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1. Introduction

Recent decades have witnessed transformative technological advancements, particu-
larly in automation technologies1 and artificial intelligence (AI). These innovations have
spurred productivity gains and economic growth but have also deepened labor market
inequality. While these innovations enhance efficiency and create new opportunities, they
disproportionately affect specific jobs — displacing routine, manual jobs with automation
and threatening cognitive, non-routine tasks with AI (Autor 2015; Restrepo 2024). The
uneven labor market outcomes stem from two interrelated forces: labor-substituting
technologies induce asymmetric shifts in labor demand across occupations, and worker
mobility constraints limit the ability to adjust to these shifts. In this paper, we focus on
the latter, presenting a general framework to evaluate the labor market incidence of new
technologies and other labor demand or supply shocks.

A defining feature of automation and AI is their tendency to cluster within specific skill
domains. Unlike dispersed labor shocks, these innovations target occupations with similar
skill requirements. Automation — driven by industrial robots and specialized software —
predominantly impacts routine, manual tasks, clustering in jobs such as manufacturing
and assembly occupations. Conversely, AI is concentrated in cognitively demanding roles,
including data analysis and research, where it can replicate or augment complex decision-
making. This concentrated impact restricts workers’ ability to transition to unaffected jobs,
as skill mismatches hinder mobility. Our analysis reveals that this clustering constrains
employment adjustments and drives significant wage disparities, playing a crucial role in
the distributional consequences of technological change.

We develop a theoretical model in which distance-dependent elasticity of substitution
(DIDES), where substitutability between occupations declines with their distance in skill
space, governs labor reallocation, capturing howworkers respond to technological shocks.
Building on a task-based production framework and a Roy model of occupational choice,
our approach integrates a correlated productivity distribution to encapsulate skill-based
substitutability across occupations. Workers possess a set of skills that they can apply in
various jobs; however, occupations differ in their reliance on these skills. Thus, substi-
tutability between two occupations depends on their skill-space proximity — reflecting
differences in required skills — and on within-skill as well as cross-skill substitutability,
which together determine the ease of transitioning between jobs.

A key advantage of this approach is that it provides a dimension reductionmechanism,
transforming the complex multi-dimensional substitution structure between occupations
into a parsimonious framework. By embedding DIDES in the Roy model, we derive an
elasticity of substitution matrix that naturally reflects proximity in skill space as a de-

1We follow Acemoglu and Restrepo (2022) for the definition of automation technologies: industrial robots,
machinery, and software (no AI capability).

1



terminant of occupational mobility. When automation or AI disproportionately impacts
skill-adjacent occupations, the constrained mobility amplifies wage dispersion, as dis-
placed workers have fewer high-productivity alternatives. In contrast, when technological
shocks are more dispersed, reallocation costs are less pronounced, allowing for greater
worker mobility. This framework enables us to formally link the distribution of technolog-
ical shocks to the incidence of wage and employment adjustments, highlighting the role
of labor market structure in shaping inequality.

Empirically, we leverage data from the Occupational Information Network (O*NET) as
the primary source formeasuring occupational skill requirements and technological expo-
sures. Approximately 200 descriptors covering skills, abilities, knowledge, work activities,
and work context are extracted fromO*NET, and we then apply principal component anal-
ysis (PCA) to reduce this high-dimensional information into three interpretable indices
— cognitive, manual, and interpersonal skill requirements — which serve as empirical
proxies for an occupation’s location in the skill space. In parallel, we construct technolog-
ical exposure measures by querying GPT-4o separately on the feasibility of automating
each task using traditional automation methods and on the feasibility of executing tasks
with AI models. For traditional automation exposure, we assess whether each task can be
performed without human intervention by industrial robots and machines, whereas for
AI exposure, we evaluate whether tasks can be executed by general AI models like GPT-4o.
Covering 19,200 tasks across 862 occupations, GPT-4o assessments reveal that roughly one-
third (about 6,000 tasks) are potentially executed by AI, similar to the scale of automation.
This approach allows us to empirically capture the distinct distribution of technological
shocks, highlighting that automation clusters in occupations with high manual demands
and that AI predominantly targets roles with significant cognitive components.

We estimate labor supply elasticities by exploiting long-run occupational employment
changes in response to automation-induced wage shifts. Using wage effects of automa-
tion estimated from the Panel Study of Income Dynamics (PSID) alongside changes in
cross-sectional employment from the Census and ACS, our estimation employs a pseudo-
Poisson maximum likelihood (PPML) approach—commonly used in gravity models—to
jointly estimate the average elasticity (θ) and the skill-specific correlation parameters
(ρs), which govern within-skill substitutability, under a cross-nested CES framework that
parameterizes DIDES.

Under a standard CES specification (with ρs constrained to zero), the estimated average
labor supply elasticity is around 3.12. When we relax this restriction (CNCES specification),
allowing for nonzero ρs, the cross-skill elasticity θ falls to approximately 1.10, implying
that within-skill substitutability accounts for about two-thirds of the variation in labor
supply responses.Moreover, the estimated transferability parameters reveal that cognitive
skills are more transferable than manual skills, highlighting significant heterogeneity in
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labor mobility across occupations.
By integrating our estimated labor supply elasticities with measures of occupational

exposure, we assess the static incidence of automation and AI on the labor market. Our
analysis reveals that, due to the clustering of technological shocks within skill-adjacent
occupations, about 40% of relative labor demand changes are transmitted into wage
changes — indicating that the distributional effects are only partially absorbed. Moreover,
workers recover merely around 20% of their wage losses through occupational transitions,
underscoring that limited mobility driven by skill dissimilarity and the proximity of
automation and AI in the skill space amplifies wage inequality. In fact, the clustering
nature of automation and AI exposure reduces the equilibrium wage labor mobility by
one-third. Furthermore, relying on average elasticity estimates significantly overstates
worker mobility and understates the unequal wage incidence.

After characterizing the static incidence of automation and AI, we extend our static
Roy-based framework into a dynamic discrete choice model that incorporates DIDES to
capture gradual labor market transitions. In our dynamic extension, workers are modeled
as forward-looking agents who face idiosyncratic productivity shocks and incur job transi-
tion costs when switching occupations. By incorporating a correlation-adjusted transition
probability and deriving a dynamic hat-algebra with correlation, our framework captures
how changes in underlying fundamentals — such as technology adoption — affect oc-
cupational wages, allocations, and overall welfare over time within a rich substitution
structure.

Using CPS data aggregated into 15 occupation clusters, we employ an adjusted Euler
equation approach to estimate a short-run elasticity of 0.07. Our findings indicate that
gradual automation adoption has led to a persistent relative wage decline—up to a 50%
difference between occupations with high versus low exposure—with employment adjust-
ments absorbing roughly two-thirds of labor demand shifts and mobility gains offsetting
about half of wage losses. In contrast, under a counterfactual scenario where AI adoption
rapidly reaches automation’s scale by 2030, the labor market exhibits slow absorption:
less than one-third of demand shifts are absorbed initially, leading to a sharper wage
decline andmobility gains that recover only around one-third of wage losses. These results
underscore that the clustering of technological shocks limits worker mobility, thereby
exacerbating wage inequality both in transition and the long run.

This paper offers a comprehensive analysis of how automation and AI reshape the
labor market, emphasizing the interplay between skill-based substitutability and the pace
of technological change. By introducing DIDES and integrating it into both static and
dynamic frameworks, we provide new insights into the mechanisms driving labor market
inequality and the challenges posed by rapid technological transitions.
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Related Literature. Our paper contributes to the extensive literature on the labor market
impacts of technological changes. Early research by Katz and Murphy (1992) and Autor,
Katz, and Krueger (1998) introduced the concept of skill-biased technical change (SBTC),
which was later expanded by Acemoglu (2002) and Autor and Dorn (2013), showing how
technological advancements disproportionately increase demand for skilled workers,
thereby widening wage inequality. Building on this framework, we argue that skill-biased
technologies not only reshape relative labor demand but also constrain worker mobility,
limiting the labor market’s ability to adjust to shocks. More recent work by Acemoglu and
Restrepo (2018, 2020, 2022) has focused on the distributional consequences of automation,
demonstrating how labor-replacing technologies exacerbate wage polarization by dis-
proportionately displacing middle-skill jobs. In parallel, research on AI has explored its
potential to disrupt a broader range of tasks. Webb (2019) and Acemoglu et al. (2022) high-
light how AI affects both routine and non-routine cognitive tasks, while Noy and Zhang
(2023) and Brynjolfsson, Li, and Raymond (2025) examine the labor market implications
of generative AI, emphasizing its ability to reshape knowledge-based and creative work.

A growing literature examines the role of labor reallocation in mitigating unequal
labor demand shifts, emphasizing howmobility constraints slow adjustments and amplify
wage inequality. Matsuyama (1992) and Heckman, Lochner, and Taber (1998) highlight
how sectoral shifts interact with skill acquisition, while Lee andWolpin (2006) andDvorkin
and Monge-Naranjo (2019) emphasize occupational mobility frictions in wage dynam-
ics. Traiberman (2019) further shows that limited occupational mobility worsens sector-
specific shocks, particularly under globalization. In the context of transitions, Caliendo,
Dvorkin, and Parro (2019) and Lehr and Restrepo (2022) demonstrate that slower reallo-
cation prolongs wage disparities, while Adão, Beraja, and Pandalai-Nayar (2024) argues
that skill specialization constrains labor market adjustments. Similarly, Feigenbaum and
Gross (2024) documents howhistorical technological shifts reveal persistent labormobility
constraints. Our study builds on this literature by showing that the clustering nature of
automation and AI further restricts worker mobility, exacerbating labor market frictions
both in transition and in the long run.

The concept of distance-dependent elasticity of substitution (DIDES) is a fundamental
result in assignment models, governing how substitutability between workers or tasks
declines with their distance in a given skill space. This property is inherent to all assign-
ment frameworks, including both single- and multidimensional settings, as established in
the theoretical assignment literature (Sattinger 1993; Kremer 1993; Teulings 1995, 2005;
Lindenlaub 2017). These models consistently show that proximity in skill space increases
substitutability, shaping equilibrium wage distributions and labor market adjustments.
Building on this foundation, our study enriches the empirical content of DIDES by provid-
ing an empirical formulation, measurement, and estimation, allowing us to quantify its
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role in labor market responses to automation and AI.
Lastly, our framework follows the Roy tradition, incorporating skill heterogeneity

to analyze labor market adjustments. A well-established literature highlights the role of
skill transferability in job mobility (Gathmann and Schönberg 2010) and the importance
of skill heterogeneity for wage distribution (Heckman and Sedlacek 1985; Böhm, von
Gaudecker, and Schran 2024). These studies show that skill selection effects obscure wage
growth patterns and that changing skill prices have driven risingwage inequality. Recently,
Dvorkin andMonge-Naranjo (2019) incorporate skill accumulation and transition costs into
the standard Roy model to study the welfare effects of task-biased labor demand shocks.
We extend the Roy framework by allowing for correlation in productivity distributions
(Lind and Ramondo 2023) to formulate DIDES and examine its interaction with clustering
shocks from automation and AI to study the economic incidence.

Road Map. The structure of the paper is as follows. Section 2 presents a static model
featuring DIDES and examines how its interaction with the shock distribution shapes
labor market incidence. Section 3 describes the data sources and empirical methodology
used to estimate labor supply elasticities and analyzes the static incidence of automation
and AI. Section 4 extends the static model into a dynamic discrete choice framework to
capture gradual labor market transitions and assess the dynamic incidence of techno-
logical changes. Section 5 concludes by summarizing the findings and discussing policy
implications.

2. Theoretical Framework

We examine how the distribution of shocks interacts with distance-dependent elasticity of
substitution (DIDES) to shape the incidence of labor market shocks. Our analysis begins
with a long-run perspective using a static model, which we later extend to incorporate
short-termmobility frictions in the quantitative analysis. We first integrate a task-based
productionmodel with a Roy framework of occupational choice to study labor reallocation
and wage responses to technological shocks. Next, we characterize the distributional
effects of new technologies and apply spectral analysis to assess their incidence. Finally,we
formalize DIDES through the correlation structure of the labor productivity distribution.

2.1. Technology, Occupations, andWorkers

Technology and Occupations. Building on the framework introduced by Acemoglu and
Restrepo (2022), we formulate a task-based production structure to examine the impact of
new technologies on labor demand. This production specification is designed to capture
how automation and AI affect labor demand across occupations. Output in this economy
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is produced by combining a set of tasks, T, using a CES aggregator:

y = (∫
T
(y(x))

σ−1
σ ⋅ dx)

σ
σ−1

where σ denotes the elasticity of substitution between task inputs, directly related to labor
demand elasticity, as discussed in the following sections.

The production process is structured around a set of occupations, O = T1,T2, . . . ,TO,
where tasks are exogenously assigned to distinct occupations.2 Formally,

T =
O
⋃
i=1

Ti with Ti ∩ T j = ∅ for i ≠ j

such that each task uniquely belongs to one occupation, with no overlap. The representa-
tive firm can produce task inputs by using capital or by hiring workers for each occupation
under a linear production technology:

y (x) = a (x) k (x) + ℓo (x) ,∀x ∈ To

where a(x) represents the capital productivity at task x, and k(x) and ℓo(x) denote the
capital and labor input, respectively. We assume perfect substitutability between workers
and capital at the task level, allowing us to isolate the role of substitutability among
workers.3

Capital used to perform task x, denoted as k(x), is produced using the final good at a
constant marginal cost of one.4

The representative firm takes occupational wages,w = woOo=1, as given and optimally
allocates labor and capital across tasks to minimize costs. In particular, task allocation
between factors is cost-minimizing. 5 The task assignments are characterized by:

(1) Tℓo = {x :
1

a(x)
≥ wo,x ∈ T0} and Tko = {x :

1
a(x)

< wo,x ∈ T0}

where Tℓo denotes the set of tasks allocated to labor, and Tko denotes those allocated to
2Our study focuses on how the labor market absorbs labor demand shocks rather than how automation

and AI shift labor demand. Therefore, we take the occupational structure as given.
3Similarly, since our focus is on labor market absorption, we take labor shares as exogenous and do not

analyze the competition between technology and workers.
4The assumption of constant marginal cost implies that the supply of capital is perfectly elastic in the long

run. This could be derived from an underlying model of consumer saving decisions, where, in a steady state,
the interest rate would equal the rate of time preference.

