
On the Robustness of Blockchain-Based Oracle

Mechanisms

Manuel Mueller-Frank∗, Siyang Xiong†

February 13, 2025

Abstract

The game theoretic analysis of blockchain oracle mechanism so far has explicitly

(or implicitly) assumed that reporting agents commonly know the realized state of

the world. We investigate the robustness of oracle mechanisms to perturbations to

common knowledge. A Bayes Nash equilibrium is continuous if for any sequence

of types converging to common knowledge, the equilibrium strategies converge to

the equilibrium strategies at complete information. An oracle mechanism satisfies

strong continuous implementation if all of its continuous BNE implement the true

state. We show that any oracle mechanism that does not provide payments to

reporting agents in an oracle native coin, fails strong continuous implementation.

We further show that any (simultaneous-report) oracle mechanism that satisfies

strong continuous implementation is either dictatorial or vulnerable to single de-

viations, where a single agent can (probabilistically) prevent the implementation

of the true state. To address this weakness, we propose a sequential direct voting

mechanism. We show that this sequential mechanism satisfies strong sequential-

continuous implementation and is not vulnerable to single deviations.

∗IESE Business School, mmuellerfrank@iese.edu
†UC Riverside, siyang.xiong@ucr.edu

1

1 Introduction

Satoshi Nakamoto authored the Bitcoin whitepaper ([8]) introducing a digital money

that functions without a central entity controlling the monetary base and intermediating

transactions. At the core of his invention is blockchain, a decentralized distributed ledger

that records transactions in a secure, transparent and censorship resistant manner. While

considered a monetary and technological breakthrough, Bitcoins functionality is limited

to simple transactions.

This limitation gave rise to general purpose blockchains that can host and execute

complex computer programs or smart contracts, Ethereum ([3]) being the most promi-

nent among them. One usecase of such general purpose blockchains and smart contracts

is DeFi1. The vision of DeFi is to replace a significant part of financial services provided

by financial institutions with decentralized applications deployed on blockchain as smart

contracts.2 Such decentralized applications automatically and deterministically execute

agreements based on predefined conditions. For DeFi to become significant, agreements

must be able to integrate real-world events that are not native to blockchain. For exam-

ple, blockchain-based prediction markets trade contracts on election outcomes; for the

betting contract to be executed the decentralized application requires the information

who won the election.

This is the role of blockchain oracles that provide real-world data (henceforth real-

world state or state) to blockchain-based smart contracts. In line with the core feature

of blockchain such oracles are decentralized, i.e., there are many different entities that

report. The reports are submitted to an oracle smart contract which provides an aggre-

gated state given the reports. As such the oracle can be seen as a mechanism. It must

incentivize reporting agents to report the state truthfully in order to assure that the

correct state is aggregated (henceforth implemented). The formal analysis of blockchain

oracles so far has explicitly or implicitly assumed that the state of the world is commonly

known among agents. Common knowledge of the state requires that all players know the

state, all players know that all players know the state, all players know that all players

know that all players know the state, and so on ad infinitum.

1Short for Decentralized Finance.
2Examples of financial services rendered by blockchain-based decentralized applications are payments,

exchanges, lending, and insurance.

1

The goal of this paper is to understand how general oracle mechanisms perform when

the state is not commonly known but agents are ’close’ to common knowledge. We believe

our analysis to be important for two reasons. First, as it requires an infinite knowledge

hierarchy it is hard to argue that common knowledge of the state, for example the elec-

tion winner, is indeed commonly known among reporting agents close to the realization

of the event. Second, it is conceivable that malicious agents with the aim to induce the

incorrect state being implemented launch an attack that creates doubt about the real-

ized state or about the knowledge of others about the realized state etc. To preview and

summarize our results, we will establish that for a simultaneous-report oracle mechanism

to implement the true state in a neighborhood of common knowledge requires either a

dictatorial agent who solely determines the state or giving implementation veto power

to a single agent. Neither of these two types of mechanisms are particularly attractive

when seen through the lense of decentralization. However, there exist a sequential or-

acle mechanism with ’attractive’ properties that is robust to perturbations to common

knowledge and is neither dictatorial nor assigns implementation veto power.

We next describe the model.

Model Primitives and Oracle Mechanisms

We consider a finite state space Θ and a finite set N of reporting agents. An oracle

mechanism O is described by the tuple (M, g, b) where M is a set of message profiles,

g is the implementation function that assigns one state to each message profile, and b

is a payment function that assigns a payment for every agent to each message profile.3

As oracle mechanisms operate on blockchains as smart contracts, payments are made

in a blockchain native coin. The utility of agents is equal to his payment multiplied by

the fiat price of the coin payments are denominated in. We consider generalized direct

mechanisms where the states are viable messages, Θn ⊂ M . The oracle mechanism is

deterministic if the implementation and payment functions are as well. Otherwise, the

oracle mechanism is random, i.e., it involves lotteries over the implemented state and/or

payments.

Part of our analysis focuses on oracle mechanisms that satisfy the properties of mono-

tonicity and label-neutrality. Monotonicity implies that if state θ is implemented for a

3Agents submit reports simultaneously.

2

message profile m, then θ is still implemented if any agent where to switch his message

mi to θ. Label-neutrality requires that the implementation function is invariant in the

label assigned to states. One natural class of mechanisms that satisfy both properties

are weighted voting functions, where the state with the largest weighted vote count is

implemented.

Information Structure, Equilibrium Concept and Strong Continuous Imple-

mentation

We use the standard formulation of incomplete information introduced in [6] and devel-

oped in [7]. The baseline model is complete information where all agents commonly know

the realized state. To capture deviations from complete information, we consider a an

epistemic model (or type space) that embeds the baseline model (complete information

type space). For such a type space, we say that a Bayes Nash equilibrium (henceforth

BNE) is continuous if for any sequence of type profiles that converge to the complete

information type profile, the corresponding sequence of equilibrium strategy profiles con-

verges to the strategy profile at complete information.4 We say that an oracle mechanism

satisfies strong continuous implementation if all continuous BNE implement the truth

at complete information and there exists a continuous BNE σ∗ such that the complete

information strategy is to report the realized state. Ours is a variant of the notion of

continuous implementation in Oury and Tercieux [9] and the notion of truthful continu-

ous implementation in Chen, Mueller-Frank and Pai [4].5 In other words, we require the

equilibrium strategies to be continuous in types close to complete information.

