression above as

cs,t =
1 − µbχy

1 − µb
yt +

µbχrdP

1 − µb

(
ψP(1 + rPελ)

ρ + ψP + ψm
(it − rn)− πt

)
. (A.1)

The Euler equation for savers can be written as

ċs,t = σ−1(it − πt − rn) + λ

"
Cs

C∗
s

#σ

cs,t + χdελ(it − rn). (A.2)

Combining equations (A.1) and (A.2), and using equation (??), we obtain

ẏt =

!
1 − µb

1 − χyµb
σ−1 − µbχrdP

1 − χyµb
rn

$
(it − πt − rn) +

!
λ

"
Cs

C∗
s

#σ

− µbχrdP

1 − χyµb
κ

$
yt

+

!
1 − µb

1 − χyµb
χdελ +

µbχrdP

1 − χyµb

"
rn +

ψP(1 + rPελ)

ρ + ψP + ψm
(ρ − rn + ψm)

#$
(it − rn),

We can then write the aggregate Euler equation as ẏt = σ̃−1(it − πt − rn) + δyt + vt, where σ̃−1 ≡
1−µb

1−χyµb
σ−1 − µbχrdP

1−χyµb
rn, δ ≡ λ

,
Cs
C∗

s

-σ
− µbχrdP

1−µb
κ, and vt ≡ µbχrdP

1−χyµb

.
rn +

ψP(1+rPελ)
ρ+ψP+ψm

(ρ − rn + ψm)] (it − rn) +
1−µb

1−χyµb
χdελ(it − rn). Therefore, output is given by

yt = σ−1ŷt + χdελŷt +
µbχr

1 − µb

ψP(1 + rPελ)

ρ + ψP + ψm
ψ̃mdPŷt + (ρ − ω)eωtΩ0,

where ψ̃m ≡ ψm + ρ − rn.

B Derivations for Section 2

B.1 The non-linear model

Savers’ problem. Let Cj,t(s) denote the consumption at time t of a saver of type j ∈ {o, p}
and denote the aggregate consumption of a type-j saver by Cj,t =

´ t
−∞ ξe−ξ(t−s)Cj,t(s)ds, where a

similar notation applies to the other variables. Given that the problem of all type-j savers is the

same, except for the value of net worth, we drop the dependence on s and write Cj,t instead of

6



Cj,t(s) to ease notation.

The HJB for the savers’ problem is given by

ρ̃jVj,t = max
Cj,t,BL

j,t,B
E
j,t

C1−σ
j,t

1 − σ
− ξVj,t +

∂Vj,t

∂t
+ λj

.
V∗

j,t − Vj,t

/
+

∂Vj,t

∂Bj,t

.
(it − πt)Bj,t + rL,tBL

j,t + rE,tBE
j,t − Cj,t

/
.

where V∗
j,t is evaluated at B∗

j,t = Bj,t + BL
j,t

Q∗
L,t−QL,t
QL,t

+ BE
j,t

Q∗
E,t−QE,t

QE,t
and Bj,t > −Dp.

The corresponding HJB in the disaster state is given by

ρ̃∗j V∗
j,t = max

C∗
j,t,B

L,∗
j,t ,BE,∗

j,t

(C∗
j,t)

1−σ

1 − σ
− ξV∗

j,t +
∂V∗

j,t

∂t
+

∂V∗
j,t

∂B∗
j,t

.
(i∗t − π∗

t )Bj,t − C∗
j,t

/
,

where we imposed that r∗L,t = r∗E,t = 0, as there is no risk in the disaster state.

The first-order conditions are given by1

C−σ
j,t =

∂Vj,t

∂Bj,t
,

∂Vj,t

∂Bj,t
rk,t =

∂V∗
j,t

∂B∗
j,t

Qk,t − Q∗
k,t

Qk,t
, (C∗

j,t)
−σ =

∂V∗
j,t

∂B∗
j,t

, (B.1)

where k ∈ {L, E} and savers are indifferent about the level of long-term bonds in the disaster state.

Combining the expressions above, we obtain Equations (2) and (3). Differentiating the HJB

equation in the no-disaster state with respect to Bj,t, we obtain the envelope condition:2

ρj
∂Vj,t

∂Bj,t
=

∂Vj,t

∂Bj,t
(it − πt) +

Ej,t[d
,

∂Vj,t
∂Bj,t

-
]

dt
, (B.2)

where the effective discount rate ρj ≡ ρ̃j + ξ captures subjective discounting and mortality risk.

Using the optimality condition for consumption, we can write the expression above as follows:

it − πt − ρj = −
Et[dC−σ

j,t ]

C−σ
j,t dt

=
σC−σ−1

j,t Ċj,t − λj

.
(C∗

j,t)
−σ − C−σ

j,t

/

C−σ
j,t

, (B.3)

using the fact that dCj,t = Ċj,tdt + [C∗
j,t − Cj,t]dNt and Ito’s lemma. Rearranging the expression

above, we obtain Equation (1). A similar envelope condition holds in the disaster state, which

1Formally, the solution is also subject to the state-constraint boundary condition
∂Vj,t(−DP)

∂B ≥
"
−(it − πt)DP +

Wj,t
Pt

Nj,t +
Πj,t
Pt

+ )Tj,t

#−σ
. See Achdou et al. (2017) for a discussion of state-constraint

boundary conditions in the context of continuous-time savings problems with borrowing constraints.
2Here we used the fact that Ej,t[dF(Bj,t, t)] =

!
Ft + λj[F∗ − F] + FB

"
(i − π)Bj + rLBL

j + rEBE
j − Cj

#$
dt

for any function F(Bj,t, t), according to Ito’s lemma.
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gives the Euler equation for the disaster state

Ċ∗
j,t

C∗
j,t

= σ−1(it − πt − ρ∗j ), (B.4)

where ρ∗j ≡ ρ̃∗j + ξ.

Savers’ aggregate behavior. Denote aggregate consumption and net worth of type-j savers as

follows

Cj,t =

ˆ t

−∞
ξe−ξ(t−s)Cj,t(s)ds, Bj,t =

ˆ t

−∞
ξe−ξ(t−s)Bj,t(s)ds, (B.5)

From the optimality condition for risky assets, we obtain

Cj,t(s)
C∗

j,t(s)
=

Cj,t(s′)
C∗

j,t(s
′)

⇒
Cj,t(s)
C∗

j,t(s)
=

Cj,t

C∗
j,t

. (B.6)

We can then write the optimality condition for risky assets as follows

rk,t = λj

*
Cj,t

C∗
j,t

+σ
Qk,t − Q∗

k,t

Qk,t
, (B.7)

where k ∈ {L, E}.