5Throughout this paper, we analyze the labor market impact of a given technological adoption rather than
the endogenous decision to adopt new technologies.
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capital in occupation o. Consequently, the occupational labor demand is given by:

Ldo = ∫x∈Tℓ
o
ℓo (x)dx.

Workers. The economy consists of a continuum of workers, each indexed by i, who pos-
sess heterogeneous productivity across occupations, denoted by ϵ(i) = {ϵo(i)}Oo=1 across
occupations. We assume that the joint distribution of productivity across occupations
follows:

(2) Pr [ϵ1(i) ≤ ϵ1, . . . ,ϵO(i) ≤ ϵO] = exp [−F (A1ϵ−θ1 , . . . ,AOϵ−θO )]

where Ao > 0 denotes the occupational scale parameter with the shape θ > 0 parameter
determining themarginal Fréchet distribution: Pr[ϵo(i) ≤ ϵo] = e−Aoϵ

−θ
o . The occupational

shifter Ao captures average occupational labor productivity, while the shape parameter θ
determines productivity heterogeneity across workers, as in standard Roy models with
extreme value distributions.

The function F, also known as the tail dependence function, captures the correlation
structure of productivity across occupations, governing occupational substitutability. It is
homogeneous of degree one and satisfies the sign-switchingproperty 6. The sign-switching
property implies that occupations are substitutes from the workers’ perspective, ensuring
the gross substitutes property. Without loss of generality, we impose the normalization
condition F(1, 0, . . . , 0) = 1, which separates the scales from the correlation function. We
initially leave the correlation function unspecified and later parameterize it to reflect that
occupational substitutability declines with skill distance (DIDES).

In this static framework, workers choose the occupation that maximizes their static
utility:

u(i) =max
o

u (co(i), ℓo(i)) =maxo ln (co/ℓo(i))

where co = wo and ℓo(i) = 1/ϵ○(i)

wherew = {wo}Oo=1 represents the equilibrium occupational wages. Workers supply one
unit of labor and incur disutility from time usage, determined by their occupational
productivity by ℓ0(i) = 1/ϵ○(i). Let Io denote the set of workers who choose occupation
o, formally defined as: Io = {i ∣ woϵo(i) =maxo′ w′oϵ′o(i)}. The total occupational labor
supply is then:

Lso = ∫i∈Io
1di.

6For a detailed discussion of correlation functions and max-stability, see appendix A.1.1 and Lind and
Ramondo (2023).
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Finally, we define L (w) as the implied labor supply function, mapping wages to the total
labor supply across all occupations. For example, if the correlation function is additive,
i.e., F(x1, . . . ,xO) = ∑o xo, then the resulting labor supply elasticity follows a constant
elasticity of substitution (CES) structure.7

2.2. Market Equilibrium and Comparative Statics

Static Equilibrium. We define market equilibrium as an allocation of tasks to factors
and a production plan for capital goods that maximizes utility. Given capital productivity
{a (x)}x∈T and occupational labor productivity {Ao}

O
o=1, the market equilibrium is char-

acterized by the wage vectorw = {wo}Oo=1, capital production decisions {k (x)}x∈T, and a
labor allocation to tasks {ℓo (x)}x∈T such that
a. The firmmakes capital production decisions and hires labor to maximize profit.
b. Workers choose occupations to maximize their utility.
c. The labor market clears for each occupation, Ldo = Lso.

PROOF. The existence and uniqueness of the equilibrium follow from the strict gross
substitutability of the excess labor supply (see Appendix A.1.2).

Comparative Statics. With the equilibrium defined, we proceed to analyze the com-
parative statics of new technologies. We model automation and AI as technologies that
enhance capital productivity in tasks that were previously performed by labor but are now
carried out by capital across occupations. The set of newly automated tasks in occupation
o is denoted byD j

o, where j ∈ {Automation,AI}. The share of tasks automated is defined
as

d ln Γ jo =
M
D j
o

MTℓ
o

, j ∈ {Automation,AI}

whereM
D
j
o
is the measure of tasks newly automated in occupation o by technology j, and

MTℓ
o
is the total measure of tasks in the same occupation.
In this paper, we focus on automation and AI, whose impact varies across occupations.

As shown in Section 3, automation shocks are concentrated in occupations that require
highmanual skills and low cognitive skills, whereas AI shocks are clustered in occupations
with high cognitive demands and low manual requirements. Within the task assignment
framework, these technologies generate both productivity effects and replacement effects.
Under the assumption of a fixed occupational structure, the productivity effect benefits all
occupations, whereas displacement effects are unevenly distributed. The central question
we study is how these displacement effects are shared among workers.

7When the productivity distribution is independent, the labor supply elasticity equals the shape parameter:
∂ lnLo/Lo′
∂ lnwo/wo′

= θ.

8



PROPOSITION 1. Automation/AI Comparative Statics: Consider automation or AI character-
ized by d ln Γ jo. The first-order impacts on employment, d lnh, and wages, d lnw, are determined
by the following system of equations:
• Labor demand equation:

(3) d lnw =
1
σ
d ln y ⋅ 1 −

1
σ
d lnΓ j −

1
σ
d lnL,

• Labor supply equation:

(4) d lnL = Θd lnw, where Θ =
∂ lnL
∂ lnwT

.

Here Θ is the matrix of partial elasticities of labor supply

(5) Θoo′ ≡
∂ lnLo
∂ lnwo′

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θxoFooFo ∣{xo=AoWθ
o }
+θ (1 − πo) if o = o′

θ
xo′Foo′
Fo ∣

{xo=AoWθ
o }
−θπo′ if o ≠ o′

where πo = xoFo
F ∣

{xo=AoWθ
o }

is the occupational employment share, with Fo =
∂F(x1,...,xo)

∂xo

and Foo′ =
∂2F(x1,...,xo)

∂xo∂x′o
.

PROOF. See Appendix A.1.2.

Proposition 1 establishes that the effects of automation and AI technologies on wages
and employment are jointly determined by the labor demand equation (3) and the labor
supply equation (4). The labor demand equation reflects two opposing forces: productivity
effect d ln y, which is uniform across all occupations, and displacement effect d lnΓ j, which
varies between occupations. The elasticity of substitution between tasks, σ, also governs
labor demand elasticity. A higher σ dampens employment responses to shocks, amplifying
wage disparities.

The labor supply equation (4) captures how employment responds to unequal wage
changes.8 The elasticities of the labor supply comprise two components: correlated sub-
stitutability, resulting from the correlated productivity distribution θ

xo′Foo′
Fo , and indepen-

dent substitutability, only determined by the shares of occupation employment. Notably,
when the productivity distribution between occupations is independent, represented
as F (x1, . . . ,xO) = ∑o xo, the correlated substitutability term becomes zero, as Foo′ = 0.
Within this framework, distance-dependent substitutability will be embedded in the corre-
lation structure between occupations and represents a specific realization of the broader
concept of correlated substitutability. At this stage, we preserve the generality of the
framework before parameterizing a particular correlation structure.

8Note that∑o′ Θoo′ = 0,∀o, a result of maximum stability as shown in the proof. A uniform proportional
wage change, such as an increase in total output, does not induce employment shifts
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The Incidence of New Technologies. We solve for the wage changes and gains from
reallocation in response to automation and AI using the first-order approximation.9

LEMMA 1. To the first order, the wage changes for the automation shocks are characterized by

(6) d lnw =
1
σ
d ln y ⋅ 1 −∆ ⋅

d lnΓ j

σ
, where ∆ = (I +

1
σ
Θ)
−1
.

and the average mobility gains (defined using equivalent variation) for workers in occupation o
before the new technologies are given by :

(7) Mobility Gainso = −∑
o′

Θoo′ (d lnwo′ − d lnwo)
2 1d lnwo′−d lnwo>0.

PROOF. See Appendix A.1.3.

Equation (6) illustrates how distributional automation shocks are transmitted to wages.
First, the uniform productivity effect passes fully to the wage without inducing any em-
ployment effect. In contrast, the distributional displacement effects are mediated by a
dampening matrix ∆, which is positively related to demand elasticity σ and inversely re-
lated to the labor supply elasticitiesΘ. This relationship reflects the fundamental trade-off
between wage effects and employment effects: a shock that induces greater employment
adjustments results in smaller wage changes. In the extreme case where σ→∞ or Θ→ 0,
no employment shifts occur, leading to full wage pass-through and the largest unequal
impacts across workers.

Importantly, as we will detail in Section 2.3, the pass-through of automation and
AI shocks depends on their distribution across occupations. If automation and AI tech-
nologies are highly concentrated in occupations that are close substitutes, the resulting
employment effects are limited, leading to greater wage disparities. In contrast, if the
shocks aremore dispersed, the substitutability between differentially affected occupations
tends to be higher, altering the incidence of wage and employment adjustments. Thus,
the distribution of shocks plays a crucial role in determining average substitutability and
its overall impact on wages and employment.

In the economy with worker mobility, wage changes primarily reflect workers who
remain in their current occupations. However, workers are heterogeneous in their outside
options, and some will transition to better-aligned occupations in response to technolog-
ical shocks. For instance, consider a marginal mechanical engineer who is also highly
productive as an electrical engineer. When automation reduces labor demand for me-
chanical engineers, such a worker switches to electrical engineering and is better off than
those who remain in their initial occupation.

9we write automation in the form of d ln Γ
j

σ as it represents the labor demand changes stem from the new
technologies.
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We can decompose these gains into two terms, as shown in Equation (8). The first term
captures the effect of average substitutability across all occupations, while the second
termmeasures the correlation between substitutability and relative wage changes. When
new technologies cluster in occupations that are close substitutes, the substitutability
between occupations is negatively correlated with relative wage changes. In other words,
the covariance between bilateral elasticities and relative wage changes is positive, which
reduces the magnitude of reallocation gains.

This decomposition highlights an important insight: relying solely on estimated aver-
age elasticity tends to overstate the gains from reallocation while underestimating the
unequal effects of new technologies. By explicitly accounting for the interaction between
substitutability and wage adjustments, we can better assess the true mobiliti gains of
automation and AI.

Mobility Gainso = − Θ̄o∑
o′
(d lnwo − d lnwo′)

2 1d lnwo′−d lnwo>0(8)

−O ⋅ Cov (Θoo′ , (d lnwo − d lnwo′)
2 1d lnwo′−d lnwo>0)

2.3. Spectral Analysis

Before parameterizing the correlation structure in the workers’ productivity distribution
(2) and focusing on distance-dependent substitutability, this section employs spectral
analysis to better understand how shock distribution influences employment effects and
its incidence.

We begin by presenting an eigendecomposition of the elasticity of substitution matrix
Θ and the dampeningmatrix∆. While Kleinman, Liu, and Redding (2023) employ spectral
analysis to examine convergence speeds, we extend this approach by relating empiri-
cal automation shocks to eigenshocks, demonstrating how these correspond to varying
degrees of employment shifts and wage pass-through. Finally, we analyze a special 2×2
example to provide further insight into these dynamics.

Eigen-decomposition and Eigen-shocks. The wage incidence of automation and AI (6)
can be expressed entirely in terms of the eigenvalues and eigenvectors of the elasticity
of substitution matrix Θ. Using eigen-decomposition, we write Θ = UΛV , where Λ is a
diagonal matrix of eigenvalues arranged in increasing order, and V = U−1. 10 For each
eigenvalue λn, the n-th column of U, un, and the nth row of V , v′n, are the associated right

10The matrix Θ is not necessarily symmetric. For an asymmetric Θ, distinct eigenvalues are sufficient
to ensure the existence of an eigen-decomposition. Additionally, we normalize the 2-norm of the right
eigenvectors to 1.
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and left eigenvectors of Θ:

λnun = Θun and, λnv′n = v
′
nΘ

Furthermore, both the sets {uo} and {v′o} form bases that span the O-dimensional space.
The regularity conditions of the correlation function ensure that Θ is a dominant matrix
with positive diagonal elements and negative off-diagonal elements.11 This property leads
to the following characterization of eigenvalues:

LEMMA 2. All eigenvalues are nonnegative, with at least one eigenvalue being 0 (e.g., λ0 = 0,
associated with the uniform right eigenvector u0 = 1√

O
⋅ [1, . . . , 1]′).

PROOF. See Appendix A.1.5.

The uniform eigenvector corresponds to common shocks, such as productivity effects,
that do not induce labor reallocation λ1 = 0. On the other hand, the positivity of the
eigenvalues stems from the gross substitutes property, where labor mobility counteracts
relative wage changes and dampens the direct replacement effect, as detailed in the next
proposition.

PROPOSITION 2. Spectral Analysis: Consider the given empirical automation shock d lnΓ
σ .

Its impact on wages can be expressed using the eigenvalues (λn) and eigenvectors (un) of the
elasticity of substitution matrix:

d lnw =
1
σ
d ln y ⋅ 1 +

O
∑
n=1

bn
1 + λn/σ

un,with
d lnΓ
σ
=

O
∑
n=1

un ⋅ bn

where the weights bn can be recovered as the coefficients in a linear projection of the automation
shocks d ln Γσ onto the basis {uo}, b = (U′U)

−1U′ ⋅ d lnΓ
j

σ .

PROOF. See Appendix A.1.4.

Proposition 2 highlights that we can define a set of base shocks, referred to as eigen-
shocks, which align with the right eigenvectors.12 These eigenshocks pass through to the
wage distribution, scaled by the dampening factor 1

1+λn/σ ≤ 1. The first eigenshock (λ1 = 0)
corresponds to uniform productivity shocks, which do not induce labor reallocation. The
remaining eigenshocks are subject to dampening effects driven by worker mobility. When
Θ is symmetric, the following lemma characterizes the variance of wage changes based
on how automation shocks load onto these eigenshocks.

11The sign-switching property of F guarantees that occupations are gross substitutes, implying that cross-
labor supply elasticities are negative.

12Θ depends on the scale parameters of the productivity distribution and is generally asymmetric. As a
result, the eigenshocks are not orthogonal unless Θ is symmetric.
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LEMMA 3. The variance of wage changes caused by the automation shocks is characterized by

Var (d lnw) = cT Var (U) c with cn =
bn

1 + λn/σ
.

When Θ is symmetric, it can be simplified as

Var (d lnw) =
O
∑
n=2

b2n
(1 + λn/σ)2

≤ Var
⎛

⎝

d lnΓ j

σ

⎞

⎠
.