Main Results

Our first result, Theorem 1, establishes that if the oracle payment coin is implementation

invariant, where the fiat price of the coin does not vary in the relation between realized

and implemented state, then there exists no oracle mechanism that satisfies strong con-

tinuous implementation. One take-away of this result is that oracles should denominate

payments to reporting entities in its own oracle native token rather than a stablecoin or

another cryptocurrency unrelated to the performance of the oracle.

4We use the product metric on types but our our results carry over to other metrics, for example the
uniform-weak metric.

5We defer a discussion to the Conclusion.

3

We next show that there exists a direct, monotone and label-neutral oracle mecha-

nism6 that satisfies strong continuous implementation (Proposition 1). This mechanism

is dictatorial, i.e., it selects one agent as dictator and implements the state the dictator

reports, and thus ignoring the reports of all other agents. Clearly, a dictatorial mech-

anism stands in direct contrast with blockchain’s ideal and reality of decentralization,

and is thus undesirable. Theorem 2 considers a binary state space and establishes that

if a deterministic monotone oracle mechanism satisfies strong continuous implementa-

tion then it is dictatorial. For a general state space, Theorem 3 establishes that if a

deterministic monotone and label-neutral oracle mechanism satisfies strong continuous

implementation then it it dictatorial. The inability for deterministic mechanisms with

common and desirable properties to satisfy strong continuous implementation motivates

our analysis of random oracle mechanisms.

To contrast dictatorial mechanisms, we say that a mechanism is democratic if both the

payment and implementation function are invariant in the identities of reporting agents.

Theorem 4 constructs a direct random mechanism that is monotone, label-neutral and

democratic and satisfies strong continuous implementation. This appears like a substan-

tial improvement relative to deterministic mechanisms. However, Proposition 2 estab-

lishes that any oracle mechanism that satisfies strong continuous implementation has the

single deviation property, where a single agent deviating from his equilibrium message

prevents the true state being implemented with probability one. In summary, all ’desir-

able’ simultaneous oracle mechanisms that satisfy strong continuous implementation are

either dictatorial or assign probabilistic veto power to at least one agent.

To address this, we analyze sequential oracle mechanisms. We introduce the notion of

strong continuous-sequential implementation and show that there exists a deterministic

direct mechanism that is monotone, label-neutral and non-dictatorial, and does satisfy

strong sequential-continuous implementation. In distinction to the random mechanism

of Theorem 4, it is not subject to single deviations.

We believe that there are important implications of our results for the design of

blockchain oracles that are novel. First, an oracle native token is necessary for robust-

ness against (infinitessimal) deviations from common knowledge. Second, any simulta-

neous mechanism that achieves the desired robustness is subject to single deviations, i.e.,

6For a direct mechanism we have M = Θn.

4

where there exists at least one agent who unilaterally can prevent the true state being

implemented (with probability one). Third, sequential oracle mechanisms can achieve

robustness without the vulnerability of a single agent preventing the implementation of

the true state.

The rest of the paper is organized as follows. Section 2 introduces the model. Section

3 provides the results for deterministic oracle mechanisms. Section 4 presents the results

for random oracle mechanisms. Section 5 considers sequential oracle mechanisms and

provides the corresponding result. Section 6 provides a discussion of the results in context

of the relevant literature and concludes. The Appendix presents some proofs omitted

from the main text.

2 The model

There is a finite set of players N = {1, ..., n} and a finite set of states, denoted Θ.

The players participate in providing real world data onto the blockchain and a state

θ ∈ Θ corresponds to the realized real-world data, such as, for example the winner of a

presidential election. An oracle mechanism elicits messages from all players and assigns

to each message profile a state and payment to each player. Let Mi denote the set of

player i’s messages and let bi(m) ∈ R denote agent i’s payment given message profile

m = (m1, ...,mn). Formally, we have the following:

Definition 1. A deterministic oracle mechanism O is described by a message spaceM ≡

×i∈NMi such that Θ ⊂ Mi for all i ∈ N , a implementation function g : M −→ Θ and

a payment function b ≡ (bi : M −→ R)i∈N . A random oracle mechanism O = (M, g, b)

allows for random implementation and payment functions, i.e., g : M −→ ∆(Θ) and

b : M −→ ∆(Rn).

We analyze (generalized) direct mechanisms, as each state is a feasible message.

We will consider several different properties of an oracle mechanism. These properties

are realistic in the sense that they are typically satisfied by oracle mechanism that are

implemented on blockchains.

Definition 2. A deterministic oracle mechanism O = (M, g, b) is monotone if

g(m) = θ =⇒ g (m′
i = θ,m−i) = θ, ∀ [i, θ,m] ∈ N ×Θ×M .

5

Monotonicity is a common property for finite state space oracle mechanisms that are

implemented on blockchains. It requires that if state θ is implemented for a message

profile m, then it is also implemented for any message profile m′ that differs from m only

in that some players switch their message to θ.

Definition 3. A deterministic oracle mechanism O = (M, g, b) is label-neutral if for any

bijection γ : Θ −→ Θ, there exists a profile of bijections (Γj : Mj −→ Mj)j∈N such that

Γj (θ) = γ (θ) , ∀ (θ, j) ∈ Θ×N ,

and

g
(
[Γj (mj)]j∈N

)
= γ

(
g
[
(mj)j∈N

])
, ∀ (mj)j∈N ∈ Θ.

Label-neutrality requires that the implemented outcome is invariant in the label

assigned to states. This is a natural property in so far as it does not allow for an

implementation bias towards one particular state. One example of a natural oracle

mechanism is a direct voting mechanism, where the reports are equal to states, and the

state with the highest vote count is implemented.7 Such a voting mechanism satisfies

both monotonicity and label-neutrality.

More generally, many consensus protocols and smart contracts, including oracles, de-

ployed on blockchains rely on weighted voting functions. In the context of an oracle

mechanism, this implies that each reporting agent i has an assigned weight wi ∈ [0, 1],∑n
i=1 wi = 1, and state θ is implemented if and only if

n∑
i=1

(wi × 1[mi=θ]) >
n∑

i=1

(wi × 1[mi=θ′]) (1)

for all θ′ ̸= θ. Note that weighted voting mechanisms also satisfy both monotonicity

and label-neutrality.8 As such, the two properties we described are arguably natural and

realistic.

Definition 4. In a deterministic oracle mechanism O = (M, g, b), an agent i ∈ N is a

dictator if

mi = θ =⇒ g (mi,m−i) = θ, ∀
[
θ, (mj)j∈N

]
∈ Θ×M .