The evolution of aggregate consumption of a type-j saver conditional on no-disaster is given

by

Ċj,t =

ˆ t

−∞
ξe−ξ(t−s)Ċj,t(s)ds + ξ(Cj,t(t)− Cj,t) (B.8)

= Cj,t

!
σ−1 7it − πt − ρj

8
+

λj

σ

!*
Cj,t

C∗
j,t

+σ

− 1

$
+ ξ

*
Cj,t(t)

Cj,t
− 1

+$
. (B.9)

The net worth of newborn savers is given by Bj,t(t) =
µo

µo+µp
Bo,t +

µp
µo+µp

Bp,t. As the consumption-

wealth ratio is the same for all savers of the same type, we obtain

Cj,t(t)

Cj,t
=

µo
µo+µp

Bo,t +
µp

µo+µp
Bp,t

Bj,t
(B.10)

Combining the expressions above, we can derive the law of motion of aggregate consumption

for savers:
Ċs,t

Cs,t
= σ−1 (it − πt − ρs,t) +

λt

σ

!*
Cs,t

C∗
s,t

+σ

− 1

$
. (B.11)

The parameter ξ does not affect the aggregate Euler equation for savers. However, ξ controls
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the relative consumption of optimistic and pessimistic savers:

Ċo,t

Co,t
−

Ċp,t

Cp,t
= ξ

&
Bp,t − Bo,t

'
µo

µo+µp
Bo,t +

µp
µo+µp

Bp,t

Bo,tBp,t
(B.12)

The evolution of aggregate net worth of a type-j saver conditional on no-disaster is given by

Ḃj,t =

ˆ t

−∞
ξe−ξ(t−s)Ḃj,t(s)ds + ξ(Bj,t(t)− Bj,t) (B.13)

= Bj,t

9

:it − πt + rL,t
BL

j,t

Bj,t
+ rE,t

BE
j,t

Bj,t
−

Cj,t

Bj,t
+ ξ

*
Bj,t(t)

Bj,t
− 1

+;

< . (B.14)

This implies that the aggregate net worth of savers evolves according to

Ḃs,t

Bs,t
= it − πt + rL,t

BL
s,t

Bs,t
+ rE,t

BE
s,t

Bs,t
− Cs,t

Bs,t
. (B.15)

The relative net worth of optimistic and pessimistic savers evolves according to

Ḃo,t

Bo,t
−

Ḃp,t

Bp,t
= ∑

k∈{L,E}
rk,t

=

>BL
o,t

Bo,t
−

Bk
p,t

Bp,t

?

@−
*

Co,t

Bo,t
−

Cp,t

Bp,t

+
+ ξ

*
Bo,t(t)

Bo,t
−

Bp,t(t)
Bp,t

+
. (B.16)

Borrowers’ problem. The HJB for the borrowers’ problem is given by

ρ̃bVb,t = max
C̃b,t ,Nb,t ,BL

j,t

C̃1−σ
b,t

1 − σ
+

∂Vb,t

∂t
+ λb

!
V∗

b,t − Vb,t

$
+

∂Vb,t

∂Bb,t

*

+(it − πt)Bb,t + rL,tBL
b,t +

Wt

Pt
Nb,t + )Tb,t − C̃b,t −

N1+φ
b,t

1 + φ

,

- .

subject to the state-constraint boundary condition

∂Vb,t(−DP)

∂Bb,t
≥

0

1−(it − πt)DP +
Wt

Pt
Nb,t −

N1+φ
b,t

1 + φ
+ 7Tb,t

2

3
−σ

, (B.17)

where we adopted the change of variables C̃b,t ≡ Cb,t −
N1+φ

b,t
1+φ .

For simplicity, we have already imposed that BE
b,t = 0. We will show below that

BL
b,t = 0 and a similar argument shows that borrowers would be against the short-selling

constraint for equities when BE
b,t is a choice variable.

The optimality condition for labor supply is given by

Nφ
b,t =

Wt

Pt
. (B.18)
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We focus on an equilibrium where borrowers are always constrained. To derive the
conditions that ensure this is indeed the case, we start by considering a stationary equi-
librium where all variables are constant conditional on the state. If borrowers are con-
strained in the stationary equilibrium, then they will also be constrained if fluctuations
are small enough.

In a stationary equilibrium, net consumption C̃b in the no-disaster state is given by

C̃b = −rnDp +
W
P

Nb −
N1+φ

b
1 + φ

+ T̃b, (B.19)

and an analogous expression holds in the disaster state. Notice that the expression above
does not depend on ρb or λb.

For borrowers to be unconstrained, the following condition would have to hold:

˙̃Cb,t

C̃b,t
= σ−1(rn − ρb) +

λb
σ

#'
C̃b,t

C̃∗
b,t

(σ

− 1

$
. (B.20)

For ρb sufficiently large, borrowers would want a declining path of consumption, so cur-

rent consumption would be above −rnDp +
W
P Nb −

N1+φ
b

1+φ + T̃b, which would violate the
state-constraint. Hence, the constraint must be binding for ρb sufficiently large.

If the borrowers hold a positive amount of the long-term bonds, then the following
condition must hold

rL = λb

'
C̃b

C̃∗
b

(σ
QL − Q∗

L
QL

. (B.21)

As Cb and C∗
b are independent of λb, the equation above would hold only if λb equals

the value λb ≡ rL"
Cb
C∗b

#σ QL−Q∗
L

QL

. For λb > λb, borrowers would want a smaller dispersion

between Cb and C∗
b , which requires holding less risky bonds, violating the non-negativity

constraint on long-term bonds. Therefore, borrowers will hold zero long-term bonds for
λb sufficiently large.

Firms’ problem. Final goods are produced according to the production function Yt =
:
´ 1

0 Y
ε

ε−1
i,t di

; ε−1
ε

. The solution to final-good producers problem is a demand for variety i

given by Yi,t =
:

Pi,t
Pt

;−ε
Yt. The price level is given by Pt =

:
´ 1

0 P1−ε
i,t di

; 1
1−ε .
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The intermediate-goods producers’ problem is given by

Qi,t(Pi) = max
[πi,s]s≥t

Et

#
ˆ t∗

t

ηs

ηt
(1 − τt)

8
Pi,s

Ps
Yi,s −

Ws

Ps

Yi,s

As
− ϕ

2
π2

s (j)
9

ds +
ηt∗

ηt
Q∗

i,t∗(Pi,t∗)

$
,

subject to Yi,t =
:

Pi,t
Pt

;−ε
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi.

The HJB equation for this problem is

0 = max
πi,t

ηt(1 − τt)

8
Pi,t

Pt
Yi,t −

Wt

Pt

Yi,t

A
− ϕ

2
π2

i,t

9
dt + Et[d(ηtQi,t)], (B.22)

where Et[d(ηtQi,t)]
ηtdt = −(it − πt)Qi,t +

∂Qi,t
∂Pi,t

πi,tPi,t +
∂Qi,t

∂t + λt
η∗

t
ηt

%
Q∗

i,t − Qi,t

&
.

The first-order condition is given by

∂Qi,t

∂Pi
Pi,t = (1 − τt)ϕπi,t.

The change in πt conditional on no disaster is then given by

'
∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t

(
Pi,t +

∂Qi,t

∂Pi
πi,tPi,t = (1 − τt)ϕπ̇i,t. (B.23)

The envelope condition with respect to Pi,t is given by

0 = (1 − τt)

8
(1 − ε)

Pi,t

Pt
+ ε

Wt

Pt A

98
Pi,t

Pt

9−ε Yt

Pi,t
+

∂2Qi,t

∂t∂Pi
+

∂2Qi,t

∂P2
i

πi,tPi,t+

∂Qi,t

∂Pi
πi,t − (it − πt)

∂Qi,t

∂Pi
+ λt

η∗
t

ηt

8
∂Q∗

i,t

∂Pi
− ∂Qi,t

∂Pi

9
. (B.24)

Multiplying the expression above by Pi,t and using Equation (B.23), we obtain

0 =

8
(1 − ε)

Pi,t

Pt
+ ε

Wt

Pt A

98
Pi,t

Pt

9−ε

Yt + ϕπ̇t − (it −πt)ϕπi,t +λt ϕ
η∗

t
ηt

8
1 − τ∗

t
1 − τt

π∗
i,t − πi,t

9
.