The lemma 3 reveals that labor mobility mitigates the unequal effects of labor demand
shocks caused by automation and AI. The strength of this dampening effect depends on
the exact distribution of the shocks. For shocks with the same variance, if the shock loads
heavily onto eigenshocks associated with larger eigenvalues, it dissipates across workers
by inducing larger employment shifts. Conversely, shocks concentrated in eigenshocks
with small eigenvalues lead to large wage disparities with minimal labor reallocation.

A 2x2 Example. Having discussed spectral analysis in general, we now illustrate the role
of shock distribution and distance-dependent substitutability using a simple example of
four occupations. These four occupations have equal employment shares and belong to
two clusters: cognitive (c1 and c2) and manual (m1 andm2). Within each cluster, c1 and c2
(m1 andm2) are close in the skill space, while the distance between c1 andm1 is larger. We
formulate DIDES using the following productivity distribution: 13:

Pr [ϵc1(i) ≤ ϵc1 ,⋯,ϵm2(i) ≤ ϵm2] = exp
⎡
⎢
⎢
⎢
⎢
⎣

−(ϵ
−θ
1−ρ
c1 + ϵ

−θ
1−ρ
c2 )

1−ρ
− (ϵ

−θ
1−ρ
m1 + ϵ

−θ
1−ρ
m2 )

1−ρ⎤
⎥
⎥
⎥
⎥
⎦

With this specification, workers’ productivity in c1 and c2 (m1 andm2) are correlated with
a correlation coefficient ρ, while the productivity among occupations in different clusters
is independent. Consequently, c1 and c2 (m1 andm2) are close substitutes. We can then
eigen-decompose the elasticity of substitution matrix14:

λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
θ

θ
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⎤
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⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎦

, 2U =

⎡
⎢
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⎢
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1
1
1
1
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⎥
⎥
⎥
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⎥
⎥
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⎦

,
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⎢
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1
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⎥
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13the correlation function is F = ∑s∈{c,m} (∑o∈{1,2} x
1

1−ρ
so )

1−ρ
.

14We assume starting with equal employment shares for these occupations
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The matrix Θ has one zero eigenvalue corresponding to the uniform eigenshock, which
does not induce employment changes. The second eigenshock represents the clustering
shock, where occupations within the same cluster experience identical shocks. This clus-
tering shock is associated with the eigenvalue θ, implying that employment adjustments
occur at the cluster level, while within-cluster correlations do not influence the response.
Moreover, the clustering shock generates substantial unequal wage incidence. Intuitively,
when closely located occupations are similarly affected, displaced workers must traverse
longer distances in the skill space to transition to relatively better-off jobs, resulting
in limited labor reallocation. In contrast, eigenshocks 3 and 4, associated with larger
eigenvalues that increase with ρ, correspond to more dispersed shocks in the skill space.
With such dispersed shocks, workers have better outside options, as closely substitutable
occupations are relatively better insulated from negative impacts.

As we demonstrate in the empirical section 3, automation and AI are strongly corre-
lated with occupational skill requirements, largely explained by clustering eigenshocks.
These technologies tend to induce substantial wage disparities while causing limited
worker reallocation. Intuitively, they are concentrated in occupations that are closely
related within the skill space but distant from those that benefit from these technological
advancements. Consequently, workers displaced by automation often struggle to tran-
sition into better off occupations, as they are less productive in those roles, leading to
disproportionate adverse effects. Similarly, Adão, Beraja, and Pandalai-Nayar (2024) finds
that the adoption of information technology was slower due to distinct skill requirements.
This example illustrates how DIDES interacts with the distribution of shocks to shape their
incidence.

2.4. Cross-Nested CES and DIDES

Ideally, we would prefer to estimate the elasticity of substitution matrix Θ nonparametri-
cally. However, since our primary focus is on distributional consequences and understand-
ing how shock distribution shapes incidence, a finer level of aggregation is necessary.15

Given the high dimensionality of Θ and the limited availability of exogenous variation,
we adopt a parametric approach. Our parameterization of the correlation function is
based on the idea that occupational skill requirements determine workers’ mobility be-
tween occupations, as emphasized in the empirical literature (Traiberman 2019; Lise and
Postel-Vinay 2020).

The bilateral substitutability between two occupations depends on their relative lo-
cations in a multi-dimensional skill space, with substitutability decreasing as distance
increases. In this sense, our approach provides an empirical formulation of the DIDES

15In the empirical section, we use a 306-occupation classification.
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framework commonly featured in assignment models (Teulings 2005; Lindenlaub 2017).16

Cross-Nested CES. We adopt the cross-nested constant elasticity of substitution (CNCES)
structure proposed by Lind andRamondo (2023). To formulate the correlation function,we
begin by describing the structure of the labor supply. Each worker i is endowed with a set
of skills, S. For each skill s ∈ S, workers draw skill-specific productivity across occupations
from a correlated Fréchet distribution:

Pr [ϵs1(i) ≤ ϵ
s
1, . . . ,ϵ

s
O(i) ≤ ϵ

s
O] = exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
⎛

⎝

O
∑
o=1
((ϵso)

−θ
)

1
1−ρs ⎞

⎠

1−ρs⎤⎥
⎥
⎥
⎥
⎥
⎦

.

where ρs ∈ [0, 1) is the skill-specific correlation coefficient that measures the portability
of skill s. A higher ρs indicates that workers tend to have similar productivity draws for
that skill between occupations, meaning that the substitutability between occupations
is greater for skill s. For example, cognitive skills are often highly portable between
occupations (a higher ρ ), allowing workers to use them elsewhere without significant
productivity loss.

On the other hand, occupations rely ondifferent technologies in theproductionprocess
and utilize skills differently. Let Aso denote the efficiency of using skill s in the production
technology of the occupation o. For a given worker i, the most productive skill powered by
occupational technologies will be utilized in each occupation. Consequently, the worker’s
occupational productivity is the maximum of her individual skill productivities, scaled by
the corresponding occupational technologies:

ϵo (i) =maxs Aso ⋅ ϵ
s
o (i) .

PROPOSITION 3. Cross-Nested CES: The joint distribution of productivity across occupations
follows

Pr [ϵ1(i) ≤ ϵ1, . . . ,ϵO(i) ≤ ϵO] = exp [−F (A1ϵ−θ1 , . . . ,AOϵ−θO )]

with F (x1, . . . ,xO) =∑
s∈S

⎡
⎢
⎢
⎢
⎣

O
∑
o=1
(ωs

oxo)
1

1−ρs
⎤
⎥
⎥
⎥
⎦

1−ρs

where Ao ≡ ∑s∈S (Aso)
θ is the aggregate occupational labor productivity andωs

o ≡
(Aso)

θ

Ao denotes
the share of labor productivity derived from the skill s, which corresponds to the requirement of
occupational skill.

16Since we focus onwage changes in response to shocks, we use a Roymodel to extend DIDES in assignment
models to a multi-dimensional setting. However, this approach remains agnostic about the cross-sectional
income distribution.
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PROOF. See Appendix A.1.6

The correlation function comprises S skill-specific nests, each taking a CES form. We
defineωs

o in the correlation function F as the occupational skill requirement, indicating
the relative importance of each skill s for the occupation o. A highωs

o implies that skill
s is particularly critical in o’ production process. Within each nest s, the correlation in
productivity across occupations is captured by the correlation coefficient ρs, as discussed
earlier. When ρk = 0, productivity is independent and the nest k is additive. If all ρk = 0, the
distribution is simplified to an independent Fréchet distribution. In contrast, as ρk → 1,
productivity becomes perfectly correlated within the nest s.

Althoughwe use a similar functional form to Lind and Ramondo (2023), their approach
adopts a latent-factor interpretation and estimates the structure based on bilateral trade
flows. Their identification strategy depends on a low-dimensional structure and requires a
large dataset of bilateral trade flows for factorization, which is not feasible for estimating
the labor supply structure. In contrast, our approach builds from a microfoundation
and incorporates a structural interpretation, allowing the weights in the correlation
function {ωs

o}, to have a directly measurable empirical counterpart: occupational skill
requirements. We also refer to {ωs

o} as the occupational location in the skill space. With
the measured weights, the correlation parameters are identified using labor supply and
wage responses to automation shocks.

Distance-Dependent Elasticity of Substitution. As discussed above, the key to our anal-
ysis is the elasticity of substitution matrix Θ implied by the CNCES structure. The next
proposition characterizes the employment shares π and the matrix Θ.

PROPOSITION 4. Employment Shares and Elasticity of Substitution.With CNCES, the occu-
pational employment shares are given by:

πo =∑
s∈S

πso, with π
s
o = π

s,W
o ⋅ πs,B(9)

where πs,Wo =
(ωs

oAowθ
o)

1
1−ρs

∑
O
o′=1 (ω

s
o′Ao′w

θ
o′)

1
1−ρs

and πs,B =
[∑

O
o′=1 (ω

s
o′Ao′w

θ
o′)

1
1−ρs ]

1−ρs

∑s′∈S [∑
O
o′=1 (ω

s′
o′Ao′w

θ
o′)

1
1−ρs′ ]

1−ρs′

and the partial elasticity of substitution matrix can be written as (5), with the correlated elastic-
ities expressed as:

(10) θ
xo′ ⋅ Foo′
Fo

∣
{xo=AoWθ

o }
= −θ∑

s∈S

ρs
1 − ρs

⋅ π
s,W
o π

s,W
o′ ⋅

πs,B

πo
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PROOF. See Appendix A.1.7.

In Proposition 4, πso represents the share of workers who use skill s in the occupation
o. Additionally, πs,Wo denotes the within-skill share, while πs,B refers to the between-skill
share. Equation (9) has a straightforward interpretation: occupational employment is the
sum of workers in the occupation who use different skills. Furthermore, the employment
of workers for each skill is the product of the within-skill employment share and the share
of workers using that skill. Occupations with similar skill requirements are located close
to each other in the skill space and tend to exhibit similar within-skill employment shares,
conditional on total occupational employment.

Equation (10) characterizes how the concept of DIDES is embedded in the correlated
substitutability. Occupationswith similar skill requirements exhibit higher substitutability
due to their skill requirement overlap, reflected in similar within-skill employment shares.
Additionally, when two occupations primarily employ workers using skills that have a
high correlation across occupations (ρs), they are more substitutable. Conversely, if two
occupations have dissimilar within-skill employment shares (e.g., when they are located
far apart in the skill space) or employ skills with low correlation, the elasticity is low. In
the special case where ρs = 0,∀s, the model is reduced to the CES framework with no
correlated substitutability, and the partial elasticity of substitution depends solely on the
size of the occupation.

These insights are particularly relevant to automation andAI,which disproportionately
affect skill-adjacent occupations. This clustering leads to an unequal wage incidence of
shocks among workers. Since Θ depends on realized employment shares, analytically
characterizing the elasticity matrix based solely on skill requirements is infeasible. To
address this, the next section applies spectral analysis and uses Equation (8) to study the
incidence of these new technologies.

Generality. We develop this economic model to better capture the impact of automation
technologies and AI while abstracting from labor supply shocks. The labor demand equa-
tion (3) and the labor supply equation (4) in Proposition 1 provide a general framework
for analyzing equilibriumwage and employment responses in static models. The trade-off
between wage and employment effects lies at the core of labor market studies, and our
empirical DIDES framework goes beyond conventional assumptions of homogeneous
workers and unit elasticity, allowing for a more nuanced analysis of labor market shocks,
particularly their unequal effects.
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3. Empirical Results

This section presents the empirical analysis in three parts. First, we discuss the measure-
ment of occupational skill requirements (ωs

o) and occupational exposure to automation
and AI, emphasizing the clustering nature of these technologies. Second, we estimate
the elasticities of labor supply {θ,{ρs}s∈S} by leveraging long-run employment changes
in response to automation-induced wage shifts. Finally, we evaluate the labor market
incidence of automation and AI shocks, combining their distribution with the estimated
labor supply structure.

3.1. Data andMeasurement

The primary data source formeasuring both skill requirements and occupational exposure
is O*NET (the Occupational Information Network).17 O*NET provides two key elements:
(i) skill requirements, which define an occupation’s location in the skill space of labor
supply , and (ii) task descriptions, which allow us to measure exposure to automation and
AI.

Occupational Skill Requirements. The primary empirical objective of introducing a Roy
model with skill heterogeneity is to formulate DIDES while reducing the dimensionality of
the problem. Consequently, we measure occupational skill requirements directly rather
than estimating them. Specifically, we use approximately 200 descriptors from O*NET
covering skills, abilities, knowledge, work activities, and work context, which serve as
empirical counterparts to skill requirements.

Following Lise and Postel-Vinay (2020), we apply Principal Component Analysis (PCA)
to condense this large set of descriptors into three interpretable skill dimensions: cognitive,
manual, and interpersonal skill requirements. We first retain the top three principal
components, which collectively explain 58% of the variation. We then construct cognitive,
manual, and interpersonal skill indices by recombining these components and scaling
them to rs ∈ [0, 1] 18. Finally, we measure occupational skill requirements (ωs

o) as the
relative importance of each skill index, weighted by its contribution to overall variance:
ωs
o =

rso×Vars
∑s∈S rso×Vars

. Table 1 provides examples of occupations and their corresponding skill
requirements. A detailed description of this procedure is provided in Appendix B.2.

17The O*NET database, maintained by the U.S. Department of Labor, provides comprehensive data on
occupational characteristics, worker skills, and job requirements across a wide range of professions. (Link:
https://www.onetonline.org/)

18We use linear transformations instead of ranking, as they preserve the relative distances between occu-
pations in cognitive, manual, and interpersonal skill requirements.
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TABLE 1. Occupations with Skill Requirements and Technological Exposures

Occupation Skill Requirements Technological Exposures

Cognitive Manual Interpersonal AI Automation

Chief executives and administrators 0.71 0.11 0.18 0.28 0.03
Electrical engineers 0.73 0.19 0.08 0.71 0.19
Economists, market and survey researchers 0.79 0.07 0.14 0.86 0.31
Licensed practical nurses 0.52 0.26 0.22 0.08 0.47
Textile sewing machine operators 0.52 0.47 0.01 0.02 0.51

This table presents examples of occupations along with their skill requirements and technological exposures.
Skill requirements are categorized into cognitive,manual, and interpersonal dimensions, while technological
exposures indicate the likelihood of tasks being performed by AI or automation. Occupations with higher
cognitive requirements, such as economists and engineers, tend to be more exposed to AI, whereas those
with greater manual demands, such as textile machine operators, are more susceptible to automation.