7Assume that there is an order over the agents such that ties are resolved in favor of the highest
ranked among the tied agents.

8For generic weights ties do not occur.

6

A mechanism O is dictatorial if a dictator exists, and it is non-dictatorial otherwise.

All existing oracle mechanisms are non-dictatorial, i.e., they have no reporting player

that alone dictates the implemented state.

As oracle mechanisms are implemented as smart contracts (or programs) on a blockchain,

the payments to reporting agents are made in a blockchain native coin. Let pθ′θ denote

the fiat price of the coin when state θ′ is implemented while the true state is θ. The fol-

lowing two properties of the fiat price of the oracle payment coin will be of fundamental

importance:

Definition 5. The oracle payment coin is implementation invariant if

pθθ = pθ′θ > 0, ∀ (θ, θ′) ∈ Θ×Θ.

The oracle payment coin satisfies positive implementation impact if

pθθ > pθ′θ, ∀ (θ ̸= θ′) ∈ Θ×Θ.

2.1 Incomplete Information and Type Space

We are interested in the incomplete information case, where the realized state is not

common knowledge among the agents. Common knowledge of the state requires that all

players know the state, all players know that all players know the state, all players know

that all players know that all players know the state, and so on ad infinitum. When

common knowledge of the state fails, agents need to form beliefs over the state space

and beliefs over the beliefs of others. This is formalized via a model (or type space). A

type space T consists of a tuple (T, κ) with T = T1 × ... × Tn, and κti ∈ ∆(Θ × T−i)

denotes the associated beliefs of type ti, and κ ≡ [(κti ∈ △ (Θ× T−i)ti∈Ti
]i∈N . For each

agent i ∈ I, a type ti ∈ Ti induces a hierarchy of higher-order beliefs. Specifically, the

first-order belief of ti, denoted by t1i , is the marginal distribution of κti on θ, and the

second-order belief of ti, denoted by t2i , is the marginal distribution of κti on
(
θ, t1−i

)
, or

more precisely,

t2i (E) = κti

[{
(θ, t−i) ∈ Θ× T−i :

(
θ, t1i , t

1
−i

)
∈ E

}]
, ∀E ⊂ Θ× (△ (Θ))N .

7

Similarly, we can define ti’s third-order, fourth-order,.... beliefs iteratively. In order to

analyze the equilibrium behavior of close-by types we rely on the standard metric applied

to the universal type space. Define X0 ≡ Θ and Xk ≡ Xk−1 ×
(
△

(
Xk−1

))N
for any

integer k ≥ 1. Thus, tk+1
i ∈ △

(
Xk

)
for any k ≥ 0. Let d0 denote the discrete metric on

Θ, and let d1 denote the Prohorov metric on △ (Θ). Inductively, for any k ≥ 1, let d̂k

denote the super-metric induced by d0,..., dk, and let dk+1 denote the Prohorov metric

on △
(
Xk

)
, where Xk is endowed with d̂k. For an agent i, we now define a metric on

types in Ti: for any (ti, t
′
i) ∈ Ti × Ti, define

di (ti, t
′
i) =

∑
k∈N

(
1

2

)k

dk
(
tki , t

k′
i

)
,

i.e., di is the classic product metric on higher-order beliefs.9 For type profiles in T we

define the following metric

d(t, t′) = max
i∈N

di(ti, t
′
i).

Our benchmark model is that of complete information where there is common knowledge

of the realized state. The complete information type space T is formalized as follows: :

T ≡
(
T ≡ ×i∈NT i =

{
tθi : θ ∈ Θ

}
, κ ≡

[(
κti ∈ △

(
Θ× T−i

))
ti∈T i

]
i∈N

)
such that κtθi

[{(
θ,
(
tθj
)
j∈N⧹{i}

)}]
= 1, ∀ (θ, i) ∈ Θ×N ,

i.e., type tθi has common knowledge of θ.

In order to consider deviations from complete information, we need to enrich the

complete information model with a larger model that includes it. Formally, given two

models T ≡ (T, κ) and T ′ ≡ (T ′, κ′), we follow [9] to define

T ⊃ T ′ ⇐⇒

T ⊃ T ′ and

for any i ∈ I, any ti ∈ T ′
i and any measurable E ⊂ Θ× T−i,

κti (E) = κ′
ti

(
E ∩

[
Θ× T ′

−i

])
 .

9All of our results also hold for other metrics on higher-order beliefs, e.g., the uniform-weak metric
in [5].

8

2.2 The Bayesian Game and Equilibrium Concept

We assume that the preferences of agents are strictly monotone in the fiat payment

agents receive. Let ui : M ×Θ −→ R denote player i’s utility function. We have

ui(m, θ) = pg(m)θ × bi(m). (2)

Having defined the agents’ preferences, an oracle mechanism O and a type space T define

an incomplete information game. Given (O, T), let σ ≡ (σi : Ti −→ △ (Mi))i∈I denote

a strategy profile, and as usual, σ is a Bayesian Nash equilibrium (hereafter, BNE) if

and only if for any i ∈ I, any ti ∈ Ti, every mi on the support of σi is a best reply to

σ−i. We are interested in oracle mechanisms that 1) implement the truth at complete

information, i.e., where the BNE

σ(tθ) = (σ1(t
θ
1), ..., σn(t

θ
n)) (3)

satisfies g(σ(tθ) = θ for all θ ∈ Θ, and 2) players’ strategies remain ”close” to the

complete information Nash equilibrium strategies for types close to complete information.

We formalize this in the two definitions below.

Definition 6. Given (O, T) with T (⊃ T), a BNE σ is continuous if for any sequence

{tn} ⊂ T with d (tn, tθ) → 0, we have σ (tn) → σ(tθ).

A continuous BNE has the property that the strategies for types close to complete

information are close to the strategies at complete information.

Definition 7. We say that an oracle mechanism O satisfies strong continuous imple-

mentation if for any Harsanyi type space T (⊃ T), we have 1) all continuous BNE σ

satisfy g(σ((tθ)) = θ for all θ ∈ Θ, and 2) there exists a continuous BNE σ∗ such that

σ∗
i (tθ) = θ for all agents i ∈ N .