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips
curve

π̇t =

8
it − πt + λt

η∗

ηt

9
πt −

εϕ−1

A

8
Wt

Pt
− (1 − ε−1)A

9
Yt,

where we have assumed that Pi,t = Pt for all i ∈ [0, 1] and that π∗
t = 0.
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B.2 The stationary equilibrium

Aggregate output. Consider a stationary equilibrium with zero inflation. From the New
Keynesian Phillips curve, we obtain

W
P

= (1 − ε−1)A,
W∗

P
= (1 − ε−1)A∗. (B.25)

Combining the expressions above with the labor supply condition, we obtain

Y = µb(1 − ε−1)
1
φ A

1+φ
φ , Y∗ = µb(1 − ε−1)

1
φ (A∗)

1+φ
φ . (B.26)

Disaster state. From the Euler equation for short-term bonds, the type-j saver will be
unconstrained in a stationary equilibrium only if r∗n = ρ∗j . To ensure this is the case, we
assume that ρ∗j = ρs for j ∈ {o, p}, where ρs is the effective discount rate implicit in the
SDF, so the real interest rate in the disaster state is given by i∗t − π∗

t = r∗n = ρs. The excess
return on long-terms bonds and equity are equal to zero, r∗L = r∗E = 0, so the price of the
long-term bond is given by

Q∗
L =

1
r∗n + ψL

, (B.27)

and the equity price is given by Q∗
E = Π∗

r∗n
.

The consumption of borrowers is given by

C∗
b =

%
(1 − ε−1)A∗

& 1+φ
φ − r∗nDp + T̃∗

b . (B.28)

We assume that the government chooses fiscal transfers so borrowers have a given
share 0 < µY,b < 1 of output, so C∗

b = µ∗
Y,b. The parameter µY,b captures the government

preferences for redistribution.
The consumption of savers are given by

C∗
j = r∗nB∗

j , (B.29)

where B∗
j = Bj + BL

j
Q∗

L−QL
QL

+ BE
j

Q∗
E−QE
QE

.
Aggregate consumption of savers is given by

C∗
s = r∗n

D∗
G + µbDp

1 − µb
+ (1 − τ∗)ε−1 Y∗

1 − µb
, (B.30)

using the market clearing condition for bonds and the expression for the price of stocks.
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The government chooses τ∗ such that τ∗ε−1Y∗ = r∗nD∗
G + µb7T∗

b , which guarantees that
the government’s budget constraint is satisfied. This implies that the aggregate consump-
tion of savers is given by C∗

s = (1 − µY,b)Y∗.

No-disaster state. The consumption of borrowers is given by

Cb = −rnDp +
%
(1 − ε−1)A

& 1+φ
φ

+ T̃b. (B.31)

As in the disaster state, the government chooses fiscal transfers so borrowers have a
given share 0 < µY,b < 1 of output, so Cb = µY,bY and Cs = (1 − µY,b)Y. It remains to
determine the relative consumption of optimistic and pessimistic savers.

The consumption of individual savers is given by

Cj = rnBj + rLBL
j + rEBE

j . (B.32)

The expression above ensures that total bond holdings of each individual saver is con-
stant over time. To ensure that the aggregate bond holdings of optimistic and pessimistic
savers is also constant, we must take into account the effect of births and deaths. Each
instant a mass ξµo of optimistic savers dies, which leads to a reduction in wealth for this
group of ξµoBo. Newborns inherit the wealth of their parents and a fraction µo

µo+µp
of

newborns is optimistic, so the influx of newborns raise the aggregate wealth of optimistic
savers by µo

µo+µp
ξ
<
µoBo + µpBp

=
. These two effects cancel each other if the following con-

dition is satisfied
ξµoBo =

µo

µo + µp
ξ
<
µoBo + µpBp

=
⇒ Bo = Bp, (B.33)

so Bj = Bs for j ∈ {o, p}, where Bs is the average net worth of savers. We then have
Bj(s) = Bj and Cj(s) = Cj.

From the market clearing condition for assets, we obtain

Bs =
DG + µbDp + QE

1 − µb
, BL

s =
DG

1 − µb
, BE

s =
QE

1 − µb
. (B.34)

Using the fact that Bo = Bp in a stationary equilibrium, we can write the consumption
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of optimistic and pessimistic savers as follows:

Co = Cs + rL
µp

µo + µp
(BL

o − BL
p) + rE

µp

µo + µp
(BE

o − BE
p ) (B.35)

Cp = Cs − rL
µo

µo + µp
(BL

o − BL
p)− rE

µo

µo + µp
(BE

o − BE
p ). (B.36)

We can use the Euler equations for risky assets to eliminate rL and rE from the expres-
sion above, which gives us

Co = Cs

!
1 + λ

8
Cs

C∗
s

9σ µp

µo + µp
Ro

"
, C∗

o = C∗
s

!
1 −

µp

µo + µp

r∗nRo

1 − ζY

"
, (B.37)

Cp = Cs

!
1 − λ

8
Cs

C∗
s

9σ µo

µo + µp
Ro

"
, C∗

p = C∗
s

!
1 +

µo

µo + µp

r∗nRo

1 − ζY

"
, (B.38)

where Ro ≡ QL−Q∗
L

QL

BL
o −BL

p
Cs

+
QL−Q∗

L
QE

BE
o −BE

p
Cs

represents optimistic relative risk exposure.
Notice that Ro pins down the share of consumption of optimistic savers:

µoCo

µoCo + µpCp
=

µo

µo + µp

!
1 + λ

8
Cs

C∗
s

9σ µp

µo + µp
Ro

"
, (B.39)

which is an implicit function of the share of consumption of optimistic savers, as λ is also
a function of µoCo

µoCo+µpCp
. The left-hand is strictly increasing in µoCo

µoCo+µpCp
and it is zero if

µoCo
µoCo+µpCp

= 0. For Ro > 0 and λo < λp, the right-hand side is decreasing in µoCo
µoCo+µpCp

and it is positive if µoCo
µoCo+µpCp

= 0. Then, µoCo
µoCo+µpCp

is a strictly increasing function of R0,
in the range R0 > 0. This implies that λ is decreasing in Ro, but λRo is strictly increasing.

From the optimality condition for risky assets, we obtain the condition

0

1
1 + λ (1 − ζY)

−σ µp
µo+µp

Ro

1 − µp
µo+µp

r∗nRo
1−ζY

2

3
σ

=
λp

λo

0

1
1 − λ (1 − ζY)

−σ µo
µo+µp

Ro

1 + µo
µo+µp

r∗nRo
1−ζY

2

3
σ

, (B.40)

where we used the fact that C∗
s

Cs
= 1 − ζY.

The left-hand side of the expression above is strictly increasing in Ro and it is equal
to 1 for Ro = 0. The right-hand side is strictly decreasing in Ro and it is equal to λp

λo
≥ 1.

Then, there exists a unique value of Ro solving the equation above and Ro ≥ 0, with
strict inequality if λp > λo.
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The value of Ro pins down µoCo
µpCp+µpCp

and the market-implied disaster probability:

λ =

!
µoCo

µpCp + µpCp
λ

1
σ
o +

µpCp

µpCp + µpCp
λ

1
σ
p

"σ

. (B.41)

From the Euler equations for short-term and long-term bonds, we obtain

rn = ρj − λj

#'
Cj

C∗
j

(σ

− 1

$
, rk = λj

'
Cj

C∗
j

(σ
Qk − Q∗

k
Qk

, (B.42)

for k ∈ {L, E}, where rL = 1
QL

− ψL − rn and rE = Π
QE

− rn.

Notice that, given λo

:
Co
C∗

o

;σ
= λp

:
Cp
C∗

p

;σ
, the condition ρo + λo = ρp + λp is necessary

for the Euler equation for short-term bonds to be satisfied with constant consumption for
both types of savers.