Occupational Exposure to Technologies. Several measures exist for occupational expo-
sure to automation (Acemoglu andRestrepo 2022; Autor et al. 2024). In contrast, estimating
occupational exposure to AI-driven technologies presents a challenge, as their full im-
pact has yet to materialize. To construct a forward-looking measure, we follow Eloundou
et al. (2024) and Dell (2025) to leverage GPT-4o to evaluate task-level automation and AI
feasibility. Specifically, we query GPT-4o on whether each task in O*NET’s database (cov-
ering 19,200 tasks across 862 occupations) can be performed without human intervention
by: (i) general AI models like GPT-4o (representing AI exposure) or (ii) industrial robots,
machines, and computers without AI (representing traditional automation exposure).
GPT-4o estimates that approximately 6,000 tasks, or one-third of the total, can potentially
be performed by AI, a similar magnitude to automation technologies.

Table 2 provides examples of task evaluations for two occupations: economists and
sewing machine operators. This classification distinguishes automation-exposed tasks,
which involve well-defined, rule-based processes susceptible to mechanization, from
AI-exposed tasks, which primarily involve inductive reasoning, complex decision-making,
and non-physical cognitive tasks. The latter aligns with Polanyi’s Paradox, which states
that many cognitive tasks are difficult to codify into explicit rules, making them more
suitable for AI than traditional automation (Autor 2015).

Using these task-level evaluations, we compute the share of tasks within each occu-
pation that are either automatable or AI-exposed, forming our occupational exposure
measures for automation and AI. Table 1 also reports automation and AI exposure levels
for selected example occupations. Additional methodological details and comparisons
with existing measures are provided in Appendix B.3.

Technological Exposures in Skill-Space. We now examine how technological exposure
correlates with occupational skill requirements. Existing research shows that occupations
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TABLE 2. Example of Task Evaluation by GPT-4o

Occupations and Tasks AI Automation
Economists, Market and Survey Researchers
Explain economic impact of policies to the public. YES NO
Supervise research projects and students’ study projects. NO NO
Teach theories, principles, and methods of economics. YES NO
Textile SewingMachine Operators
Remove holding devices and finished items frommachines. NO YES
Cut materials according to specifications, using tools. NO YES
Record quantities of materials processed. YES YES

AI exposure is determined by querying GPT-4o: “Can AGI (e.g., large language models like GPT-4) potentially
perform the task without human intervention?” Automation exposure is assessed by asking: “Can industrial
robots, machines, and computers (no AI capability) perform the task without human intervention?” GPT-4o
evaluates each task with a binary "Yes" or "No" response. The table presents examples from two occupations,
each with three tasks.

requiring higher manual skills and fewer cognitive skills are more susceptible to automa-
tion (Autor, Levy, and Murnane 2003). The GPT-4o evaluation confirms this pattern, as
illustrated in Panel (a) of Figure 1. Conversely, AI exposure exhibits the opposite trend:
occupations requiring higher cognitive skills and fewer manual skills are more vulnerable
to AI-driven displacement, as AI can increasingly perform these tasks at lower costs.

Although automation and AI affect largely distinct sets of jobs, they share a common
feature: both technologies cluster within skill-adjacent occupations. Panel (c) of Figure
1 illustrates automation exposure in cognitive-manual skill space, where darker colors
indicate higher exposure levels. This clustering suggests that automation is highly concen-
trated in manual-intensive, cognitively simpler jobs. Panel (d) shows the opposite trend
for AI, with exposure clustering in cognitively demanding occupations. As highlighted in
Section 2.3, this clustering significantly restricts worker mobility, leading to an unequal
incidence on the wage distribution, as displaced workers also face deteriorated next-best
alternative employment opportunities.

Notably, cognitive and manual skills together account for 88% of total skill require-
ments across occupations,19 reinforcing their central role in shaping the labor market
impact of automation and AI. Given their dominance in occupational specialization,
our main analysis focuses on these two skill dimensions, while Appendix B.4 examines
technological exposure along the interpersonal skill dimension.

19Since cognitive and manual skills dominate occupational differentiation, they also largely determine
substitution patterns.
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FIGURE 1. Technological Exposures in Skill Space

This figure illustrates the distribution of automation and AI exposures within skill space. Panel (a) presents
a binscatter of occupational skill indices against automation exposure, while Panel (b) does the same for AI
exposure. Panels (c) and (d) visualize the distribution of automation and AI exposure in cognitive-manual space,
where darker dots indicate occupations with higher exposure levels.

3.2. Estimation of Labor Supply Elasticities

Having established technological exposure patterns across skill space, we now turn to
estimating labor supply elasticities and formally evaluating the labor market incidence
of automation and AI. In this section, we leverage long-run occupational employment
changes in response to automation shocks to estimate the elasticities {θ,{ρs}s∈S}.

Data and Automation Shocks. To estimate labor supply elasticities, we require data on
wage and employment shifts induced by labor demand shocks. Following Cortes (2016),
we use the Panel Study of Income Dynamics (PSID) to estimate relative wage trends for
occupations with varying levels of automation exposure between 1985 and 2019.20

To account for selection effects, we exploit within-individual job spell variation using
20Cortes (2016) classifies occupations into Nonroutine Cognitive, Routine, and Nonroutine Manual groups

and estimates relative wage trends accordingly. Instead, we estimate wage trends along a continuousmeasure
of occupational automation exposure for 306 occupations.
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the following empirical specification:

log hourly wage i,o,t = Automation o ⋅βt +X′i,t ⋅ γ + δi,o + ui,o,t

where δi,o represents occupation spell fixed effects, controlling for selection based on
persistent individual attributes. The vector X′i,t includes year fixed effects and individual
characteristics such as marital status, unionization status, and region of residence. The
coefficient βt captures the relative wage growth of occupations with different levels of
automation exposure.21
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FIGURE 2. Effects of Automation on Wage and Employment

Panel (a) reports the estimated wage effects of automation exposure using PSID data under different fixed
effect specifications. Panel (b) is a binscatter plot that presents employment changes across automation
exposure levels using Census and ACS data.

Panel (a) of Figure 2 presents the time-trendwage effects of automation under different
fixed effect specifications. The solid blue line represents the main specification, which
controls for individual job spell fixed effects, showing that occupations most exposed to
automation experienced a 40% relative wage decline.22 The blue dashed line (controlling
for both individual and occupational fixed effects) and the green dashed line (controlling
for occupation fixed effects only) suggest that failing to account for selection effects
underestimates the impact of automation on relative wages.

Panel (b) of Figure 2 plots employment effects using IPUMSCensus samples (1980–2000)
and ACS samples (2010–2018) for 306 occupations (Ruggles et al. 2024). The binscatter
plots log employment share changes against automation exposure, revealing that jobs
most exposed to automation experienced a log employment share decline of -1.2 relative
to the least exposed occupations. Combining the wage and employment effects implies an

21Notably, we do not control for time-varying education effects, as our objective is to capture the various
channels through which automation influences occupational wages, including its impact on returns to
education.
22The estimated related wage trends for jobs with different automation exposures are close to those in

Cortes (2016) and Acemoglu and Restrepo (2022).
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average labor supply elasticity of 2.85, assumingproductivity distributions are independent
across occupations.23 Additional details and further results are provided in Appendix B.5.

EstimatingElasticities. Weexploit theheterogeneous employment responses of different
demographic groups G (race x gender) to automation shocks to estimate labor supply
elasticities. We allow for demographic groups to have distinct labor productivities across
occupations, denoted as {Agt }g∈G while assuming that occupational skill requirements
are inherent to jobs. However, we do not distinguish whether differences in comparative
advantage stem from innate abilities or labor market discrimination, as this does not
affect elasticity estimates given the observed employment distribution.24 Later, we analyze
how group-skill-specific discrimination (Hurst, Rubinstein, and Shimizu 2024) affects the
substitution structure.

ASSUMPTION 1. Workers in different demographic groups have unobserved occupational labor
productivity, denoted by {Agt }g∈G.

Given the relative wage changes ŵAutoo,t+1 induced by occupational demand shifts due
to automation exposure, we can derive the corresponding group-specific occupational
employment shares implied by automation.

PROPOSITION 5. Hat-Algebra: Given occupational relative wage changes ŵAutoo,t+1, the correlation
function F, and shape parameter θ, the observed employment shares {πgt }g∈G serve as sufficient

statistics for predicting {πg,Autot+1 }
g∈G

, without information on occupational wagewt or labor

productivity {Agt }g∈G.

PROOF. See Appendix A.1.8 for the proof and algorithm.

We then estimate the labor supply elasticities {θ,ρCog,ρMan,ρInt} using changes in
employment shares {π̂gt }g∈G in response to the relative wage changes ŵ

Auto
o,t+1, resulting

from labor demand shocks due to automation exposure. Formally, we apply the pseudo-
Poisson maximum likelihood (PPML) method commonly used in the gravity literature
(Fally 2015):

{θ,ρCog,ρMan,ρInt} = argmin
Θ

∑
o∈O,g∈G

d (πgo,t+1,π
g
otπ̂

g,Auto
ot )

where d(x, x̂) ≡ 2[x ln(x/x̂) − (x − x̂)]. Identification follows from the assumption that
automation exposure is orthogonal to labor supply shocks, reflected in the conditional
23If productivity is independently distributed across occupations, regressing d ln (EmpShare) on d ln (Wage)

provides a valid estimate of θ.
24Given the correlation structure F and elasticity θ, observed employment shares serve as sufficient statistics

for employment adjustments to labor demand shocks.
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independence assumption embedded in the Poisson criterion: E [vgot ∣ ŵt,{π
g
t }g∈G] = 0

where vot = π̂
g
o,t+1/π̂

g,Auto
o,t+1 − 1. It’s worth mentioning that the level of the estimated wage

effect only affects the estimation of θwhile ρs are estimated from the employment changes
along the occupational robot exposures across groups.

Table 3 presents the PPML estimation results using two sets of cross-sectional employ-
ment shares. The first two columns use data from 1980 and 2000. In the CES specification
(first column), we impose ρs = 0, implying an independent productivity distribution across
occupations; this yields an estimated average elasticity of 3.12. In the CNCES specification
(second column), where ρs is allowed to be nonzero, roughly two-thirds of the variation in
the correlation structure is captured. Consequently, θ falls to 1.10, and ρCog = 0.78 is the
largest—indicating that cognitive skills are the most transferable—while ρMan = 0.48 is
the smallest, suggesting that manual skills are the least portable. These differences are
reflected in the elasticities of substitution: cognitive jobs are more substitutable because
they rely on highly transferable skills, whereas manual jobs are less substitutable due to
their lower skill portability. The subsequent two columns, based on employment shares
from 1980 and 2010, yield similar estimates, albeit with slightly larger standard errors.

TABLE 3. PPML Estimation Results of Labor Supply Elasticities

1980–2000 1980–2010
CES CNCES CES CNCES

θ 3.12 (0.20) 1.10 (0.32) 2.85 (0.20) 1.02 (0.30)
ρCog 0 0.78 (0.08) 0 0.76 (0.14)
ρMan 0 0.48 (0.11) 0 0.44 (0.11)
ρInt 0 0.75 (0.14) 0 0.72 (0.18)

Note: Following the literature, we scale the Poisson deviance by the mean-variance ratio of the data to obtain
standard errors. While scaling does not affect the estimates, it aligns the deviance with the data variance.
The estimates and standard errors of the CES specification are close to those from a simple OLS regression
with predicted wage effect as a regressor.

3.3. The Incidence of Automation and AI

For labor demand elasticity, we use the estimate from Caunedo, Jaume, and Keller (2023)
σ = 1.34, which is based on occupational input responses to labor productivity changes.
With the estimated labor supply elasticities, we are now ready to assess the labor market
incidence of automation and AI. In the following results, we use the estimates from
1980-2000 data.
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Spectral Analysis. We apply the spectral analysis developed in Section 2.3 to examine
the local effects of automation and AI shocks. Proposition 1 provides the expression for
the matrix of partial elasticities of substitution,25 allowing us to decompose the variance
of automation and AI shocks into eigenshocks for 1980 and 2018.26
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FIGURE 3. Spectral Analysis of Occupational Demand Shocks

Notes: Panel A shows the share of variance in automation and AI exposures explained by eigenshocks, while
Panel B presents the decomposition for import competition from China and demographic changes. Panels C
and D display the distribution of occupations most exposed to the eigenshocks with the smallest eigenvalues
in 1980 and 2018, respectively, where darker colors indicate higher exposure.

Figure 3 illustrates the results of this decomposition. Panel A shows the share of vari-
ance in empirical automation and AI exposures explained by eigenshocks, ranked by
their corresponding eigenvalues. The results indicate that both automation and AI are
predominantly explained by eigenshocks associated with the smallest eigenvalues (23%
and 44%, respectively). As discussed earlier, smallest eigenvalues imply that these eigen-
shocks induce minimal employment shifts. Consequently, the labor market has limited
capacity to absorb automation and AI shocks, leading to a more unequal distribution of
25We first invert the employment shares to obtain the implied Ao,twθ

o,t and then compute the partial
elasticities. The inversion is uniquely defined due to the gross-substitute property of the labor supplymapping,
which results from the sign-switching property of the correlation function.
26Eigenshocks are generally not orthogonal and we allocate the contribution of the covariance equally

among them.
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wage effects.
Panel B presents the eigenshock decomposition for two other occupational labor

demand shocks from the literature: import competition from China and occupational
demand shifts due to demographic changes, particularly population aging (Autor et al.
2024). These shocks load more heavily on eigenshocks associated with larger eigenvalues,
particularly in the case of demographic changes, suggesting that the labor market can
more effectively absorb their impact.

To further examine the structure of eigenshocks, Panels C and D plot the distribution
of occupations most exposed to the eigenshocks associated with the smallest eigenvalues
in 1980 and 2018, respectively, where darker colors indicate higher exposure. Comparing
these distributions to Figure 1, we see that automation and AI exposures almost perfectly
overlap with these eigenshocks.27 These eigenshocks cluster in skill-adjacent occupations,
as illustrated in the 2×2 example. This confirms that such clustering hinders workers from
transitioning away from affected occupations, exacerbating the labor market disruptions
caused by automation and AI.