Strong continuous implementation requires that all continuous BNE implement the

true state at complete information, and that there exist one truth-telling continuous

BNE where all agents truthfully report the realized state. For our purposes, we require

a stronger notion than standard continuous implementation (see Oury and Tercieux [9],

and Chen, Mueller-Frank and Pai[4]) which requires the existence of one continuous BNE

9

that implements the truth at complete information. One trivial example highlighting

why continuous implementation is insufficient for oracle mechanisms is that an oracle

mechanism with a plurality-based implementation function and a zero constant payment

function continuously implements the truth.10

3 Strong Continuous implementation for Determin-

istic Oracle Mechanisms

To the best of our knowledge, oracles that are implemented in the real world are all

deterministic. Thus, we shall analyze the case of deterministic oracles first. The first

result focuses on the role of the oracle payment coin.

Theorem 1. If the oracle payment coin is implementation invariant, then every oracle

mechanism O fails strong continuous implementation.

One interpretation of the result is that blockchain oracle providers should issue their

own coin and denominate oracle payments in their own coin.11 Please see below for the

proof of Theorem 1.

Proof. We proceed with a proof by contradiction. Suppose that the oracle mechanism O

satisfies strong continuous implementation and the corresponding oracle payment coin is

implementation invariant. Consider any type space T with T ⊃ T . As O satisfies strong

continuous implementation, there exists a BNE σ and for each θ ∈ Θ a strategy profile

m∗
θ such that g(m∗

θ) = θ, and σ(tθ) = m∗
θ. Pick any i ∈ I and any m′

i ∈ Mi, define

θ′ ≡ g(m′
i,m

∗
θ−i).

Since σ is a BNE, we have

bi(m
∗
θ)× pθ∗θ∗ ≥ bi(m

′
i,m

∗
θ−i)× pθ′θ∗ , ∀i ∈ N , ∀m′

i ∈ Mi,

10To see this, note that here all strategy profiles are payoff equivalent and hence all strategy profiles
constitute a Bayes-Nash equilibrium. Thus, one can construct a continuous BNE where each player for
every type ti close to the complete information type tθ plays the strategy θ.

11This is the case for most oracle providers, for example Chainlink’s $LINK coin and Pyth Network’s
$Pyth coin. Two notable exceptions are Chronicle Protocol and Redstone Oracles which both do not
have their own coin.

10

which, together with the implementation invariant oracle payment coin condition, implies

bi(m
∗
θ)× pθ∗θ̃ ≥ bi(m

′
i,m

∗
θ−i)× pθ′θ̃, ∀i ∈ N , ∀m′

i ∈ Mi, ∀θ̃ ∈ Θ.

This implies that σ(t) = m∗
θ for all t ∈ T is a continuous BNE. However, this

contradicts strong continuous implementation as for θ′′ ̸= θ we have g(m∗
θ) ̸= θ′′ .

For the remainder of the paper, we will restrict attention to the case of oracle payment

coin that satisfy positive implementation impact. We next show that this condition is

sufficient to ensure the existence of an oracle mechanism that satisfies strong continuous

implementation.

Proposition 1. If the oracle payment coin satisfies positive implementation impact,

then there exists a deterministic oracle mechanism that satisfies strong continuous im-

plementation.

Proof. Consider the following direct mechanism O = (M, g, b) where M = Θn and

bi(m) = 1 for all i ∈ N and m ∈ M . That is, the payment function is constant and equal

to 1. For the implementation function, select an agent i∗ ∈ N and set g(m) = m∗
i for all

m ∈ M . In other words, i∗ is a dictator. Note that any strategy profile σ such that

σi∗(ti∗) ∈ arg max
mi∈Θ

E[
∑
θ∈Θ

1[mi=θ] × pmiθ | t1i∗] (4)

constitutes a continuous BNE and all such strategy profiles implement the true state.

Proposition 1 establishes that strong continuous implementation is achievable via a

simple deterministic mechanism. The dictatorial design of the mechanism translates a

multi-player game into a single agent decision problem, that of the dictator. This in turn

implies that higher-order beliefs are irrelevant.

One potential downside of the mechanism for which strong continuous implementa-

tion holds, is that it features a dictator who unilaterally determines the implemented

state. This raises the question whether this dependence on a single agent is a general fea-

ture of deterministic oracle mechanisms that satisfy strong continuous implementation.

We will answer this questions with two results that we present in the following.

11

Theorem 2. Consider a binary state space, |Θ| = 2. If a deterministic monotone oracle

mechanism satisfies strong continuous implementation, then it is dictatorial.

Thus, if one desires the oracle mechanism to satisfy monotonicity, then strong con-

tinuous implementation requires the reliance on a dictator.12 We next consider a general

finite state space and focus on oracle mechanisms that satisfy monotonicity and label

neutrality. We have the following result.13

Theorem 3. Consider a deterministic oracle mechanism O that satisfies strong contin-

uous implementation. If O satisfies monotonicity and label-neutrality, then it is dicta-

torial.

To summarize, the analysis of deterministic oracle mechanisms has shown that an

oracle native coin is necessary for strong continuous implementation. Further, achieving

robustness to deviations from complete information comes at the cost of reducing the

oracle mechanism to a single agent decision problem where a dictator determines the

implemented state. As one of the main points of blockchain technology is decentralization

and the removal central intermediaries, this might be considered a disappointment. In

the following section, we shall analyze how allowing for randomization impacts the ability

to create oracle mechanisms that satisfy strong continuous implementation.

4 Strong Continuous Implementation for Random

Oracle Mechanisms

Recall that a random oracle mechanism allows the implementation function and pay-

ment function to be lotteries over the implemented state and payments, respectively.

Monotonicity is generalized to random mechanisms as follows. Let g(m)θ denote the

probability that θ is implemented given message profile m. A random oracle mechanism

O is monotone if g(mi = θ,m−i)θ ≥ g(m)θ, for all m ∈ M and all i ∈ N .

We next turn to the analysis. First note that Theorem 1, the impossibility of strong

continuous implementation carries forward to random oracle mechanisms. Thus we again

focus on the case of positive implementation impact oracle coins. The results so far have

12The proof of Theorem 2 is relegated to the Appendix.
13The proof of Theorem 3 is relegated to the Appendix.

12

shown that strong continuous implementation in deterministic mechanisms with desir-

able properties such as monotonicity requires a dictator. That is, all the implementation

power is concentrated on one reporting agent. If dicatorship is one end of the spec-

trum, democracy is the other end. To contrast dicatorial mechanisms, we introduce the

following property of an oracle mechanism.

Definition 8. A (random) oracle mechanism O = (M, g, b) is democratic if for any

permutation function of the players Γ : N −→ N , any m = (mj)j∈N ∈ M and any m′ =

(mj)j∈N ∈ M , we have

mj = m′
Γ(j),∀j ∈ N =⇒ g(m) = g(m′) and b(m) = (m′).