Using the fact that λ
:

Cs
C∗

s

;σ
= λj

8
Cj
C∗

j

9σ

, we can write the Euler equations in terms of

aggregate savers’ consumption:

rn = ρs − λ

!8
Cs

C∗
s

9σ

− 1
"

, rk = λ

8
Cs

C∗
s

9σ Qk − Q∗
k

Qk
, (B.43)

for k ∈ {L, E}, where ρs satisfy the condition ρs + λ = ρj + λj for j ∈ {o, p}.
We solve next for the price of risky assets. Given rL, we can solve for QL:

1
QL

− ψL − rn = λ

8
Cs

C∗
s

9σ 8
1 − Q∗

L
QL

9
⇒ QL = Q∗

L

r∗n + ψL + λ
:

Cs
C∗

s

;σ

rn + ψL + λ
:

Cs
C∗

s

;σ , (B.44)

where QL > Q∗
L, as rn < r∗n due to the precautionary motive in the no-disaster state.

The loss in long-term bonds in the disaster state is given by

QL − Q∗
L

QL
=

r∗n − rn

r∗n + ψL + λ
:

Cs
C∗

s

;σ , (B.45)

which is positive as r∗n > rn. This implies that long-term interest rates are higher than
short-term interest rates in the stationary equilibrium, i.e., the yield curve is upward slop-
ing in this economy.
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The equity price is given by

Π
QE

− rn = λ

8
Cs

C∗
s

9σ 8
1 − Q∗

E
QE

9
⇒ QE =

Π + λ
:

Cs
C∗

s

;σ
Q∗

E

rn + λ
:

Cs
C∗

s

;σ , (B.46)

so the loss on equity in the disaster state is given by

QE − Q∗
E

QE
=

Π − rnQ∗
E

Π + λ
:

Cs
C∗

s

;σ
Q∗

E

= ζΠ + Q∗
E

Π∗
Q∗

E
−

:
rn + λ

:
Cs
C∗

s

;σ
ζΠ

;

Π + λ
:

Cs
C∗

s

;σ
Q∗

E

, (B.47)

where ζΠ ≡ 1 − Π∗
Π is the size of the drop in profits. It can be shown that the second

term is positive for σ > 1. Therefore, the equity premium is positive in the stationary
equilibrium. Notice that the drop in the values of equities in the disaster state comes from
both the reduction in dividends and the drop in the price-dividend ratio in the disaster
state due to higher natural rate.

Finally, given the quantity of risk for stocks and bonds, the value of Ro pins a linear
between of BL

o − BL
p and BE

o − BE
o , but it does not pin down the exact values. For instance,

we could assume that BE
o = BE

p , such that differences in believes translates in differences
in bond holdings. Alternatively, we could set BL

o − BL
p = BE

o − BE
p , so the optimistic in-

vestors holds more of stocks and long-term bonds. All these configurations are consistent
with equilibrium and they do not affect prices or consumption.

B.3 Log-linear approximation

We consider next the effects of an unexpected monetary shock for an economy starting at
the stationary equilibrium described above.

Market-based disaster probability. Linearizing Equation (4) around the stationary equi-
librium, we obtain

λ
1
σ

σ
λ̂t = µc,oµc,p

8
λ

1
σ
p − λ

1
σ
o

9 <
cp,t − co,t

=
, (B.48)

where µc,j ≡ µjCj

µoCo+µpCp
and cj,t ≡ log Cj,t/Cj, for j ∈ {o, p}. Note that cj,t denote the

log-deviation of average consumption of type-j savers.
The expression above implies that changes in the relative consumption of optimistic

and pessimistic investors affects the market-based probability of disaster. In particular,
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shocks that redistribute towards pessimistic investors at time t raise λ̂t.

Relative consumption. From the optimality condition for risky assets, we obtain

λ
1
σ
o

Co,t

C∗
o,t

= λ
1
σ
p

Cp,t

C∗
p,t

⇒ cp,t − co,t = c∗p,t − c∗o,t (B.49)

Relative consumption, in the no-disaster and disaster states, is given by

ċp,t − ċo,t = −ξ(bp,t − bo,t), ċ∗p,t − ċ∗o,t = −ξ(b∗p,t − b∗o,t), (B.50)

where we used Equation (B.12) and the analogous condition in the disaster state.

Relative net worth. Linearizing Equation (B.16), we obtain

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk

-

/r̂k,t

0

1Bk
p

Bp
− Bk

o

Bo

2

3+
Bk

p

Bp
(bk

p,t − bp,t)−
Bk

o

Bo
(bk

o,t − bo,t)

4

6

−
'

Cp

Bp
(cp,t − bp,t)−

Co

Bo
(co,t − bo,t)

(
− ξ

>
bp,t − bo,t

?
, (B.51)

where r̂k,t = λ̂t + σcs,t + ∑k∈{L,E}
Q∗

k
Qk−Q∗

k
qk,t.

Using the fact that
Cj

Bj
= rn + ∑k∈{L,E} rk

Bk
j

Bj
, we can write the expression above as fol-

lows

ḃp,t − ḃo,t = ∑
k∈{L,E}

rk

-

/r̂L,t

0

1Bk
p

Bp
− Bk

o

Bo

2

3+
Bk

p

Bp
bk

p,t −
Bk

o

Bo
bk

o,t

4

6−
'

Cp

Bp
cp,t −

Co

Bo
co,t

(

+ (rn − ξ)(bp,t − bo,t). (B.52)

The relative net worth in the disaster state is given by

ḃ∗p,t − ḃ∗o,t = −ξ(b∗p,t − b∗o,t) ⇒ b∗p,t − b∗o,t = e−ξ(t−t∗)(b∗p,t∗ − b∗o,t∗), (B.53)

for t ≥ t∗, where b∗p,t∗ − b∗o,t∗ is given by

b∗p,t∗ − b∗o,t∗ = bp,t∗ − bo,t∗ − ∑
k∈{L,E}

!*
Bk

p

Bp
− Bk

o
Bo

+
Q∗

k
Qk

qk,t∗ +

*
Bk

p

Bp
bk

p,t∗ −
Bk

o
Bo

bk
o,t∗

+
Qk − Q∗

k
Qk

$
. (B.54)
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Relative risk exposure. Given that the consumption-wealth ratio for savers is constant
in the disaster state, we have that c∗j,t = b∗j,t, so we obtain that c∗p,t − c∗o,t = b∗p,t − b∗o,t. Using
the expression above and the fact that b∗p,t − b∗o,t = c∗p,t − c∗o,t = cp,t − co,t, we can solve for
the relative risk exposure:

∑
k∈{L,E}

Qk − Q∗
k

Qk

'
Bk

p

Bp
bk

p,t −
Bk

o
Bo

bk
o,t

(
= bp,t − bo,t − (cp,t − co,t)− ∑

k∈{L,E}

'
Bk

p

Bp
− Bk

o
Bo

(
Q∗

k
Qk

qk,t.