The Incidence on Wages and Gains from Mobility. To better assess the distributional
consequences of automation and AI, we first use the estimated wage effects of automation
to invert the model and recover the corresponding relative demand changes and employ-
ment effects. For AI, we use the measured distribution of AI exposure and simulate an AI
shock that produces the same wage effect as the automation shock.28

We begin by analyzing how much of the relative demand shock translates into relative
wage changes and howmuch is absorbed through labor market adjustments. Panel A of
Figure 4 plots the share of relative demand changes that pass through to wages against the
relative demand shifts for occupations with varying levels of automation exposure. The
dashed line represents the wage incidence predicted using the estimated average elasticity
of substitution, implying that 30% of relative demand changes translate into wage effects.
However, the blue dots reveal that the wage incidence is higher for most occupations,
particularly for manual occupations (top-left dots), where 45% of relative demand shifts
are passed through to wages. This suggests that the clustering of automation exposure
lowers the equilibriumwage elasticity from 3.1 to approximately 2.2. Consequently, relying
on the average elasticity overestimates worker mobility by 40% and understates wage
incidence by more than 10 percentage points (from 40% to 30%).

Panel B plots the wage incidence of AI shocks, showing that the equilibrium elasticity
is around 2, with an even larger share of wage effects passing through. This result is con-
27For any eigenvector, its negative is also an eigenvector corresponding to the same eigenvalue. Thus,

reversing the color scale would yield the same interpretation for robot exposures.
28Since we focus on the relative effects of AI exposure, this choice simply facilitates comparison with

automation shocks.

26



sistent with the spectral analysis, which indicated that AI shocks load more variance onto
eigenshocks associated with the smallest eigenvalues, reducing labor market absorption
capacity. In Appendix B.6, we discussed the corresponding employment effects.

CES: 0.30

.2

.3

.4

.5

W
ag

e P
as

s-t
hr

ou
gh

-1 -.5 0 .5 1
Effect on Labor Demand

A. Wage Incidence of Automation

CES: 0.30

.2

.3

.4

.5

W
ag

e P
as

s-t
hr

ou
gh

-1 -.5 0 .5
Effect on Labor Demand

B. Wage Incidence of AI

0

.05

.1

.15

.2

Ga
ins

 F
ro

m 
Mo

bil
ity

 (ln
)

-.4 -.3 -.2 -.1 0
Automation Shock on Relative Wage (ln)

CES CNCES

C. Gains fromMobility for Automation

0

.05

.1

.15

.2

Ga
ins

 F
ro

m 
Mo

bil
ity

 (ln
)

-.5 -.4 -.3 -.2 -.1 0
AI Shock on Relative Wage (ln)

CES CNCES

D. Gains fromMobility for AI

FIGURE 4. The Incidence of Automation and AI

Notes: Panels A and B display the share of relative demand shocks that translate into wage changes for
automation and AI, respectively. For clarity, we exclude occupations with small relative demand changes or
large negative wage effects. Panels C and D illustrate the gains from worker mobility, measured as the share
of wage losses recovered (EV) through occupational transitions.

While wage effects reflect the impact on workers who remain in affected occupations,
many workers move away from negatively impacted jobs. To quantify the welfare effects
of mobility, we compute the equivalent variation (EV), expressed as:

EV ≈∑
o′
d ln(

wo′
wo
) × µoo′

where µoo′ denotes the share of workers transitioning from occupation o to o′. Panel
C of Figure 4 plots the average gains from mobility for automation shocks. Workers in
negatively impacted occupations recover 20% of their wage loss by transitioning to better
off jobs. However, the clustering of automation exposure reduces mobility by about 35%
compared to estimates derived from the average elasticity. This discrepancy arises because
the CES framework significantly overstates the probability of workers transitioning from
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the most affected jobs to substantially better off occupations.
Panel D presents the mobility gains for AI shocks, where workers recover approxi-

mately 25% of relative wage losses, exceeding the mobility recovery observed for automa-
tion shocks. This is because AI primarily affects cognitive-intensive jobs, and cognitive
skills are generally more transferable across occupations, leading to greater mobility
gains.

3.4. Summary

In this empirical section, we measure occupational skill requirements and use employ-
ment responses to automation shocks to estimate labor supply elasticities under DIDES.
The clustering of automation and AI shocks significantly reduces worker mobility, with ap-
proximately 40% of relative labor demand changes passing through to wages. Meanwhile,
workers can recover only about 20% of their relative wage losses through job mobility.

4. Dynamic Model with Transition

Ourmodel retains the Roy structure, enabling a seamless integration of DIDES into related
frameworks while incorporating a richer substitution structure — essential for counter-
factual analysis. In this quantitative section, we extend our static model into a dynamic
discrete choice framework (Artuç, Chaudhuri, and McLaren 2010; Caliendo, Dvorkin, and
Parro 2019) to capture gradual labor market transitions. This extension allows us to exam-
ine the dynamic labor market incidence of technological adoption in the transition and
the long run (Lehr and Restrepo 2022; Adão, Beraja, and Pandalai-Nayar 2024). Different
from Dvorkin and Monge-Naranjo (2019), who incorporates skill accumulation into the
dynamic occupation choice, we abstract from persistent ex-ante worker heterogeneity
while allowing for the flexible substitutability to focus on the incidence.

As established in the static model, the substitution structure plays a central role in
determining counterfactual outcomes, with observed job transition flows serving as suffi-
cient statistics. This insight distinguishes our approach from studies that estimate models
based on job transition flows with a single elasticity parameter (Traiberman 2019; Grigsby
2022; Bocquet 2024). By contrast, our framework explicitly incorporates correlation struc-
tures in the productivity distribution, thereby capturing realistic substitution patterns
among jobs.

4.1. Dynamic Discrete Choice with DIDES

Our focus is on studying the dynamic labor market incidence of technological adoption
rather than modeling firms’ endogenous technology adoption decisions. The production

28



side remains identical to the static framework, while workers make rational, forward-
looking occupational choices in response to automation and AI shocks. To model these
choices, we adopt a structure similar to Caliendo, Dvorkin, and Parro (2019) with a corre-
lated productivity distribution among jobs.

Workers’ Dynamic Decision. In each period, we denote the vector of occupational em-
ployment by Lt. Workers are assumed to be hand-to-mouth, taking the wage path {wt}∞t=0,
as given, and derive utility from consumption and labor supply according to:

U ({ct(i), ℓt(i)}∞t=0) =
∞

∑
t=0

βt (ln ct(i) − ln ℓt(i))

At the beginning of each period, workers draw their labor productivity across all
occupations from the same distribution as in the static model:29

Pr [ϵ1(i) ≤ ϵ1, . . . ,ϵO(i) ≤ ϵO] = exp [−F (A1ϵ−θ1 , . . . ,AOϵ−θO )]

After observing their labor productivity, workers choose an occupation, with consumption
equal to occupational income, ct = wo,t, and labor supply given by

ln (ℓt (i)) = −κ ln (ϵo,t (i))

In contrast to the static model, productivity enters the labor supply function with a short-
run discounting factor κ which governs short-run labor supply elasticity. Although we
could allow workers to redraw their labor productivity with a short-run probability, doing
so yields the same sufficient statistics for counterfactual welfare and similar dynamics
30. However, permitting productivity redraws would imply larger gains from reallocation
under the same transition dynamics. In addition, workers incur a job transition cost τoo′
when switching occupations.

ASSUMPTION 2. The job transition cost is constant over time τoo′ and measured in terms of
utility.

Given this economic environment, we formulate workers’ decisions recursively via
the following Hamilton-Jacobi-Bellman (HJB) equation:

vo,t (ϵt) =max
o′
{lnwo′ + κ lnϵo′,t +βVo,t+1 − τoo′} with Vo,t+1 = Eϵ [vo,t+1 (ϵ)]

29The correlation function in both transition and steady state corresponds to the same empirical elasticities.
To see this, if transition probabilities are identical across all origins, then these probabilities correspond to
the stationary distribution, implying they share the same substitution structure.
30Allowing for a short-run probability of redrawing productivity can also be interpreted as an overlapping

generations (OLG) framework.
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where vo,t (ϵt) denotes a worker’s lifetime utility in occupation o after observing their
productivity. This utility comprises current-period benefits, lnwo′ + κ lnϵo′,t and the
discounted expected future utility, Vo,t+1 = Eϵ [vo,t+1 (ϵ)], net of the job transition cost
τoo′ . Workers will choose the occupation o′ to maximize their lifetime utility.

Consequently, we can recursively express the occupational expected utility as

Vo,t = ln
⎛

⎝
F (A1,tZo1,t

θ
κ , . . . ,AO,tZ

θ
κ
oO,t)

κ
θ⎞

⎠
+ γ̄

κ

θ

where Zoo′,t = exp (βVo′,t+1 + lnwo′,t − τoo′)

Additionally, the job transition probability can be derived as shown in Appendix A.2.1:

µoo′,t =
Ao′,tZoo′,t

θ
κ × Fo′ (A1,tZo1,t

θ
κ , . . . ,AO,tZ

θ
κ
oO,t)

F (A1,tZo1,t
θ
κ , . . . ,AO,tZ

θ
κ
oO,t)

The interplay of job transition costs and idiosyncratic productivity shocks generates
the slow labor market adjustments appearing in our model. A key distinction of our
approach is that it allows for a rich substitution pattern between jobs, as embedded in the
correlation function F. When F is additive, our framework reduces to the standard model.

Dynamic Equilibrium. As discussed in the static model, the share of tasks performed
by labor, denoted by {sℓt}

∞

t=0, characterizes the distributional effects of technological

adoption, while aggregate capital productivity, {akt }
∞

t=0
, is Hicks-neutral (See Appendix

A.4). All other occupational labor productivity is represented by {At}∞t=0.
Given the time-varying fundamentals {Ψt}∞t=0 = {s

ℓ
t ,a

k
t ,At}

∞

t=0
, we define a dynamic

equilibrium under rational expectations. In this equilibrium, there exists a time path of
wages, {wt}∞t=0, occupational allocations, {Lt}

∞
t=0, and job transition probabilities, {µt}

∞
t=0

such that
a. The wage vectorwt = w (sℓt ,a

k
t ,Lt) is the solution to the static production equilibrium.

b. Workers’ optimal occupational choices yield job transitions, µt = {µoo′,t}
O,O
o=1,o′=1.

c. The labor allocation evolves according to Lo,t = ∑o′ µoo′,tLo,t−1.31

31We construct job flows from the retrospective responses in the March CPS; consequently, the aggregate
flows derived from these responses do not directly match the observed occupational employment levels. To
account for this discrepancy, we adjust the evolution of occupational employment as Lo,t = ∑o′ µoo′,tLo,t−1 +
∆Lo,t .
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4.2. Dynamic Hat Algbrea with Correlation

In this section, we extend the dynamic hat algebra to incorporate correlated productivity
distributions, thereby enabling a richer substitution pattern. The model is designed to
address key counterfactual questions. For example, whatwould have happened to thewage
distribution if automation technologies had not been adopted? Alternatively, how much
can the labor market absorb the unequal demand shocks caused by AI if AI technologies
are adopted to the same extent as automation, but with a much more rapid pace by 2030?

Formally, by counterfactual analysis we study how equilibrium allocations across
occupations and over time change relative to a baseline economy when faced with an
alternative sequence of fundamentals, which we denote by {Ψ′t}

∞

t=1. As is standard, we
examine the impact of changes in these counterfactual fundamentals on the equilibrium
outcomes of interest.

To facilitate the characterization of the dynamic equilibrium, we introduce additional
notation. For any scalar or vector x, we denote its proportional change between periods t
and t + 1 as ẋt+1 = xt+1/xt. Additionally, we use x′t to denote the corresponding variable in
the counterfactual economy. Lastly, we define x̂t+1 = ẋ′t+1/ẋt+1 which represents the ratio
of the time change in the counterfactual equilibrium to that in the initial equilibrium.

Before characterizing counterfactual outcomes, we introduce the correlation-adjusted
transition probability:

µ̃oo′,t = Ao′,tZoo′,t
θ
κ /F (A1,tZo1,t

θ
κ , . . . ,AO,tZ

θ
κ
oO,t)

which will serve as a sufficient statistic. Note that when F is additive, µ̃t coincides with µt

since µ̃oo′,t = µoo′,t/Fo′ .

LEMMA 4. Given the correlation function F, there exists a unique mapping between the occupa-
tion transition probability µt and the correlation-adjusted transition probability µ̃t:

{µoo′,t = µ̃oo′,t Fo′(µ̃o1,t, . . . , µ̃oO,t)}
O

o′=1
, ∀ o.

With this correlation-adjusted transition probability, we are ready to introduce the
dynamic hat algebra with correlation to analyze how economic outcomes change counter-
factually. Specifically, we study how allocations and wages across occupations evolve over
time in response to alternative sequences of fundamentals, denoted by {Ψ̂t}

∞

t=1.

PROPOSITION 6. For the time-varying counterfactual changes in fundamentals {Ψ̂t}
∞

t=1 =

{ŝℓt , âkt , Ât}
∞

t=1
with limt→∞ Ψ̂t = 1. The observed allocations and transition probability {Lt,µt}∞t=0

are sufficient to characterize the counterfactual changes in allocations, wages, and expected
utility (uo,t = exp (Vo,t)). Formally:
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• The counterfactual changes in wage ŵt = ŵ (ŝℓt , âkt , L̂t) solves the static production equilib-
rium.

• The counterfactual, correlation-adjusted transition probability is given by

µ̃′oo′,t =
µ̃′oo′,t−1

˙̃µoo′,tÂo′,tû
βθ

κ
o′t+1ŵ

θ
κ
o′,t

F
⎛

⎝
{µ̃′oo′′,t−1

˙̃µoo′′,tÂo′′,tû
βθ

κ
o′′,t+1ŵ

θ
κ
o′′,t}

O

o′′=1

⎞

⎠

• The counterfactual change in utility is characterized by

ûo,t+1 = F
⎛

⎝
{µ̃′oo′′,t

˙̃µoo′′,t+1Âo′,t+1û
βθ

κ
o′t+2ŵ

θ
κ
o′,t+1}

O

o′′=1

⎞

⎠

κ
θ

with terminal condition limt→∞ ûo,t = 1.
• The counterfactual occupational allocation evolves according to L′o′,t = ∑o µ

′
oo′,tL

′
o,t−1.