Thus a democratic oracle mechanism treats the messages of all agents symmetrically.

The implemented (lottery on) outcome and payments depend only on the distribution

of reported messages. We have the following result.

Theorem 4. There exists a direct, M = Θn, monotone, label-neutral, and democratic

random oracle mechanism OR that satisfies strong continuous implementation.

Theorem 4 establishes that one can construct a direct random oracle mechanism

that satisfies all the desired properties. The fact that this oracle mechanism is direct has

additional benefits due its simplicity; the set of messages is equal to the set of states.

Please see below for the proof which relies on the construction of a dominant strategy

mechanism.

Proof. Consider a direct oracle mechanism OR = (Θ, g, b) with a constant payment

function, b∗i (m) = 1 for all m ⊂ Θn and for all i ∈ N , and the following random

implementation function g∗ : Θn −→ ∆(Θ)

Pr[g∗(m) = θ] =

∑n
i=1 1[mi=θ]

n
(5)

That is, state θ is implemented with the probability equal to its reported proportion.

Note that this mechanism satisfies label neutrality, monotonicity and is democratic.

Consider the realized state θ, a player i and a message profile mi ∈ Θn−1 of the remaining

players j ̸= i. An equivalent way of representing the random implementation function is

13

to say that with uniform probability, 1
n
, one player is selected as dictator and the state

reported by the chosen dictator is implemented deterministically. As the payment func-

tion is constant and the oracle payment coin satisfies positive implementation impact,

i.e., pθθ > pθθ′ for all θ ̸= θ′, it follows that it is a dominant strategy for player i to report

the true state. He has no impact if not chosen as dictator but if chosen, reporting the

truth results in strictly higher payoff.

There are two features of the constructed mechanism that are worthwhile to discuss.

First, for each player i ∈ N and complete information type tθi , truthtelling, i.e., σi(t
θ
i) = θ

is a dominant strategy. Second, the mechanism does not robustly implement the true

state θ with probability one if even a single agent deviates from the truthtelling message.

We formalize this property as follows.

Definition 9. A random oracle mechanism O is subject to single deviation if for all

θ ∈ Θ

g(θ) = θ ̸= g(m′
i,θ−i)

for some agent i ∈ N and message m′
i ∈ M .

We have the following result.14

Proposition 2. If a (random) oracle mechanism satisfies strong continuous implemen-

tation then it is subject to single deviation.

Thus, any oracle mechanism that satisfies strong continuous implementation is vul-

nerable to single deviations. Theorem 4 has shown that while allowing for random im-

plementation functions enables equal sharing of implementation power among reporting

agents, still a single agent can veto the implemented state with positive probability.

There is an important implication of the results we have established so far. The main

concern of blockchain oracle providers are so called ”bribery attacks”, where a malicious

entity bribes reporting agents to misreport the true state. One aspect of the implemented

solution is to decentralize, i.e., have many agents report to the oracle mechanism.15 Our

results have shown that protection against a ”common knowledge attack” requires that

the mechanism is subject to single deviations, where a single reporting agent can prevent

14The proof of Proposition 2 is relegated to the Appendix.
15See the ”Chainlink 2.0” whitepaper[2] for example.

14

the true state being implemented with probability one. This motivates our analysis of

sequential oracle mechanisms which we pursue in the next section.

5 Strong Continuous Implementation for Sequential

Oracle Mechanisms

In this section, we identify a sequential-voting oracle mechanism which achieves strong

truthful continuous implementation. Meanwhile, this oracle mechanism satsifies mono-

tonicity, label-neutrality, is non-dictatorial and not subject to single deviations.

5.1 The Sequential-Voting Mechanism

Fix any order of agents, i.e.,

N = {i1, i2, ..., in} .

We consider a sequential-voting oracle mechanism

OS =
(
M∗ ≡ ΘN ,

[
gS : ΘN −→ Θ, bS ≡

(
bSi : ΘN −→ R

)
i∈N

])
,

which is defined as follows. We consider a perfect-information n-period voting game: at

each period k ∈ {1, ..., n}, agent ik vote for one outcome in Θ, and in particular, agent ik

knows the voting outcomes in the previous (k − 1) periods when he casts his vote. Let

(vi1 , ..., vin) ∈ ΘN denote a voting profile, where vk ∈ Θ in (vi1 , ..., vin) represents agent

ik voting for vik at period k. For notational ease, we will denote the set of voting profiles

Θ with V , i.e., V ≡ ΘN .

We adopt a weighted voting rule, i.e., for any voting profile (vi1 , ..., vin) ∈ V , we have

gS (vi1 , ..., vin) = θ ⇐⇒
n∑

k=1

(wik × 1[vik=θ]) >
n∑

k=1

(wik × 1[vik=θ′]), ∀ (θ, θ′) ∈ Θ×Θ.

(wik)ik∈N are the weights for agents, and we choose (wik)ik∈N such that wik ≈ 1
n
and

ties never occur. It is straightforward to show that this voting mechanism satisfies

15

monotonicity and label-neutrality.16 Finally, define

bSik (vi1 , ..., vin) ≡

 1, if vik = g (vi1 , ..., vin),

0, if vik ̸= g (vi1 , ..., vin),

i.e., agent ik receives a payment of 1 if and only if her votes matches the outcome chosen

by the oracle mechanism (i.e., gS).

5.2 The Incomplete-Information Game

Since we consider a sequential-move game, we adopt a different solution concept: perfect

Bayesian equilibrium (PBE), which is defined as follows. Define

Hi1 ≡ {∅} , Hik ≡ Θ(k−1),

i.e., Hik is the history set of agent ik, and ∅ in Hi1 represents the initial history of agent

i1 (which contains no information). Define H ≡ ×i∈NHi.

Given any Harsanyi type space, T ≡ (T, κ), we use

σ ≡ (σik : Tik ×Hik −→ △ (Θ))k∈{1,2,3,...,n}

to denote a strategy profile. For any tik ∈ Tik , we use

µσ
tik

∈ △
[
Θ× T−i ×ΘN

]
to denote the distribution induced by both κti ∈ ∆(Θ × T−i) and σ. Precisely, for any

E ⊂ Θ× T−i and any v ≡ (vi1 , ..., vin), we have

µσ
tik

[E × {v}] =
∫

E⊂Θ×T−i

[
σi1 [ti1 , hi1 = ∅] (vi1)×

n∏
k′=2

σik′

[
tik′ , hik′

=
(
vi1 , ..., vik′−1

)] (
vik′

)]
dκti ,

where σi [ti, hi] (vi) denotes the probability assigned to vi by σi [ti, hi]. Finally, for any

16This voting mechanism is almost democratic. Since individual weights are almost identical between
agents, for |Θ| = 2 and an odd number of agents, it does satisfy democracy.