(B.55)

The dynamic system. Using the expression above to eliminate the relative risk expo-
sure, the relative net worth at the no-disaster state is given by

ḃp,t − ḃo,t = (λ̂t + (σ − 1)cs,t) ∑
k∈{L,E}

rk

'
Bk

p

Bp
− Bk

o
Bo

(
+ (ρs + λ − ξ)(bp,t − bo,t)

− (ρs + λ)(cp,t − co,t)− ∑
k∈{L,E}

rk

0

1Bk
p

Bp
(cp,t − cs,t)−

Bk
o

Bo
(co,t − cs,t)

2

3 . (B.56)

The deviation of consumption from average can be written as

cp,t − cs,t =
µoCo

µoCo + µpCp
(cp,t − co,t), co,t − cs,t = −

µpCo

µoCo + µpCp
(cp,t − co,t). (B.57)

Combining the expressions above, we can write ḃp,t − ḃo,t as follows

ḃp,t − ḃo,t = −χ∆b,∆c(cp,t − co,t) + χ∆b,∆b(bp,t − bo,t) + χ∆b,cs cs,t, (B.58)

where χ∆b,cs ≡ (σ − 1)∑k∈{L,E} rk

8
Bk

p
Bp

− Bk
o

Bo

9
, χ∆b,∆b ≡ ρs + λ − ξ, and

χ∆b,∆c ≡ σµc,oµc,p

.

/λ
1
σ
p − λ

1
σ
o

λ

0

1 ∑
k∈{L,E}

rk

%
Bk

o
Bo

−
Bk

p

Bp

&
+(ρs +λ)+ ∑

k∈{L,E}
rk

.

/Bk
p

Bp

µoCo

µoCo + µpCp
+

Bk
o

Bo

µpCp

µoCo + µpCp

0

1 .

In general, we would have to simultaneously solve for the aggregate variables and the
relative net worth and relative consumption of pessimistic savers, which would increase
the dimensionality of the problem relative to the standard New Keynesian. We assume
that rkcs,t = O(||it − rn||2), so this term is small and can be ignored in our approximate
solution. This implies that the system is now block recursive, where we can solve for the
dynamics of relative consumption and relative net worth before fully characterizing the
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behavior of other aggregate variables. Under this assumption, we can write the joint
dynamics of bp,t − bo,t and cp,t − co,t as follows:

#
ċp,t − ċo,t

ḃp,t − ḃo,t

$
=

#
0 −ξ

−χ∆b,∆c χ∆b,∆b

$ #
cp,t − co,t

bp,t − bo,t

$
(B.59)

Persistence of λ̂t. Given that χ∆b,∆c, the system above has a positive and a negative
eigenvalue, so there is a unique bounded solution given by

#
cp,t − co,t

bp,t − bo,t

$
=

#χ∆b,∆b+ψλ

χ∆b,∆c

1

$
e−ψλt(bp,0 − bo,0) (B.60)

where

ψλ ≡

@
χ2

∆b,∆b + 4ξχ∆b,∆c − χ∆b,∆b

2
, (B.61)

where ψλ ≥ 0 is strictly increasing in ξ, it is equal to zero if ξ = 0 and it approaches
infinity as ξ → ∞.

We can then write the market-implied disaster probability as follows:

λ̂t = e−ψλtλ̂0, (B.62)

where

λ̂0 ≡ σµc,oµc,p

0

1λ
1
σ
p − λ

1
σ
o

λ

2

3 χ∆b,∆b + ψλ

χ∆b,∆c
(bp,0 − bo,0). (B.63)

Hence, ψλ captures the persistence of λ̂t. If ξ = 0, then ψλ = 0 and changes in λt

are permanent. For high values of ψλ, the effects on λt are transitory and ψλ controls the
speed of the convergence.

Wealth revaluation and λ̂0. The revaluation of the relative net worth is given by

bp,0 − bo,0 = ∑
k∈{L,E}

'
Bk

p

Bp
− Bk

o
Bo

(
qk,0. (B.64)

The price of the long-term bond satisfies the condition

− 1
QL

qL,t + q̇L,t − (it − rn) = rL

!
λ̂t + σcs,t +

Q∗
L

QL − Q∗
L

q∗L,t

"
(B.65)
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Rearranging the expression above, we obtain

q̇L,t − (ρ + ψL)qL,t = (it − rn) + rL(λ̂t + σcs,t). (B.66)

Solving the differential equation above, we obtain

qL,0 = −
ˆ ∞

0
e−(ρ+ψL)t(it − rn)dt −

ˆ ∞

0
e−(ρ+ψL)trL(λ̂t + σcs,t)dt. (B.67)

Suppose it − rn = e−ψmt(i0 − rn) and rLσcs,t = O(||it − rn||2), then

qL,0 = − i0 − rn

ρ + ψL + ψm
− rLλ̂0

ρ + ψL + ψλ
. (B.68)

We focus on the case
BE

p
Bp

= BE
o

Bo
, so the initial relative wealth revaluation is given by

bp,0 − bo,0 = −
'

BL
p

Bp
− BL

o
Bo

(#
i0 − rn

ρ + ψL + ψm
+

rLλ̂0

ρ + ψL + ψλ

$
. (B.69)

Plugging the expression above into the expression for λ̂0

λ̂0 ≡
σµc,oµc,p

'
λ

1
σ
p −λ

1
σ
o

λ

(
χ∆b,∆b+ψλ

χ∆b,∆c

8
BL

o
Bo

− BL
p

Bp

9

1 − σµc,oµc,p

'
λ

1
σ
p −λ

1
σ
o

λ

(
χ∆b,∆b+ψλ

χ∆b,∆c

8
BL

o
Bo

− BL
p

Bp

9
rL

ρ+ψL+ψλ

i0 − rn

ρ + ψL + ψm
. (B.70)

Notice that there is an amplification mechanism between the price of the long-term
bond and the change in disaster probability. A wealth redistribution towards pessimistic
investors tends to increase λ̂0. An increase in λ̂0 depresses the value of long-term bonds,
redistributing towards pessimistic investors, further increasing λ̂t.

Borrowers’ consumption. Log-linearizing borrowers’ budget constraint, we obtain

cb,t = (1 − α)(wt − pt − nb,t) + Tb,t − (it − πt − rn)dp, (B.71)

where 1 − α ≡ WNb
PCb

, Tb,t ≡
T̃b,t−T̃b

Cb
and dP ≡ DP

Cb
.

Using the fact that Tb,t = T′
b(Y)yt and wt − pt − nb,t = (1 + φ)yt, we can write the
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expression above as follows

cb,t = χyyt − dP(it − πt − rn), (B.72)

where χY ≡ (1 − α)(1 + φ) + T′
b(Y).

Savers’ Euler equation. Linearizing the Euler equation for savers, we obtain

ċs,t = σ−1 (it − πt − rn) +
λ

σ

8
Cs

C∗
s

9σ <
σcs,t + λ̂t

=
. (B.73)

Phillips curve. Linearizing the Phillips curver, we obtain

π̇t = ρπt − κyt, (B.74)

where κ ≡ φε
ϕ

WN
P .

B.4 Asset prices

Stock prices. Linearizing the expression for rE,t, we obtain

Π
QE

(Π̂t − qE,t) + q̇E,t − (it − πt − rn) = rE

!
λ̂t + σcs,t +

Q∗
E

QE − Q∗
E

qE,t

"
. (B.75)

Rearranging the expression above, we obtain

q̇E,t − ρqE,t = − 1
QE

Π̂t + (it − πt − rn) + rE
<
λ̂t + σcs,t

=
, (B.76)

where τ̂t = − log 1−τt
1−τ and

Π̂t = −τ̂tΠ + (1 − τ)(yt − (1 − α)(wt − pt − nt))Y (B.77)

Solving the differential equation above, we obtain

qE,t =
1

QE

ˆ ∞

t
e−ρ(s−t)Π̂sds −

ˆ ∞

t
e−ρ(s−t) <(is + πs − rn) + rE(λ̂t + σcs,t)

=
ds. (B.78)
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C Derivations for Section 3

C.1 Equilibrium determinacy and the Taylor principle

Combining the dynamics of the output and inflation from Proposition 2 and the Taylor
rule it = rn + φπ + εt, we obtain the dynamic system

#
ẏt

π̇t

$
=

#
δ̃ −σ̃−1(1 − φπ)

−κ ρ

$
+

#
ν̃t

0

$
, (C.1)

where δ̃ ≡ δ + µbdPκ
1−µbχy

φπ and

ν̃t = σ̃−1ut +
µbdP

1 − µbχy
(ρut − u̇t) +

1 − µb
1 − µbχy

λ

σ

8
Cs

C∗
s

9σ

e−ψλtλ̂0. (C.2)

The eigenvalues of the system incorporating the Taylor rule are given by

ωT =
ρ + δ̃ +

2
(ρ + δ̃)2 + 4(σ̃−1(1 − φπ)κ − ρδ̃)

2
, ωT =

ρ + δ̃ −
2
(ρ + δ̃)2 + 4(σ̃−1(1 − φπ)κ − ρδ̃)

2
.