PROOF. See Appendix A.7 for proof and for the different expression for time 0 that ac-
counts for unexpected changes in fundamentals.

Proposition 6 demonstrates the sufficient statistic property of the dynamic hat algebra:
the observed allocations and transition probabilities fully characterize the counterfactual
outcomes under a new sequence of fundamentals. Moreover, it underscores the critical
role of the substitution structure — captured by the function F — which governs the coun-
terfactual implications. In particular, while the observed allocations serve as sufficient
statistics, the specific form of F determines how changes in fundamentals translate into
counterfactual wages and allocations.32 Our static results, which show that the clustering
nature of technological changes combined with DIDES leads to an unequal labor market
incidence, persist in the dynamic framework.

Finally, as derived in the Appendix A.8, the welfare change resulting from a shift in
fundamentals—measured in terms of consumption equivalent variation—can be expressed
as

EVo,t =
∞

∑
s=t

βs−t ln(ŵo,s/ˆ̃µ
κ
θ
oo,s)

Moreover, the changes in the occupation-specific adjusted staying probabilities capture
the gains frommobility, echoing the results in Arkolakis, Costinot, and Rodríguez-Clare
(2012), once the substitution structure is taken into account.

32When F is additive, we are back to the standard dynamic hat algebra approach with independent produc-
tivity distribution.
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4.3. Data and Estimation

the Euler-EquationApproach. Based on the Euler-equation approach introduced by ACM
(Artuç, Chaudhuri, and McLaren 2010), we account for the correlation in the productivity
distribution and the corresponding substitution structure. Specifically, we derive the
following analogous estimating equation:

ln
µ̃oo′,t
µ̃oo,t

=
θ

κ
ln
wo′,t
wo,t

+β ln
µ̃oo′,t+1
µ̃o′o′,t+1

+ (β − 1)τoo′ + νt

whereνt is an error term.This expressionparallelsACM’s formulation, butwith correlation-
adjusted job transitions. Intuitively, the cross-sectional adjusted job transition flows incor-
porate information on expected future wages and the option value of job mobility, and the
adjusted future job transition flows in this regression serve as sufficient statistics for these
option values (see Appendix A.8 for details). The key insight is that, after conditioning on
adjusted future values, the coefficient θ

κ
33 represents the elasticity of relative adjusted

job transitions with respect to changes in relative wages. As in ACM, the theory implies
that lagged values of wages and adjusted job transitions are valid instruments.34

Data and EstimationResults. Our estimation strategy requires aggregate job flows across
occupations. We construct these measures using individual-level data from the US Census
Bureau’sMarchCurrent Population Survey (CPS). Due to dataset size constraints, we cluster
occupations into 15 groups based on their skill requirements using a k-means algorithm.
The resulting procedure is intuitive, as occupations with similar skill requirements are
grouped together in the skill space. Finally, we compute the annualized job transition
probabilities among these 15 clusters, µt, for the period 1976–2019. Appendix B.7 provides
a detailed discussion of the data construction.

TABLE 4. Estimation of Short-run Elasticity θ
κ

(1) (2) (3) (4)
θ
κ 0.063∗∗∗ 0.071∗∗∗ 0.068∗∗ 0.080∗∗

(0.018) (0.018) (0.025) (0.025)

Destination FE ✓

Origin FE ✓

IV ✓ ✓ ✓

Notes: Column (1) presents the baseline OLS estimate of the short-run elasticity. Column (2) employs IV
estimation using lagged adjusted job transition probabilities and wages as instruments. Columns (3) and (4)
add destination and origin fixed effects, respectively.

33We cannot separately estimate θ and κ, nor is it necessary to do so, as they enter the equilibrium dynamics
and welfare metrics jointly, as demonstrated in Proposition 6.
34The exclusion condition is that the error term νt is not correlated over time. See ACM for a detailed

discussion.
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We use β = 0.96 as the annual discount factor. Table 4 reports the estimation results for
the short-run elasticity θ

κ . Column (1) presents the OLS estimate, which yields a short-run
elasticity of 0.063. Column (2) implements an IV approach using lagged adjusted job tran-
sition probabilities and wages as instruments, resulting in an estimate of 0.071. Columns
(3) and (4) incorporate destination and origin fixed effects, respectively, yielding estimates
of 0.068 and 0.080. Although these estimates are broadly consistent, they are lower than
those reported in ACM, primarily due to our use of correlation-adjusted job transition
probabilities. As discussed in the static model, this adjustment nets out within-skill substi-
tutability — a major source of variation in the response of job transitions to relative wage
changes. Moreover, grouping occupations by similar skill requirements further reduces
across-cluster job transition responses, contributing to the smaller elasticity estimates.

4.4. The Dynamic Incidence of Automation and AI

We now assess the distributional effects of automation and AI within a slow-adjustment
labor market framework. In our quantitative evaluation, we employ 15 occupation clusters
with transition probabilities constructed from CPS data. For our counterfactual appli-
cations, we use elasticities from our static estimation, augmented by a short-run labor
supply elasticity θ/κ = 0.07 estimated via the Euler-equation approach. To maintain clarity,
we focus on average effects over time and do not present cross-sectional heterogeneity
here, as those results closely mirror those from the static model.

For automation technologies, we obtain an ex-post estimate of their dynamic wage
effects, as shown in Panel A of Figure 2. The findings indicate that occupations with
higher automation exposure have experienced a gradual relative wage decline since 1985,
resulting in up to a 50% difference between occupations where all tasks are exposed and
those where none are. To match this observed wage trend, we calibrate the share of tasks
performed by labor, {sℓt}. We then implement the following counterfactual scenario: what
would have occurred if the task labor shares {sℓt} had remained unchanged since 1985?

35

Panel A of Figure 5 illustrates the relative decline in occupational labor demand due
to larger automation exposures (dashed line) alongside the share of demand changes
absorbed by employment shifts (green line). Employment adjustments mitigate roughly
two-thirds of the relative demand changes, with the remaining one-third materializ-
ing as relative wage changes (depicted by the blue line in Panel B). In Panel B, the or-
ange line represents the cumulative effect of mobility-adjusted wage changes, given by

∑
t
s=1985 ln(ŵo,s/ˆ̃µ

κ
θ
oo,s), which accounts for worker mobility gains. These gains offset ap-

proximately half of the wage loss. Compared to the static model, mobility gains are higher
because we allow workers to redraw their productivity, a more realistic setting when
35Sincewe focus on the unequal effects of additional automation exposure, we omit discussions of aggregate

gains.
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occupational productivity is not permanent in reality.36 Furthermore, because workers
are forward-looking, mobility gains occur early in the adjustment process, as outside
options improve immediately for negatively impacted jobs, while wage effects accumulate
gradually over time.
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FIGURE 5. The Dynamic Incidence of Automation and AI

Notes: Panels A and B show the employment and wage effects of automation exposure, while Panels C and D
depict the projected effects of rapid AI adoption. Dashed lines represent changes in labor demand, green
lines indicate employment shifts, and blue lines capture wage incidence. The orange line in Panels B and D
accounts for mobility-adjusted wage changes.

The gradual wage impact of automation suggests that its adoption occurred progres-
sively over the past four decades, allowing the labor market to absorb roughly two-thirds
of the associated labor demand shifts over time. The gradual adoption of automation
makes the labor market adjustment in transition similar to that in the long run. However,
if AI advances rapidly — as many practitioners advocate — the labor market may face
greater adjustment challenges. To explore this scenario, we consider a counterfactual in
which AI adoption reaches the same scale as automation by 2030, allowing us to evaluate
labor market responses to a rapid technological transition.
36Workers in their current jobs typically have higher occupation-specific productivity due to selection; if

productivity were permanent, they would face greater losses when transitioning. Allowing new productivity
draws each period provides the same sufficient statistics for mobility gains as an overlapping generations
(OLG) model.
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Panels C and D of Figure 5 illustrate the dynamic incidence of accelerated AI adoption.
Panel C shows that the labor market adjusts sluggishly, absorbing less than one-third of
relative demand shifts initially, with another one-third absorbed over the subsequent two
decades. In Panel D, occupations highly exposed to AI experience a sharp wage decline as
full adoption materializes by 2030, followed by a gradual recovery. Mobility gains offset
approximately one-third of the relative wage loss during the transition. Overall, these
findings suggest that the slow pace of labor market adjustment severely limits its ability
to absorb the impact of rapid AI advancements.

These findings underscore a key insight that extends beyond the static model: the
clustering nature of both automation and AI exposure constrains workermobility, limiting
the labor market’s capacity to absorb these shocks through occupational transitions in
both the short and long run. In the case of automation, this rigidity is most pronounced
in the long run, as gradual adoption has contributed to persistent wage disparities across
occupations. For a rapid AI expansion, however, the constraints on mobility operate in
both the short and long run, amplifying labor market inequality and resulting in a highly
uneven distribution of economic incidence.

5. Conclusion

This paper develops a general framework for evaluating the labor market incidence of
technological shocks, with a particular focus on automation and AI. At the heart of our
analysis is the distance-dependent elasticity of substitution (DIDES), which captures how
substitutability between occupations declines with their distance in skill space. This
structure provides a unified approach to studying how automation and AI affect wages,
employment, and mobility across occupations.

Our static analysis highlights that automation and AI affect distinct sets of occupations
but share a common feature: they cluster within skill-adjacent occupations, leading to
significant unequal wage changes with limited employment reallocation. This clustering
nature significantly reduces labor market adaptability: the equilibrium labor elasticity
is one-third lower than under a unitary elasticity assumption. Using spectral analysis,
we show that these technological shocks primarily load onto eigenshocks with small
eigenvalues, meaning they induce large wage dispersion with minimal employment shifts.
Empirically, we estimate that approximately 40% of relative labor demand shocks pass
through to wages, while only 20% of wage losses are offset by worker mobility—suggesting
that technological shocks create large and persistent distributional effects in the long run.
In contrast, a standard framework assuming unit elasticity would understate the wage
effects of automation by 30% and overestimate the gains from occupational mobility by
up to a half.

To assess the dynamic evolution of these effects, we extend our framework into a slow-
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adjustment labor market model with occupational transition probabilities and forward-
looking worker behavior. Empirical estimates show that automation-driven labor demand
shifts since 1985 have led to up to a 50% cumulative wage gap between highly exposed
and unaffected occupations. While employment reallocation absorbs two-thirds of these
shocks, the remaining one-third passes through to wages, with mobility gains offsetting
only half of the wage losses. However, the gradual adoption of automation has allowed
the labor market to absorb these unequal effects over time, stabilizing the long-run wage
distribution at a persistent but steady disparity across occupations.

For AI, we simulate a counterfactual scenario where adoption reaches automation’s
historical scale by 2030. The results suggest that less than one-third of labor demand shifts
would be absorbed initially, with another third absorbed over two decades. Unlike automa-
tion, where gradual adoption facilitated labor market absorption, a rapid AI expansion
would generate immediate and severe wage losses, particularly in cognitive-intensive oc-
cupations with limited transition pathways. This sluggish labor market response wouldn’t
mitigate wage inequality in the transition, leading to a more uneven and disruptive adjust-
ment compared to past technological changes.

These findings highlight the need for policies that facilitate transitions across skill
boundaries, rather than assuming that market forces alone will smooth out the impact of
technological disruptions. One key implication is that skill-based mobility subsidies —
which provide targeted support for workers moving into occupations where their exist-
ing skills remain valuable — could help mitigate wage losses and improve reallocation
efficiency. Additionally, tax incentives for firms that invest in structured, job-specific
retraining would encourage greater adaptability among affected workers while reducing
labor market frictions. Given the clustering of automation and AI exposure, occupational
mobility support — such as relocation assistance or wage insurance for transitioning
workers — could also ease the burden on those facing the most severe wage pressures.

While this paper focuses on the short- and medium-run labor market incidence of
automation and AI, future research could extend the framework to capture endogenous
skill acquisition, firm technology adoption, and global trade dynamics. Additionally, the
DIDES framework could be applied to study other forms of labor market shocks, such as
trade-induced disruptions (e.g., the China shock) or demographic shifts.

Overall, our findings underscore the importance of considering the substitution struc-
ture between jobs, skill-space clustering of technological changes, and dynamic reallo-
cation frictions when assessing the labor market effects of automation and AI. As these
technologies continue to reshape the economic landscape, understanding their dynamic
and distributional consequences will be critical for designing policies that ensure more
equitable labor market outcomes.
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Appendix A. Proof of Results in Main Text

A.1. Results in the Static Framework

A.1.1. Properties of the Correlation Function

The correlation function F : RN+ → R+ satisfies the following properties:
a. F is homogeneous of degree one.
b. F is unbounded.
c. If the mixed partial derivatives of F exist and are continuous up to order N, then the

n-th partial derivative of F with respect to the distinct argument of n is nonnegative if
o is odd and non-positive if o is even.

Additionally, the function C (u1, . . . ,uN) = exp [−F (− lnu1, . . . ,− lnuN)] is a max-stable
copula satisfying the property:

C (u1, . . . ,uN) = C (u
1/m
1 , . . . ,u1/mN )

m
,∀m > 0 and (u1, . . . ,uN) ∈ [0, 1]N

A.1.2. Proof of Proposition 1

Labor Demand. We begin by deriving the labor demand equation, following the frame-
work established in Acemoglu and Restrepo (2022). The production equilibrium of this
economy, with h taken as given, is determined by solving the following optimization
problem for the representative firm:

max
{k(x),ho(x)}x∈T

y − ∫
T
(k(x)) ⋅ dx

Subject to: y = (∫
T
(y(x))

σ−1
σ ⋅ dx)

σ
σ−1

y(x) = a(x)k(x) + ho(x),∀x ∈ To,∀o

Lo = ∫
To

ℓo(x)dx,∀o

Since the objective function is concave and the constraint set is convex, the optimization
problem has a unique maximum, provided certain assumptions hold. Specifically, we

assume that (∫∪oTko a(x)
σ−1dx)

1
1−σ
> 1, ruling out cases where capital could self-replicate to

infinity. Letwo denote the Lagrange multiplier associated with the labor supply constraint
for occupation o. Task allocation must satisfy: (1):

Tℓo = {x :
1

a(x)
≥ wo,x ∈ T0} and Tko = {x :

1
a(x)

< wo,x ∈ T0}
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Additionally, the demand for task x is given by:

y (x) = y ⋅ p (x)−σ

where the equilibrium task price p (x) is

(A1) p (x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a (x)−1 if x ∈ Tko
wo if x ∈ Tℓo

This implies that the task-level capital and labor demands are:

k(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y ⋅ a(x)σ if x ∈ Tko,

0 if x ∉ Tko,

ℓo(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y ⋅w−σo if x ∈ Tℓo,

0 if x ∉ Tℓo.