16

hik ∈ Hik ,

µ
σ−hik
tik

∈ △
[
Θ× T−i ×ΘN

]
denotes the conditional probability of µσ

tik
given the history hik .

17

We now define perfect Bayesian equilibrium (PBE): σ is a PBE on T ≡ (T, κ), if and

only if for any agent ik ∈ N and any hik ∈ Hik , we have

∫
(θ,t−i,v)∈Θ×T−i×V

[
bSik (v)× pSg(v)θ

]
µ
σ−hik
tik

≥
∫

(θ,t−i,v)∈Θ×T−i×V

[
bSik (v)× pSg(v)θ

]
µ

(
σ′
ik
,σ−ik

)
−hik

tik

for any agent ik’s strategy σ′
ik
.

5.3 Interim Beliefs and Sequential Rationality

The Harsanyi type space T ≡ (T, κ) describes players’ beliefs before they play the

sequential-voting game. Given an equilibrium σ, as the vote game progresses, players

observe other players’ votes following σ, which reveal other players’ private information,

and as a result, players update their information before they cast their votes. In particu-

lar, different histories may leads to different updated beliefs for every players. Therefore,

T ≡ (T, κ) and σ induces new beliefs and a new interim Harsanyi type space, which is

denoted by

T̂ σ ≡ (T̂ ≡ ×ik∈N

(
T̂ik ≡ Tik ×Hik

)
, κ̂

σ

).

Each history hik ∈ Hik leads each original type tik ∈ Tik to a different updated belief, and

hence, a new type is t̂ik ≡ (tik , hik) ∈ T̂ik . For any tik ∈ Tik and any hik =
(
vi1 , ..., vik−1

)
,

we define κ̂
σ

t̂ik≡(tik ,hik)
∈ △

(
Θ× T̂ σ

−ik

)
as follows. For any E ⊂ Θ× T̂ σ

−ik
, we have

κ̂
σ

t̂ik
(E) ≡ µ

σ−hik
tik

[{
(θ, t−i, v

′) ∈ Θ× T−i × V :

(
θ,
[
ti

k̃
,
(
v′i

k̃
, ..., v′i

k̃−1

)]
i
k̃
∈N⧹{ik}

)
∈ E

}]
.

17That is, µ
σ−hik
tik

[
Θ× T−i × {hik} ×Θ{ik,...,in}

]
= 1 and

µσ
tik

[
Θ× T−i × {hik} ×Θ{ik,...,in}

]
> 0

=⇒ µ
σ−hik
tik

[E × {(vi1 , ..., vin)}] =

µσ
tik

[E×{(vi1 ,...,vin)}]
µσ
tik

[
Θ×T−i×{hik}×Θ{ik,...,in}

] , if hik =
(
vi1 , ..., vik−1

)
,

0, if hik ̸=
(
vi1 , ..., vik−1

)
.

17

Based on the new Harsanyi type space T̂ σ ≡ (T̂ , κ̂
σ
) defined above, we can derive

higher order beliefs of each new type t̂ik ≡ (tik , hik) ∈ T̂ik .

Definition 10. Given (O, T) with T (⊃ T), a PBE σ is continuous if any h ∈ H and

any sequence {tn} ⊂ T such that d ((tn, h) , (tθ, h)) → 0, we have σ (tn, h) → σ(tθ, h).

Continuous PBE has a similar flavor as continuous BNE: the strategies for types close

to complete information are close to the strategies at complete information. Different

from continuous BNE, continuous PBE is defined based on convergence of types’ interim

beliefs (i.e., d ((tn, h) , (tθ, h)) → 0), rather than their original beliefs (i.e., d (tn, tθ) →

0). The rationale is that players choose their best replies in a PBE based on their

interim beliefs rather than their original beliefs. Or equivalently, continuous PBE is

based on sequential rationality (induced by interim beliefs), while continuous BNE does

not. Finally, we define strong sequential-continuous implementation.

Given any θ ∈ Θ and any PBE σ, we define the equilibrium path for tθ:

hσ−θ
i1

≡ ∅, hσ−θ
i2

≡
(
σ∗
i1
(tθ, h

σ−θ
i1

)
)
,..., hσ−θ

in
≡

(
σ∗
i1
(tθ, h

σ−θ
i1

), ..., σ∗
in−1

(tθ, h
σ−θ
in−1

)
)
,

and hσ−θ ≡
(
hσ−θ
i

)
i∈N .

Definition 11. We say that an oracle mechanismO satisfies strong sequential-continuous

implementation if 1) all continuous PBE σ satisfy g(σ((tθ, h
σ−θ)) = θ for all θ ∈ Θ, and

2) there exists a continuous PBE σ∗ such that σ∗
i (tθ, h

σ−θ
i) = θ for all θ ∈ Θ and all

agents i ∈ N .

5.4 Achieving Strong Sequential-Continuous Implementation

We now present the main result of this section.

Theorem 5. The deterministic direct sequential oracle mechanism OS, which is mono-

tone, non-dictatorial and label-neutral, satisfies strong sequential-continuous implemen-

tation.

The similarity between the mechanisms OR (Theorem 4) and OS (Theorem 5) is

that both are monotone, label neutral, and non-dicatorial, and satisfy strong (sequential-

)continuous implementation. The oracle mechanism OR achieves this via randomization

18

and OS through is sequential extensive form. The crucial difference between them,

however, is that the sequential voting mechanism OS is not subject to single deviation.18

That is, a sequential mechanism with the desired properties can achieve strong sequential-

continuous implementation and is not subject to individual (probabilistic) veto power.

6 Conclusion

We analyzed the robustness of oracle mechanisms to deviations from common knowl-

edge and highlight several vulnerabilities. First, a blockchain native coin is necessary

for strong continuous implementation. This is relevant as there are several blockchain

providers that do not have their own native coin. Two notable examples are Redstone

Oracles and Chronicle Protocols whose oracles secure over 7 billions US dollars of value

locked into smart contracts.19 Second, any oracle mechanism with simultaneous report-

ing that does satisfy strong continuous implementation is either dictatorial or subject

to single deviations, i.e., a single agent having the ability to probabilistically veto the

implementation of the true state. Third, there exists a direct sequential voting mech-

anism that achieves strong sequential-continuous implementation and is not vulnerable

to single deviations.