(C.3)

The two eigenvalues above will be positive, and there will be a unique locally bounded
solution, if the following condition is satisfied

σ̃−1(1 − φπ)κ − ρδ̃ < 0 ⇒ φπ ≥ σ̃−1κ − ρδ

σ̃−1κ + µbdPκ
1−µbχy

ρ
≡ φπ (C.4)

Notice that the threshold φπ can be written as

φπ = 1 −
ρλ

:
Cs
C∗

s

;σ

σ̃−1κ + µbdPκ
1−µbχy

ρ
< 1, (C.5)

and φπ > 0 if Assumption 1 holds. As cs,t increases with yt, given (µbχy < 1), risk is pro-
cyclical for savers in our economy. Bilbiie (2018) and Acharya and Dogra (2020) show that
procyclical uninsurable idiosyncratic risk reduces the threshold on the response of mon-
etary policy to inflation required to achieve local determinacy. A similar phenomenon
happens in our case with aggregate disaster risk. Notice that the jump in marginal utility

in the disaster state is given by
:

Cs,t
C∗

s,t

;σ
, which in log-linear form is given by σcs,t. As cs,t is

increasing in yt if µbχy < 1, so the jump in marginal utility is procyclical in our economy.
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C.2 Solving the dynamic system

We can write dynamic system (20) in matrix form as Żt = AZt + Bνt, where B = [1, 0]′.
Applying the spectral decomposition to matrix A, we obtain A = VΩV−1 where V =#

ρ−ω
κ

ρ−ω
κ

1 1

$
, V−1 = κ

ω−ω

#
−1 ρ−ω

κ

1 − ρ−ω
κ

$
, and Ω =

#
ω 0
0 ω

$
. Decoupling the system, we

obtain żt = Ωzt + bνt, where zt = V−1Zt and b = V−1B.
Solving the equation with a positive eigenvalue forward and the one with a negative

eigenvalue backward, and rotating the system back to the original coordinates, we obtain

yt = V12

:
V21y0 + V22π0

;
eωt − V11V11

ˆ ∞

t
e−ω(z−t)νzdz + V12V21

ˆ t

0
eω(t−z)νzdz

πt = V22

:
V21y0 + V22π0

;
eωt − V21V11

ˆ ∞

t
e−ω(z−t)νzdz + V22V21

ˆ t

0
eω(t−z)νzdz,

where Vi,j is the (i, j) entry of matrix V−1. Integrating e−ρtyt and using the intertemporal
budget constraint,

Ω0 = V12

"
V21y0 + V22π0

# 1
ρ − ω

− 1
ρ − ω

V11V11
ˆ ∞

0

"
e−ωt − e−ρt

#
νtdt +

1
ρ − ω

V12V21
ˆ ∞

0
e−ρtνtdt.

Rearranging the above expression, we obtain

V12

"
V21y0 + V22π0

#
= (ρ − ω)Ω0 +

ρ − ω

ρ − ω
V11V11

ˆ ∞

0

"
e−ωt − e−ρt

#
νtdt − V12V21

ˆ ∞

0
e−ρtνtdt.

Output is then given by yt = ỹt + (ρ − ω)eωtΩ0, where ỹt = − ω−ρ
ω−ω

´ ∞
t e−ω(z−t)νzdz +

ω−δ
ω−ω

´ t
0 eω(t−z)νzdz − ρ−ω

ω−ω eωt ´ ∞
0 e−ωzνzdz. Inflation is given by πt = π̃t + κeωtΩ0, where

π̃t =
κ

ω−ω

´ ∞
t e−ω(z−t)νzdz + κ

ω−ω

´ t
0 eω(t−z)νzdz − κ

ω−ω eωt ´ ∞
0 e−ωzνzdz.

C.3 Intertemporal budget constraint

The following lemma characterizes the intertemporal budget constraint faced by savers.

Lemma 3 (Savers’ intertemporal budget constraint). The intertemporal budget budget con-
straint (IBC) for individual savers and the aggregate of all savers are given by

i. Individual IBC:
E0

!
ˆ ∞

0

ηt

η0
Cj,t(s)

"
= Bj,t(s). (C.6)
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ii. Savers’ aggregate IBC:

Et

!
ˆ ∞

0

ηt

η0
Cs,tdt

"
= Bs,t, (C.7)

where Bs,t =
µbDP+DG,t+QE,t

1−µb
.

Proof. We consider first the derivation of the individual intertemporal budget constraint.
The net worth of a type-j saver born at date s evolves according to

dBj,t(s) = (it − πt)Bj,t(s) + rL,tBL
j,t(s) + rE,tBE

j,t(s)− Cj,t(s) + ∑
k∈{L,E}

Bk
s,t

Q∗
k,t − Qk,t

Qk,t
dNt, (C.8)

so the expected change in the net worth scaled by SDF is given by

Et[d(ηtBj,t(s))]
ηtdt

=

(
−(it − πt)− λt

"
η∗

t
ηt

− 1
#)

Bj,t(s) + (it − πt)Bj,t(s) + rL,tBL
j,t(s) + rE,tBE

j,t(s)

− Cj,t(s) + λt

(
η∗

t
ηt

B∗
j,t(s)− Bj,t(s)

)
, (C.9)

using Ito’s lemma and Etdηt/ηt = −(it − πt)dt.
Integrating the expression above and using the fact that rk,t = λt

η∗
t

ηt

Qk,t−Q∗
k,t

Qk,t
, we obtain

Et[ηTBj,T(s)]
ηt

− Bj,t(s) = −Et

#
ˆ T

t

ηz

ηt
Cj,z(s)dz

$
(C.10)

Given that the household problem with constant mortality rate ξ is identical to the
problem of an infinite horizon households with an additional discount ξ, the standard
transversality condition holds3

lim
T→∞

Ej,t

%
e−ρjTC−σ

j,T (s)Bj,T(s)
&
= 0, (C.11)

where ρj ≡ ρ̃j + ξ.
We can change measure and price Bj,t(s) using the market-implied probabilities:

lim
T→∞

Et
<
ηTBj,T(s)

=
= 0, (C.12)

Combining the expressions above, we obtain the intertemporal budget constraint:

Et

!
ˆ ∞

t

ηz

ηt
Cj,z(s)

"
= Bj,t(s). (C.13)

3Merton (1992) provides a general proof of this equivalence for stochastic economies (see Chapter 5)
and Blanchard (1985) provides a discussion in the context of an otherwise deterministic model.
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Notice that Cj,z(s) denotes planned consumption for time z for a type-j saver born at
date s, conditional on being alive. In particular, this equation implies that, for any date
for the household’s death t′ ≥ t, we obtain

Et

#
ˆ t′

t

ηz

ηt
Cj,z(s)dz +

ηt′

ηt
Bj,t′(s)

$
= Bj,t(s), (C.14)

where Bj,t′(s) denotes the (involuntary) bequest.