Integrating labor demand over the set of tasks for occupation o gives:

Lo = ∫x∈Tℓ
o
ℓo (x)dx = y ⋅MTℓ

o
w−σo

Ô⇒ wo = (y ⋅MTℓ
o
⋅)

1
σ ⋅ L−

1
σ

o(A2)

Differentiating which yields (3) in vector form:

d lnw =
1
σ
d ln y ⋅ 1 −

1
σ
d lnΓ j −

1
σ
d lnL

Thefinal output canbederivedby substituting (A1) into theCESprice index 1 = ∫T p(x)
1−σdx:

1 = ∫
∪oTko

a (x)σ−1 dx +∑
o
w1−σo ⋅MTℓ

o
.

Next substituting (A2) gives the expression for final output,

1 = ∫
∪oTko

a (x)σ−1 dx +∑
o
(
y
ho
)

1−σ
σ
⋅M

1
σ

Tℓ
o

y = (1 − ∫
∪oTko

a (x)σ−1 dx)

σ
1−σ
⋅ (∑

o
h

σ−1
σ
o ⋅M

1
σ

Tℓ
o
)

σ
σ−1

.(A3)
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Lastly, the capital share can be obtained as

sK =
∫∪oTko

y ⋅ p (x)1−σ dx

y
= ∫
∪oTko

a (x)σ−1 dx.

Labor Supply. Part of this section follows Lind and Ramondo (2023). The economy
comprises a continuumofworkers, each indexedby i, with productivity across occupations
represented as:

ϵ(i) = {ϵo(i)}Oo=1

where the joint distribution of productivity across occupations is given by:

Pr [ϵ1(i) ≤ ϵ1, . . . ,ϵO(i) ≤ ϵO] = exp [−F (A1ϵ−θ1 , . . . ,AOϵ−θO )]

Workers select occupations to maximize their utility, o(i) = argmaxo′ wo′ϵo′(i), which also
follows a Fréchet distribution:

Pr [max
o

woϵo(i) ≤ t] = Pr [w1ϵ1(i) ≤ t, . . . ,wOϵO(i) ≤ t]

= exp [−F (A1wθ
1 t
−θ, . . . ,AOwθ

Ot
−θ
)]

= exp [−F (A1wθ
1 , . . . ,AOw

θ
O) t
−θ
]

the last line follows F is HD1. Furthermore, the principle of maximum stability ensures
that the conditional distribution of utility is identical to the unconditional distribution:

Pr [woϵo (i) ≤ t ∣ woϵo (i) =max
o′

w′oϵ
′
o(i)] = exp [−F (A1w

θ
1 , . . . ,AOw

θ
O) t
−θ
]

As a result, the utility distribution across occupations is identical. The average utility of
workers is then given by:

E[u] = ∫
∞

0
t ⋅ dPr [max

o
woϵo(i) ≤ t] = Γ (1 −

1
θ
)F (A1wθ

1 , . . . ,AOw
θ
O)

1
θ

the wage index can be defined as

W = F (A1wθ
1 , . . . ,AOw

θ
O)

1
θ .

Next, the employment share of each occupation is derived as:

πo ≡ Pr [woϵo(i) =max
o′

w′oϵ
′
o(i)] =

Aowθ
oFo (A1wθ

1 , . . . ,AOw
θ
O)

F (A1wθ
1 , . . . ,AOw

θ
O)
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where Fo =
∂F(x1,...,xO)

∂xo .

PROOF. See Appendix C.1.

Now, the total occupation labor supply is Lo = πoL. The elasticity of labor supply for
occupation o with respect to relative wages is derived as

∂ lnπo
∂ ln (wo′/W)

=

∂ ln
wθ
o Go(wθ

1 ,⋅⋅⋅,w
θ
O)

G(wθ
1 ,⋅⋅⋅,w

θ
O)

∂ ln (wo′/W)
=

∂ ln((woW )
θGo (wθ

1 /W
θ, ...,wθ

O/W
θ))

∂ ln (wo′/W)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

θ
wθ
o′Goo′
Go if o′ ≠ o

θw
θ
o Goo
Go + θ if o′ = o

the derivation uses F is HD1. Finally, the partial elasticity of ho with respect to absolute
wages is:

∂ lnπo
∂ lnwo′

=
∂ lnπo

∂ ln (wo′/W)
⋅
∂ ln (wo′/W)

∂ lnwo′
+
∂ lnπo
∂ lnW

⋅
∂ lnW
∂ lnwo′

= θ
wθ
o′Goo′
Go

− θπℓo′

∂ lnπo
∂ lnwo

= θ + θ
wθ
oGoo
Go

− (θ)πℓo

= θ
wθ
oGoo
Go

+ θ (1 − πℓo)

This concludes the derivation, as summarized in (5) of Proposition 1. In addition, we have
the row sum of Θ equal to 0:

∑
o′

Θoo′ =∑
o′

θ
wθ
o′Goo′
Go

+ θ (1 − πℓo) − ∑
o′≠o

so

=
θ

Go
∑
o′
Goo′ = 0

the last equality comes from Go is HD0.

A.1.3. Proof of Lemma 1

We solve for labor demand and supply in equilibrium as follows:
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(I +
1
σ
Θ) × d lnw =

1
σ
d ln y ⋅ 1 −

1
σ
d ln Γ j

Ô⇒ lnw =
1
σ
d ln y ⋅ 1 − (I +

1
σ
Θ)
−1 d ln Γ j

σ

Here, we use the fact that the row sums of Θ equal one.
For the wage change d lnw, we denote the share of workers transitioning from occu-

pation o to o′ by µoo′. For an individual worker imaking this transition, the equivalent
variation (EV) of mobility gains is given by:

(lnwo + d lnwo) + lnϵo (i) + ln (1 + EV) = (lnwo′ + d lnwo′) + lnϵo′

Additionally, based on workers’ optimal choices, we have:

lnwo + lnϵo ≥ lnwo′ + lnϵo′

lnwo + d lnwo lnϵo ≤ lnwo′ + d lnwo′ + lnϵo′

As d lnw → 0, it follows that lnwo + lnϵo = lnwo′ + lnϵo′. Consequently, we can express
the equivalent variation as:

EV (i) = d lnwo′ − d lnwo ≡ EVoo′

Since workers transition only when the relative wage change is positive, we must have
d lnwo′ − d lnwo > 0.

By the definition of the partial elasticity of substitution, the total change in employment
is:

d ln ℓ =∑
o′

Θoo′ × dwo′ =∑
o′

Θoo′ (d lnwo′ − lnwo)

For d lnwo′−d lnwo > 0, the share ofworkers transitioning is givenby:µoo′ = −Θoo′ (d lnwo′ − lnwo).
Finally, the average mobility gains are computed as:

EVo =∑
o′

µoo′EVoo′ = −∑
o′

Θoo′ (d lnwo′ − d lnwo)
2 1d lnwo′−d lnwo>0.

A.1.4. Proof of Proposition 2

The proposition follows from the eigen-decomposition of the elasticity of substitution
matrix

Θ = UΛV Ô⇒ Θ =
O
∑
n
λnunv′n
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where the equation holds because un ⋅ v′m = 0,∀m ≠ n by the construction of eigenvectors.
Next, since the set {u0} forms a basis that spans O-dimensional space, we can project the
empirical shocks into the basis and the coefficient is given by

d lnΓ
σ
=

O
∑
n=1

vn ⋅ bn, where b = (U′U)
−1U′ ⋅

d lnΓ
σ

Finally, using equation (7) , we derive:

d lnw =
1
σ
y ⋅ 1 − (I +

1
σ
Θ)
−1
⋅
d lnΓ
σ
=
1
σ
y ⋅ 1 − (I +

1
σ
UΛV)

−1
⋅
d lnΓ
σ

=
1
σ
y ⋅ 1 − V−1 ⋅ (I +

1
σ
Λ)
−1
⋅U−1 ⋅

d lnΓ
σ
=
1
σ
y ⋅ 1 −U ⋅ (I +

1
σ
Λ)
−1
⋅ V ⋅

d lnΓ
σ

=
1
σ
y ⋅ 1 −

O
∑
n=1

1
1 + λn

σ

unv′n ⋅
d lnΓ
σ
=
1
σ
y ⋅ 1 −

O
∑
n=1

1
1 + λn

σ

unv′n ⋅
⎛

⎝

O
∑
n=1

un ⋅ bn
⎞

⎠

=
1
σ
d ln y ⋅ 1 +

O
∑
n=1

1
1 + λn

σ

un ⋅ bn

which concludes the proof.

A.1.5. Proof of Lemma 2

We first observe that the correlation function F is homogeneous of degree 1 and satisfies
the sign-switching property:

∂2F
∂xi∂x j

≤ 0,∀i ≠ j and
∂2F
∂x2i
≥ 0,∀i

. From this, it immediately follows that:

∂ lnho
∂ lnwo

= θ
Aowθ

oFoo
Fo

+ (θ − 1) (1 − so) > 0

∂ lnho
∂ lnwo′

= θ
Ao′wθ

o′Foo′
Fo

− (θ − 1)so′ < 0

Additionally, the row sum of Θ is zero, as shown below:

∑
o′

Θoo′ =∑
o′

θ
Ao′wθ

o′Foo′ (A1w
θ
1 , . . . ,AOw

θ
O)

Fo (A1wθ
1 , . . . ,AOw

θ
O)

− ∑
o′≠o
(θ − 1)so′ + (θ − 1) (1 − so) = 0

The second equality follows from the homogeneity of degree 1 (HD1) property of the
function F. Therefore,Θ is a diagonally dominant matrix, implying that all its eigenvalues
are non-negative. Furthermore, the existence of λ1 = 0 is guaranteed because the row sum
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of Θ is zero.

A.1.6. Proof of Proposition 3.

The joint productivity distribution for each skill s is given by:

Pr [ϵs1(i) ≤ ϵ
s
1, . . . ,ϵ

s
O(i) ≤ ϵ

s
O] = exp

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
⎛

⎝

O
∑
o=1
((ϵso)

−θ
)

1
1−ρs ⎞

⎠

1−ρs⎤⎥
⎥
⎥
⎥
⎥
⎦

Using this, we can derive the joint productivity distribution:

Pr [ϵ1(i) ≤ ϵ1, . . . ,ϵO(i) ≤ ϵO] = Pr [max
s∈S

As1 ⋅ ϵ
s
1 (i) ≤ ϵ1, . . . ,maxs∈S

AsO ⋅ ϵ
s
O (i) ≤ ϵO]

= Πs∈S Pr [ϵs1 (i) ≤
ϵ1
As1
, . . . ,ϵsO (i) ≤

ϵO
AsO
]

= Πs∈S exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−
⎛

⎝

O
∑
o=1
((Aso)

θ
⋅ (ϵo)

−θ
)

1
1−ρs ⎞

⎠

1−ρs⎤⎥
⎥
⎥
⎥
⎥
⎦

= exp
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−∑
s∈S

⎛

⎝

O
∑
o=1
((Aso)

θ
⋅ (ϵo)

−θ
)

1
1−ρs ⎞

⎠

1−ρs⎤⎥
⎥
⎥
⎥
⎥
⎦

Finally, after defining: Ao ≡ ∑s∈S (Aso)
θ andωs

o ≡
(Aso)

θ

Ao , we can rewrite the last expression
as in proposition 3.

A.1.7. Proof of Proposition 4.

From Appendix A.1.2, the employment share is given by:

πo =
Aowθ

oFo (A1wθ
1 , . . . ,AOw

θ
O)

F (A1wθ
1 , . . . ,AOw

θ
O)

=
Aowθ

oFo
∑o′ Ao′wθ

o′Fo′

and the CNCES parameterization specifies: F (x1, . . . ,xO) = ∑s∈S [∑Oo=1 (ω
s
oxo)

1
1−ρs ]

1−ρs
.

Let Gs = ∑Oo′=1 (ω
s
o′xo′)

1
1−ρs , The partial derivative of F is then:

∂F
∂xo
=∑
s∈S

∂

∂xo
(G1−ρss ) =∑

s∈S
(1 − ρs)G−ρss ⋅

∂Gs
∂xo

where
∂Gs
∂xo
=

1
1 − ρs

(ωs
oxo)

ρs
1−ρs ωs

o
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Simplifying:
∂F
∂xo
=∑
s∈S
G−ρss (ωs

oxo)
ρs
1−ps ωs

o

Using this result, we find:

xoFo
∑o′ xo′Fo′

=∑
s∈S

⎛
⎜
⎝

(ωs
oxo)

1
1−ρs

Gs

⎞
⎟
⎠

⎛

⎝

G1−ρss
F
⎞

⎠

Substituting xo = Aowθ
o , the employment share under CNCES is:

πo =∑
s∈S

(ωs
oAowθ

o)
1

1−ρs

∑
O
o′=1 (ω

s
o′Ao′w

θ
o′)

1
1−ρs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
π
s,W
o

⋅

[∑
O
o′=1 (ω

s
o′Ao′w

θ
o′)

1
1−ρs ]

1−ρs

∑s′∈S [∑
O
o′=1 (ω

s′
o′Ao′w

θ
o′)

1
1−ρs′ ]

1−ρs′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
πs,B

as shown in equation (9). To derive the correlated elasticity, we first calculate xo′Foo′Fo . Define

Φs
o = (ω

s
oxo)

1
1−ρs , Ψso =ω

s
o (Φ

s
o)

ρs . The first derivative is:

Fo =∑
s∈S
G−ρss Ψso

and the second derivative is:

Foo′ =
∂2F

∂xo∂xo′
=∑
s∈S
[−ρsG

−ρs−1
s Ψso

∂Gs
∂xo′
]

where
∂Gs
∂xo′

=
1

1 − ρs
(Φs

o′)
ρs
ωs

σ′

Simplifying:
Foo′ = −∑

s∈S

ρs
1 − ρs

G−ρs−1s Ψso (Φ
s
o′)

ρs
ωs
o′

Combining the first and second derivatives:

xo′Foo′
Fo

= −
∑s∈S

ρs
1−ρsG

−ρs−1
s ΨsoΦ

s
o′

∑s∈SG
−ρs
s Ψso
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Now, we introduce share variables: Share of o′ in Gs, µso′ =
Φs
o′
Gs , and Weight of s in Fo,

γso =
G−ρss Ψso
Fo . We can rewrite:

xo′Foo′
Fo

= −∑
s∈S

ρs
1 − ρs

µso′γ
s
o

Substituting xo = Aowθ
o , we obtain:

θ
xo′Foo′
Fo

∣
{xo=AoWθ

o }
= −θ∑

s∈S

ρs
1 − ρs

⋅ π
s,W
o π

s,W
o′ ⋅

πs,B

πo

as claimed in 4.