While not the primary goal of the analysis, our results also provide some relevant

insights to the implementation literature. It follows from results in Chen, Mueller-

Frank and Pai [4] that (strong) continuous implementation in the product topology

requires an oracle mechanism that at complete information implements the true state

through uniquely rationalizable strategies. Proposition 2 of Bergemann, Morris and

Tercieux [1] provide sufficient conditions for a social choice function, in our case f(θ) =

θ, to be implemented through rationalizable strategies. Bergemann et al.’s [1] proof

constructs a general, random mechanism with an infinite message space that achieves

rationalizable implementation. Thus their mechanism is highly complex and arguably

difficult to implement in the real world. An interesting feature of Theorem 4 is that,

within the relevant setting of oracle mechanisms, there exists a direct mechanism that

achieves implementation in dominant strategies.

18We omit a formal statement and the proof. The result follows trivially from the plurality rule that
determines the implemented state and the weights being approximately equal across agents.

19Data from February 10th, 2025. See https://defillama.com/oracles.

19

To the best of our knowledge, there have been no previous attempts to generalize

the notion of continuous implementation for general Harsanyi type spaces to sequential

games. Our positive result on the sequential mechanism highlights the difference between

simultaneous and sequential mechanisms in their ability to achieve strong (sequential-

)continuous implementation. Finally, note that all our results for simultaneous mech-

anisms hold if you replace strong continuous implementation with the notion of strict

continuous implementation introduced by Chen et al.[4].

References

[1] Dirk Bergemann, Stephen Morris, and Olivier Tercieux. Rationalizable implementa-

tion. Journal of Economic Theory, 146:1253–1274, 2011.

[2] Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis,

Ari Juels, Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz,

Sergey Nazarov, Alexandru Topliceanu, Fan Zhang, and Florian Tramèr. Chainlink

2.0: Next steps in the evolution of decentralized oracle networks. Chainlink Whitepa-

per, April 2021. Version 1.0.

[3] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized

applicaiton platform. Ethereum Foundation White Paper, 2014.

[4] Yi-Chun Chen, Manuel Mueller-Frank, and Mallesh Pai. Continuous implementation

with direct revelation mechanisms. Journal of Economic Theory, 201(105422), 2022.

[5] Yi-Chun Chen, Alfredo Di Tillio, Eduardo Faingold, and Siyang Xiong. Uniform

topologies on types. Theoretical Economics, pages 445–478, 2010.

[6] John C. Harsanyi. Games with incomplete information played by “bayesian” players,

i–iii part i. the basic model. Management Science, 14:127–261, 1967.

[7] Jean François Mertens and Shmuel Zamir. Formulation of bayesian analysis for games

with incomplete information. International Journal of Game Theory, 14:1–29, 1985.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White Paper,

2008.

20

[9] Marion Oury and Olivier Tercieux. Continuous implementation. Econometrica,

80(4):1605–1637, 2012.

21

A Theorem 2: Auxiliary Lemma and Proof

The proof of Theorem 2 relies on the following lemma.

Lemma 1. Fix a metric topology on the universal type space, an oracle mechanism O

and a continuous BNE σ. For every state θ, let σ(tθ) = m∗
θ ∈ M . If there exists a state

θ′ such that for all agents i ∈ N and messages m′
i ∈ Mi we have

g(m∗
θ′) = g(m′

i,m
∗
θ′−i) (6)

then strong continuous implementation fails.

Proof. Fix the equilibrium σ and assume that there exists a state θ′ such that

g(m∗
θ′) = g(m′

i,m
∗
θ′−i) = θ′ (7)

for all agents i ∈ N and messages m′
i ∈ Mi. σ being a BNE implies that at the complete

information type profile tθ
′

bi(m
∗
θ′)× pg(m∗

θ′)θ
′ ≥ bi(m

′
i,m

∗
θ′−i)× pg(m′

i,m
∗
θ′−i

)θ′ (8)

By assumption we have g(m∗
θ) = g(m′

i,m
∗
θ−i) = θ′ for all m′

i which in turn implies

bi(m
∗
θ′) ≥ bi(m

′
i,m

∗
θ−i) (9)

It follows that σ(t) = m∗
θ′ for all t ∈ T is a continuous BNE. Since g(m∗

θ′) ̸= θ for all

θ ̸= θ′ strong continuous implementation fails.

We can now present the proof of Theorem 2.

A.1 Proof of Theorem 2

Proof. Suppose that O satisfies strong continuous implementation. Denote by σ∗ the

truthful continuous BNE with σ∗
i (t

θ) = θ for all complete information type profiles, and

for all agents i ∈ N . Let Θ = 0, 1. Thus we have σ∗
i (t

1) = 1 and σ∗
i (t

0) = 0 for all i ∈ N .

Denote by 1 and 0 the profile where all agents report 1 respectively 0. By Lemma 1,

22

it follows that for the continuous BNE σ∗ there exists an agent i1 respectively i0 and

messages mi1 respectively mi0 such that

g(mi1 ,1−i1) ̸= 1

g(mi0 ,0−i0) ̸= 0
(10)

As the state space is binary we have

g(mi1 ,1−i1) = 0

g(mi0 ,0−i0) = 1
(11)

Monotonicty implies

g(0,1−i1) = 0

g(1,0−i0) = 1
(12)

Consider a message profile m′ such that m′
i0

= 1 and m′
i1

= 0 and m′
j ̸= m′

k for two

agents j, k ∈ N \ {i0, i1}. Without loss of generality assume that g(m′) = 0. Consider a

profile m′′ such that m′′
j = 0 for all j ̸= i0 and m′′

i0
= 1. Monotonicty implies g(m′′) = 0

establishing a contradiction with equation (9). This implies that i0 = i1 = i∗. To show

that agent i∗ is a dictator, assume that there exists a message profile m′′′ such that

g(m′′′) ̸= m′′′
i∗ . Without loss of generality let g(m′′′) = 0. Now consider a profile m

such that mj = 0 for all j ̸= i∗ and mi∗ = 1. Monotonicity and g(m′′′) = 0 imply that

g(m) = 0 which contradicts equation (9).

B Proof of Theorem 3

Proof. We will prove Theorem 3 in three steps.