Savers’ aggregate IBC. To simplify the aggregation process, it is helpful to index savers
in a different way. Let i ∈ [µb, 1] index the family (or dynasty) of a given saver. At each
point in time, a family has a single member that derives no utility from bequests and faces
mortality risk with intensity ξ ≥ 0. As the member of the family dies, she is replaced by
a new member who inherits the wealth, but may have a different type. Let Ci,t denote the
consumption of family i’s member at time t, Bi,t the net worth of family i, j(i, t) ∈ {o, p}
the type of the member of the family and s(i, t) the birth date of the current member.

Under this alternative notation, we can write the IBC of family i as follows:

Et

#
ˆ t′

t

ηz

ηt
Ci,zdz +

ηt′

ηt
Bi,t′

$
= Bi,t, (C.15)

where t′ is the time of death and Bi,t′ is the involuntary bequest. Integrating this forward,
the IBC is then given by

Et

!
ˆ ∞

t

ηz

ηt
Ci,zdz

"
= Bi,t, (C.16)

The aggregate consumption and net worth of savers is given by Cs,t =
1

1−µb

´ 1
µb

Ci,tdi

and Bs,t =
1

1−µb

´ 1
µb

Bi,tdi. Aggregating the equation above across families, we obtain

Et

!
ˆ ∞

t

ηz

ηt
Cs,zdz

"
= Bs,t, (C.17)

where Bs,t =
µbDP+DG,t+QE,t

1−µb
, using the market clearing condition for bonds and equities.

Applying a similar argument to borrowers, we obtain

Et

!
ηT

ηt
Bb,T

"
− Bb,t = Et

#
ˆ T

t

ηz

ηt

8
Wz

Pz
Nb,z + T̃b,z − Cb,z

9
dz

$
. (C.18)
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Using the fact that Bb,t = −DP and limT→∞ Et

%
ηT
ηt

Bb,T

&
= 0, we obtain

Et

!
ˆ ∞

t

ηz

ηt
Cb,zdz

"
= Et

!
ˆ ∞

t

ηz

ηt

8
Wz

Pz
Nb,z + T̃b,z

9
dz
"
+ Bb,t. (C.19)

Combining the expression above with the IBC for savers, we obtain

Et

!
ˆ ∞

t

ηz

ηt
Czdz

"
= Et

!
ˆ ∞

t

ηz

ηt

8
Wz

Pz
Nz + µbT̃b,z

9
dz
"
+ DG,t + QE,t, (C.20)

where Ct ≡ µbCb,t + (1 − µb)Cs,t.
Let QC,0 ≡ E0

%
´ ∞

0
ηt
η0

Ctdt
&

denote the value of the aggregate consumption claim and

QH,0 ≡ E0

%
´ ∞

0
ηt
η0

:
Wt
Pt

Nt + µbT̃b,t

;
dt
&

denote the value of borrowers’ human wealth (af-
ter transfers). These claims satisfy the following pricing conditions:

rC,t = λt

8
Cs

C∗
s

9σ QC,t − Q∗
C,t

QC,t
, rH,t = λt

8
Cs

C∗
s

9σ QH,t − Q∗
H,t

QH,t
, (C.21)

where rC,t ≡ Ct
QC,t

+
Q̇C,t
QC,t

− (it − πt) and rC,t ≡
Wt
Pt

Nt+µbT̃b,t

QH,t
+

Q̇H,t
QH,t

− (it − πt).
Linearizing the pricing condition, we obtain

q̇C,t − ρqC,t = − C
QC

ct + it − πt − rn + rC pd,t, (C.22)

where we used the fact that C
QC

= rn + λ
:

Cs
C∗

s

;σ QC−Q∗
C

QC
= ρ − λ

:
Cs
C∗

s

;σ Q∗
C

QC
.

Integrating the expression above forward, we obtain

qC,0 =
C

QC

ˆ ∞

0
e−ρtctdt −

ˆ ∞

0
e−ρt (it − πt + rC pd,t) dt. (C.23)

Similarly, the initial price of the claim on human wealth is given by

qH,0 =
Y

QH

ˆ ∞

0
e−ρt [(1 − α)(wt − pt + nt) + Tt] dt −

ˆ ∞

0
e−ρt (it − πt + rH pd,t) dt.

(C.24)
The linearized intertemporal budget constraint is given by

QCqc,0 = QHqH,0 + DGqL,0 + QEqE,0. (C.25)
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We can write the expression above as follows

ˆ ∞

0
e−ρtctdt − QC

Y

ˆ ∞

0
e−ρt (it − πt − rn + rC pd,t) dt =

ˆ ∞

0
e−ρt [(1 − α)(wt − pt + nt) + Tt] dt

− QH

Y

ˆ ∞

0
e−ρt (it − πt − rn + rH pd,t) dt +

DG

Y
qL,0 +

ˆ ∞

0
e−ρtΠ̂tdt

− QE

Y

ˆ ∞

0
e−ρt[it − πt − rn + rE pd,t]dt (C.26)

Rearranging the expression above, we obtain

ˆ ∞

0
e−ρtctdt =

ˆ ∞

0
e−ρt &Π̂t + (1 − α)(wt − pt + nt) + Tt

'
dt +

DG

Y
qL,0

QC − QH − QE

Y

ˆ ∞

0
e−ρt (it − πt − rn) dt +

ˆ ∞

0
e−ρt

(
QC

Y
rC − QH

Y
rH − QE

Y
rE

)
pd,tdt.

(C.27)

From the aggregate IBC in the no-disaster and disaster state, we obtain QC = QH +

DG + QE and Q∗
C = Q∗

H + DG
Q∗

L
QL

+ Q∗
E. We then obtain the following condition

QC

Y
rC − QH

Y
rH − QE

Y
rE = λ

"
Cs

C∗
s

#σ

[QC − Q∗
C − (QH − Q∗

H)− (QE − Q∗
E)]

1
Y

=
DG

Y
rL. (C.28)

We can then write the discount value of consumption as follows:

ˆ ∞

0
e−ρtctdt = Ω0, (C.29)

where

Ω0 ≡
ˆ ∞

0
e−ρt <Π̂t + (1 − α)(wt − pt + nt) + Tt

=
dt+ dGqL,0 + dG

ˆ ∞

0
e−ρt (it − πt − rn + rL pd,t) dt.

(C.30)
The price of the consumption claim in the stationary equilibrium satisfies the condi-

tion

C
QC

− rn = λ

8
Cs

C∗
s

9σ !
1 −

Q∗
C

QC

"
⇒ QC =

C + λ
:

Cs
C∗

s

;σ C∗
r∗n

ρ
(C.31)

C.4 Wealth effects and Slutsky compensation

In this subsection, we show that Ω0 corresponds to (minus) the sum of the Slutsky wealth
compensation for each household. Therefore, Ω0 captures the aggregate wealth effect asso-
ciated with the monetary shock. We start by defining the Slutsky wealth compensation in
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the context of our dynamic economy and then proceed to compute its value for individual
households and for the household sector.

Mas-Colell et al. (1995) define Slutsky wealth compensation as the difference between
the amount of wealth required to purchase the initial consumption bundle at the new
prices and the initial wealth. For a type-j saver, this corresponds to the amount

Wj ≡
1
Y

E0

#
ˆ t∗

0

ηt

η0
Cjdt +

ˆ ∞

t∗

η∗
t

η0
C∗

j dt

$
−

Bj,0

Y
, (C.32)

where we normalized the difference by Y. Notice that Bj,0 = E0

%
´ t∗

0
ηt
η0

Cj,tdt +
´ ∞

t∗
η∗

t
η0

C∗
j,tdt

&
.

Similarly, we can define the Slutsky wealth compensation for borrowers:

Wb ≡
1
Y

E0

#
ˆ t∗

0

ηt

η0
Cbdt +

ˆ ∞

t∗

η∗
t

η0
C∗

b dt

$
− Bb,0

Y
− QH,0

µbY
, (C.33)

where QH,0 denotes human wealth at time 0 for all borrowers, so QH,0/µb denotes the
value for an individual borrower. Notice that Wb is compensating not only for the change
in real interest rates, but also the change in labor income.

Let W denote the aggregate value of Wj across all households. Using the market
clearing condition for bonds and equities, we obtain

W =
1
Y

E0

#
ˆ t∗

0

ηt

η0
Cdt +

ˆ ∞

t∗

η∗
t

η0
C∗dt

$
− DG,0

Y
− QE,0

Y
− QH,0

Y
. (C.34)

Using the aggregate IBC, we obtain

W =
1
Y

E0

#
ˆ t∗

0

ηt

η0
Cdt +

ˆ ∞

t∗

η∗
t

η0
C∗dt

$
− 1

Y
E0

#
ˆ t∗

0

ηt

η0
Ctdt +

ˆ ∞

t∗

η∗
t

η0
C∗

t dt

$
. (C.35)

Up to a first-order approximation, we can write the expression above as

W = −
ˆ ∞

0
e−ρtctdt = −Ω0. (C.36)

Therefore, Ω0 corresponds to (minus) the sum of the Slutsky wealth compensation for
all households.
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Figure D.1: Estimated IRFs.

D Estimation of Fiscal Response to a Monetary Shock

We estimate the empirical IRFs using a VAR identified by a recursiveness assumption,
as in Christiano et al. (1999), extended to include fiscal variables. The variables included
are: real GDP per capita, CPI inflation, real consumption per capita, real investment per
capita, capacity utilization, hours worked per capita, real wages, tax revenues over GDP,
government expenditures per capita, the federal funds rate, the 5-year constant maturity
rate, and the real value of government debt per capita. We estimate a four-lag VAR using
quarterly data for the period 1962:1-2007:3. The identification assumption of the mone-
tary shock is as follows: the only variables that react contemporaneously to the monetary
shock are the federal funds rate, the 5-year rate and the value of government debt. All
other variables, including tax revenues and expenditures, react with a lag of one quarter.

Data sources. The data sources are: Nominal GDP: BEA Table 1.1.5 Line 1; Real GDP:
BEA Table 1.1.3 Line 1, Consumption Durable: BEA Table 1.1.3 Line 4; Consumption
Non Durable: BEA Table 1.1.3 Line 5; Consumption Services: BEA Table 1.1.3 Line 6; Pri-
vate Investment: BEA Table 1.1.3 Line 7; GDP Deflator: BEA Table 1.1.9 Line 1; Capacity
Utilization: FRED CUMFNS; Hours Worked: FRED HOANBS; Nominal Hourly Com-
pensation: FRED COMPNFB; Civilian Labor Force: FRED CNP16OV; Nominal Rev-
enues: BEA Table 3.1 Line 1; Nominal Expenditures: BEA Table 3.1 Line 21; Nominal
Transfers: BEA Table 3.1 Line 22; Nominal Gov’t Investment: BEA Table 3.1 Line 39;
Nominal Consumption of Net Capital: BEA Table 3.1 Line 42; Effective Federal Funds
Rate (FF): FRED FEDFUNDS; 5-Year Treasury Constant Maturity Rate: FRED DGS5;
Market Value of Government Debt: Hall et al. (2018).
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(1) (2) (3) (4) (5) (1) - (2) - (3) + (4) - (5)
Revenues Interest Payments Transfers & Debt in T Initial Debt Residual

Expenditures

Data -26 68.88 -12.09 2.91 -49.74 30.13
[-72.89,20.89] [30.01,107.75] [-48.74,24.56] [-12.79,18.62] [-68.03,-31.46] [-4.74,65]

Table D.1: The impact on fiscal variables of a monetary policy shock
Note: Calculations correspond to a a 100 bps unanticipated interest rate increase. Confidence interval at 95% level.

All the variables are obtained from standard sources, except for the real value of debt,
which we construct from the series provided by Hall et al. (2018). We transform the series
into quarterly frequency by keeping the market value of debt in the first month of the
quarter. This choice is meant to avoid capturing changes in the market value of debt
arising from changes in the quantity of debt after a monetary shock instead of changes in
prices.

VAR estimation. Figure D.1 shows the results. As is standard in the literature, we find
that a contractionary monetary shock increases the federal funds rate and reduces output
and inflation on impact. Moreover, the contractionary monetary shock reduces consump-
tion, investment, and hours worked.

The Government’s Intertemporal Budget Constraint. The fiscal response in the model
corresponds to the present discounted value of transfers over an infinite horizon, that is,

∑∞
t=0 β̃tTt, where β̃ = 1−λ

1+ρs
. We next consider its empirical counterpart. First, we calculate

a truncated intertemporal budget constraint from period zero to T :

byb0

)*+,
debt

revaluation

=
T
∑
t=0

β̃t

-

../ τyt + τt

) *+ ,
tax revenue

− β̃−1by(im
t−1 − πt − rn)

) *+ ,
interest payments

4

556− T0,T + β̃T bybT
) *+ ,

other transfers/expenditures
& final debt

(D.1)

The right-hand side of (D.1) is the present value of the impact of a monetary shock on
fiscal accounts. The first term represents the change in revenues that results from the real
effects of monetary shocks. The second term represents the change in interest payments
on government debt that results from change in nominal rates. The last two terms are
adjustments in transfers and other government expenditures, and the final debt position
at period T , respectively. In particular, T0,T represents the present discounted value of
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Figure D.2: IRFs for the federal funds rate and excess bond premium.

transfers from period 0 through T . Provided that T is large enough, such that (yt, τt, it)

have essentially converged to the steady state, then the value of debt at the terminal date,
bT , equals (minus) the present discounted value of transfers and other expenditures from
period T onward. Hence, the last two terms combined can be interpreted as the present
discounted value of fiscal transfers from zero to infinity. Finally, the left-hand side repre-
sents the revaluation effect of the initial stock of government debt.

Table D.1 shows the impact on the fiscal accounts of a monetary policy shock, both in
the data and in the estimated model. We first apply equation (D.1) to the data and check
whether the difference between the left-hand side and the right-hand side is different
from zero. The residual is calculated as

Residual = Revenues - Interest Payments - Transfers + Debt in T - Initial Debt

We truncate the calculations to quarter 60, that is, T = 60 (15 years) in equation (D.1).
The results reported in Table D.1 imply that we cannot reject the possibility that the resid-
ual is zero and, therefore, we cannot reject the possibility that the intertemporal budget
constraint of the government is satisfied in our estimation.

The adjustment of the fiscal accounts in the data corresponds to the patterns we ob-
served in Figure 2. The response of initial debt is quantitatively important, and it accounts
for the bulk of the adjustment in the fiscal accounts.

EBP. To estimate the response of the corporate spread in the data, we add the EBP mea-
sure of Gilchrist and Zakrajšek (2012) into our VAR (ordered after the fed funds rate).
Since the EBP is only available starting in 1973, we reduce our sample period to 1973:1-
2007:7. The estimated IRFs are in line with those obtained for the longer sample. We find
a significant increase of the EBP on impact, of 6.5 bps, in line with the estimates in the
literature.
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