1. As O satisfies strong continuous implementation for all θ we have g(θ) = θ.

2. By Lemma 1, we have that for each state and corresponding consensus report

profile θ there exists an agent iθ and message miθ such that g(miθ ,θ−iθ) ̸= θ. Fix

a state θ′ and consider agent iθ′ . Let

g(miθ′
,θ′

−iθ′
) = θ′′ (13)

23

Label neutrality then implies that for all profiles m with miθ′
∈ Θ and m−iθ′

=

θ, θ ∈ Θ we have

g(miθ′
,m−iθ′

) = miθ′
(14)

3. We show that agent iθ′ is a dictator. Suppose not, i.e., there exist a profile m′

such that g(m′) = θ′′ ̸= m′
iθ′
. By monotonicity it follows that for profile m′′ with

m′′
−iθ′

= θ′′ and m′′
iθ′

= m′
iθ′

we have g(m′′) = θ′′ contradicting step 2.

C Proof of Proposition 2

Proof. Assume that O satisfies strong continuous implementation. By definition, there

exists a ”truth-telling” BNE σ∗ such that σ∗(tθ) = θ for all θ ∈ Θ. By Lemma 1 it

follows that if

g(θ) = g(m′
i,θ−i) (15)

for all i ∈ N and for allm′
i ∈ M then strong continuous implementation fails, establishing

the result.

D Proof of Theorem 5

Proof. We consider the sequential-voting oracle mechanism OS defined above. By two

steps, we prove that OS achieves strong sequential-continuous implementation. First,

we show that, in any PBE σ, we have σi(tθ, h
σ−θ
i) = θ for every θ ∈ Θ and every agent

i ∈ N , and as a result, we have g(σ((tθ, h
σ−θ)) = θ for every θ ∈ Θ. Second, we prove

existence of a continuous PBE, and therefore, O∗ achieves strong sequential-continuous

implementation.

Fix any PBE σ and any state θ ∈ Θ. We show that type tθ of every agent vote for

θ in the equilibrium path of σ, i.e., σi(tθ, h
σ−θ
i) = θ for every i ∈ N . There are three

possible payoffs for each agent: (i) an agent votes for a state which is not chosen by O∗,

(ii) an agent votes for θ′ ̸= θ and θ′ is chosen by O∗, and (iii) an agent votes for θ and

θ is chosen by O∗, with payoffs 0, pθ′θ, pθθ, respectively, and 0 < pθ′θ < pθθ. Consider

the path along which type tθ of every agent votes for θ. We apply backward induction:

24

at period n, given that all the other agents have voted for θ, it is a unique best reply

for agent in to vote for θ and gets pθ,θ, because, by deviating to vote for θ′ ̸= θ, in gets

either pθ′,θ or 0; ...; at each period k ∈ {1, 2, ..., n− 1}, given that agents i1, ..., ik−1 have

voted for θ, it is a unique best reply for agent ik to vote for θ and gets pθ,θ, because, by

deviating to vote for θ′ ̸= θ, ik gets either pθ′,θ or 0. This completes Step 1.

Second, we construct a continuous PBE σ∗. For each agent ik ∈ N , define

H̃θ
ik
≡

{
hik ∈ Hik : g

[
hik ,

(
vi

k̃
= θ

)
k̃∈{k,k+1,...,n}

]
= θ

}
,

i.e., H̃ik is the set of ik’s histories such that θ could still be chosen by O∗. Furthermore,

for each hik =
(
vi1 , ..., vik−1

)
∈ Hik , define

Θhik ≡

θ̃ ∈ Θ :
∀θ′ ∈ Θ,∣∣∣{k̃ ∈ {1, ..., k − 1} : vi

k̃
= θ̃

}∣∣∣ ≥ ∣∣∣{k̃ ∈ {1, ..., k − 1} : vik = θ′
}∣∣∣

 ,

i.e., Θhik is the set of states which get most votes under hik . The following is a PBE for

complete information.

σ̃ik(tik = tθ, hik) =

 θ, if hik ∈ H̃θ
ik
,

φ
(
Θhik

)
, if hik /∈ H̃θ

ik
,

, ∀ik ∈ N , ∀hik ∈ Hik ,

where φ is any selection function, i.e., φ : 2Θ⧹ {∅} −→ Θ with φ (E) ∈ E for any

E ∈ 2Θ⧹ {∅}.

By the same backward induction argument as above, σ̃ ≡ (σ̃ik)ik∈N is a PBE for

complete information, and σ̃ik(tθ, hik) is a strict best reply given type tθ of the other

players following σ̃. When we apply a backward induction argument, the strict best

replies remain best replies when we perturb types slightly. Specifically, define

T θ-ε
in ≡

{
tin ∈ Tin : d1 (tin , tθ) < ε

}
,

T θ-ε
in−1

≡
{
tin−1 ∈ Tin−1 : d

2
(
tin−1 , tθ

)
< ε

}
,

...

T θ-ε
i1

≡ {ti1 ∈ Ti1 : d
n (ti1 , tθ) < ε} ,

25

and

σ̃ik(tik , hik) =

 θ, if hik ∈ H̃θ
ik
,

φ
(
Θhik

)
, if hik /∈ H̃θ

ik
,

∀ik ∈ N , ∀hik ∈ Hik , ∀tik ∈ T θ-ε
ik

.

By the same backward induction argument as above, we can find sufficiently small ε > 0,

such that σ̃ik(tik , hik) is a best reply for (tik , hik) ∈ T θ-ε
ik

×Hik , if types in ×i∈NT
θ-ε
i follow

σ̃.

Finally, we consider an auxiliary game, in which types types in ×i∈NT
θ-ε
i follow σ̃,

and types not in ×i∈NT
θ-ε
i play the game defined by OS. Since this is a finite-action

game, a PBE exists, which is denoted by σ̂. We then define σ∗ on the Harsanyi type

space T ≡ (T, κ) as follows.

σ∗
ik
(tik , hik) =

 σ̃ik(tik , hik), if tik ∈ T θ-ε
ik

,

σ̂ik(tik , hik), if tik ∈ Tik⧹T θ-ε
ik

,
∀ik ∈ N , ∀hik ∈ Hik .

With tik ∈ T θ-ε
ik

, incentive compatibility of σ∗
ik
(tik , hik) follows from the backward induc-

tion argument above, and with tik ∈ Tik⧹T θ-ε
ik

, incentive compatibility of σ∗
ik
(tik , hik)

follows from σ̃ being a PBE of the auxiliary game. Therefore, σ∗ ≡
(
σ∗
ik

)
ik∈N

is a

continuous PBE.

26