A.1.8. Proof of Proposition 5.

Given occupationalwagewt and labor productivity {A
g
t }g∈G, the occupational employment

shares by group can be expressed as:

π
g
o,t =

Ago,tw
θ
o,tFo (A

g
1,tw

θ
1,t, . . . ,A

g
O,tw

θ
O,t)

F (Ag1,tw
θ
1,t, . . . ,A

g
O,tw

θ
O,t)

.

We define the correlation-adjusted employment share as:

π̃
g
o,t =

Ago,tw
θ
o,t

F (Ag1,tw
θ
1,t, . . . ,A

g
O,tw

θ
O,t)

.

Since Fo is homogeneous of degree zero (HD0), we can express employment shares in
terms of correlation-adjusted employment shares:

π
g
o,t = π̃

g
o,tFo (π̃

g
1,t, . . . , π̃

g
O,t) .

This establishes a one-to-one mapping between the correlation-adjusted employment
shares {π̃go,t}o∈O and observed employment shares {π

g
o,t}o∈O

. Given the correlation func-

tion F, we can solve for {π̃go,t}o∈O. Next, for an alternative occupational wage wt+1, the
correlation-adjusted employment shares evolve as:

π̃
g
o,t+1

π̃
g
o,t
=

wθ
o,t+1/w

θ
o,t

F (Ag1,tw
θ
1,t+1, . . . ,A

g
O,tw

θ
O,t+1) /F (A

g
1,tw

θ
1,t, . . . ,A

g
O,tw

θ
O,t)
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then we can express the denominator as

F (Ag1,tw
θ
1,t+1, . . . ,A

g
O,tw

θ
O,t+1)

F (Ag1,tw
θ
1,t, . . . ,A

g
O,tw

θ
O,t)

= F
⎛
⎜
⎝

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ago,tw
g
o,t+1

F (Ag1,tw
θ
1,t, . . . ,A

g
O,tw

θ
O,t)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭o∈O

⎞
⎟
⎠

= F ({ŵθ
t+1π̃

g
o,t}o∈O

)

where ŵo,t+1 = wo,t+1/wo,t denotes the relative wage change. Thus, the adjusted employ-
ment share can be written as:

π̃
g
o,t+1 = π̃

g
o,tŵ

θ
o,tF ({ŵ

θ
t+1π̃

g
o,t}o∈O

)

Finally, we recover the implied employment shares from the wage change ŵt using the
adjusted employment shares:

π
g
o,t+1 = π̃

g
o,t+1Fo (π̃

g
1,t+1,⋯, π̃

g
O,t+1)

This concludes the proof and provides a systematic algorithm to compute implied em-
ployment shares based on wage changes.

A.2. Results in the Dynamic Model

This appendix formalizes a dynamic discrete choice model of workers choosing occupa-
tions, coupled with a production equilibrium. The model captures occupational mobility,
productivity shocks, and equilibrium dynamics, enabling counterfactual analysis via "hat
algebra" techniques.

A.2.1. Wokers’ Optimization

Consider a population of hand-to-mouth workers distributed across O occupations, with
Lo,t workers in occupation o at time t. Workers have intertemporal preferences over
consumption ct(i) and labor disutility ℓt(i) for individual i:

U ({ct(i), ℓt(i)}∞t=0) =
∞

∑
t=0

βt (ln ct(i) − ln ℓt(i))

where β ∈ (0, 1) is the discount factor.
At the start of each period t, workers redraw idiosyncratic productivity shocks ϵt(i) =

(ϵ1, t(i), . . . ,ϵO,t(i)) from a multivariate Fréchet distribution:

Pr [ϵ1,t(i) ≤ ϵ1, . . . ,ϵO,t(i) ≤ ϵO] = exp [−F (A1,tϵ−θ1 , . . . ,AO,tϵ−θO )] ,
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where F (x1, . . . ,xO) = ∑Ss=1 [∑
O
o=1 (ωsoxo)

1
1−ρs ]

1−ρs
is as in the static model. Here, Ao,t is

an occupation-specific productivity parameter, θ > 0 governs the dispersion of shocks,
ωso ≥ 0 are weights reflecting skill requirements across S nests, and ρs ∈ (−∞, 1) captures
correlation within nest s.

After observing ϵt(i), a worker in occupation o can switch to occupation o′ by paying a
fixed utility cost τoo′ ≥ 0. Upon choosing occupation o′, the worker’s instantaneous utility
is:

ln ct(i) − ln ℓt(i) = lnwσ′,t + κ lnϵσ′,t(i),

wherewo′,t is the wage in occupation o′, and κ > 0 scales the impact of productivity shocks,
influencing short-run labor supply elasticities.

Define the value function vo,t(ϵt) as the lifetime utility for a worker in occupation o at
time t with productivity shocks ϵt:

vo,t (ϵt) =max
σ′
{lnwo′,t + κ lnϵo′,t +βVo′,t+1 − τoo′} ,

where Vo′,t+1 = Eϵ [vo′, t + 1(ϵ)] is the expected utility in occupation o′ at t + 1, taken over
future productivity draws.

To compute Vo,t = Eϵ [vo, t(ϵt)], define: Zoo′,t = exp (βVσ′,t+1 + lnwσ′,t − τoo′) , so that:
vo,t (ϵt) = ln (maxσ′ {Zoo′,tϵκo′,t}). Given the Fréchet distribution, the cumulative distribu-
tion of the maximum is:

Pr [max
σ′
{Zoo′,tϵ

κ
σ′,t} < z] = exp [−F (A1,tZ

θ
κ
o1,t, . . . ,AO,tZ

θ
κ
oO,t) z

−θ
κ ]

Thus, ln (maxo′ {Zoo′,tϵκo′,t}) follows a Gumbel distribution, and its expectation is:

Vo,t = ln
⎛

⎝
F (A1,tZ

θ
κ
o1,t, . . . ,AO,tZ

θ
κ
oO,t)

κ
∂⎞

⎠
+ γ̄

κ

θ
,

where γ̄ is the Euler-Mascheroni constant.

A.3. Occupation Switching Probability

The probability that a worker in occupation o switches to o′ at time t is:

µoo′,t = Pr [Zoo′,tϵκd′,t ≥maxd′′
Zod′′,tϵ

κ
d′′,t] .
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Using properties of the multivariate Fréchet distribution as C.1:

µoo′,t =
Ao′,tZ

θ
κ
oo′,tFo′ (A1,tZ

θ
κ
o1,t, . . . ,AO,tZ

θ
κ
oO,t)

F (A1,tZ
θ
κ
o1,t, . . . ,AO,tZ

θ
κ
oO,t)

,

where Fo′ = ∂F/∂xo′ is the partial derivative with respect to the o′-th argument.
Define the correlation-adjusted occupational mobility:

µ̃oo′,t =
Ao,tZ

θ
θ
2
oo′,t

F (A1,tZ
θ
κ

ol,t, . . . ,AO,tZ
θ
κ
oO,t)

,

so that:
µoo′,t = µ̃od′,tFo′ (µ̃o1,t, . . . , µ̃oO,t) .

This forms an O-to-Omapping between observed probabilities µoo′,t and adjusted proba-
bilities µ̃oo′,t. The recursive equation for adjusted relative switching probabilities is:

ln
µ̃oo′,t
µ̃oo,t

=
θ

κ
ln
wo′,t
wo,t

+β ln
µ̃oo′,t+1
µ̃o′o′,t+1

+ (β − 1)τoo′

A.4. Static Equilibrium

When taking the task assignment as exogenous, theproduction function is aCES aggregator
over capital and labor across occupations:

Yt =
⎛

⎝
(skt )

1
σ
(ykt )

σ−1
σ
+

O
∑
o=1
(sℓo,t)

1
σ
(yℓo,t)

σ−1
σ ⎞

⎠

σ
σ−1

where ykt = a
k
t kt, y

ℓ
o,t = Lo,t, σ > 0 is the elasticity of substitution, s

k
t and s

ℓ
o,t are time-

varying shares, and akt is capital productivity. Assuming s
k
t (a

k
t )

σ−1 < 1 for finite output,
capital demand is kt = skt (a

k
t )

σYt, yielding net output:

Yt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
O
o=1 (s

ℓ
o,t)

1
σ
(Lo,t)

σ−1
σ

1 − skt (a
k
t )

σ−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ
σ−1

Wages are determined by the marginal product of labor:

wo,t =
∂Yt
∂Lo,t

= Y
1
σ
t (s

ℓ
o,t)

1
σ L−

1
σ

o,t .
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A.5. Dynamic Equilibrium

We construct job flows from the retrospective responses in the March CPS; consequently,
the aggregate flows derived from these responses do not directly match the observed
occupational employment levels. To account for this discrepancy, we adjust the evolution
of occupational employment as

Lo,t =
O
∑
σ′=1

µσ′′,tLσ′,t−1 +∆Lo,t,

where ∆Lo,t is an exogenous net inflow/outflow, with∑o Lo,t = 1 and∑o∆Lo,t = 0. Time-
varying fundamentals are At = Ao, t, st = so, tℓ, and akt , while constant parameters include
τoo′ ,ωos, σ, θ, ρs, κ, and β.

A dynamic equilibrium is a sequence Lt,wt,µt,Vt satisfying:
• Production Equilibrium:

wo,t = Y
1
σ
t (s

ℓ
o,t)

1
σ L−

1
σ

o,t

Yt =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑o (sℓo,t)
1
σ L

σ−1
σ
o,t

1 − skt (a
k
t )

σ−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

σ
σ−1

• Expected Utility: Vo,t = ln
⎛

⎝
F (A1,tZo1,t

θ
κ , . . . ,AO,tZ

θ
κ
oO,t)

κ
θ⎞

⎠
+ γ̄κ

θ .

• Switching Probabilities: µoo′,t =
Ao′,tZ

θ
κ
oo′,tFo′(A1,tZ

θ
κ
o1,t ,...,AO,tZ

θ
κ
oO,t)

F(A1,tZ
θ
κ
o1,t ,...,AO,tZ

θ
κ
oO,t)

.

• Labor Allocation: Lo,t = ∑o′ µo′o,tLo′,t−1 +∆Lo,t.

A.6. System in Changes

Define the growth factor ẋt + 1 = xt + 1/xt. From the wage equation:

σ ln ẇo,t+1 + ln L̇o,t+1 = ln Ẏt+1 + ln ṡℓo,t+1

For the dynamic system, define uo,t = exp(Vo,t) and u̇o, t + 1 = uo, t + 1/uo,t:

µ̃oo′,t
µ̃oo′,t−1

=
Ȧo′,tu̇

βθ
κ

o′t+1ẇ
θ
κ
o′,t

F
⎛

⎝
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θ
κ
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O

o′′=1

⎞

⎠

u̇o,t+1 = F
⎛

⎝
{µ̃oo′′,tȦo′′,t+1u̇

βθ
κ

o′′,t+2ẇ
θ
κ
o′′,t+1}

O

o′′=1

⎞

⎠

κ
θ
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with µoo′,t = µ̃oo′, tFo′ (µ̃o1, t, . . . , µ̃oO, t) and labor evolution as above. Appendix C.2
provides additional derivation.

A.7. Dynamic Hat Algebra

For counterfactual fundamentals Ât, ŝt, and âkt , define x̂t = (ẋ
′
t/ẋt), where ẋt

′ = x′t/xt − 1
′

is the counterfactual growth rate. From production:

ŵo,t+1 =
⎛

⎝

Ŷt+1ŝℓo,t+1
L̂o,t+1

⎞

⎠

1
σ

Counterfactual switching probabilities evolve as:
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and counterfactual changes in expected utility:
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βθ

κ
o′t+2ŵ
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.

withµ′oo′,t = µ̃oo
′, t′Fo′ (µ̃o1, t′, . . . , µ̃oO, t′) andL′o′,t = ∑o µ

′
oo′,tL

′
o,t−1+∆Lo′,t. Appendix

C.2 provides additional derivations.

A.7.1. Initial Dynamics

At t = 0, assume ûo, 0 = 1, µoo′, 0′ = µoo′,0, and L′o,0 = Lo,0. For t = 1:

µ̃′oo′,1 =
ϑoo′,1Âo′,1ŵ

θ
κ
o′,1û

βθ
κ
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F
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⎝
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κ
θ

where ϑoo′,1 = µ̃oo′,1û
βθ

κ
o′,1.
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A.8. Welfare Metrics

Then, we can see the own migration share contains information about the expected
life-time return,

Vo,t = ln (wo,t) +βVo,t+1 +
κ

θ
ln
⎛
⎜
⎜
⎜
⎝

F (A1,tZo1,t θκ , . . . ,AO,tZ
θ
κ
oO,t)

exp (βVo,t+1 + lnwo,t)
θ
κ

⎞
⎟
⎟
⎟
⎠

+ γ̄
κ

θ

= ln(A
κ
θ
o,two,t) +βVo,t+1 +

κ

θ
ln(

1
µ̃oo,t

) + γ̄
κ

θ

iterating repeatedly, we can obtain:

Vo,t =
∞

∑
s=t

βs−t ln
⎡
⎢
⎢
⎢
⎢
⎣

(
Ao,s
µ̃oo,s

)

κ
θ

wo,s
⎤
⎥
⎥
⎥
⎥
⎦

+ γ̄
κ

θ(1 −β)
.

For counterfactual V ′o,t, define equivalent variation δo,t such that:

V ′o,t = Vo,t +
∞

∑
s=t

βs−t lnδo,t,

yielding:

δo,t = (1 −β)
∞

∑
s=t

βs−t ln
w′o,s
wo,s
(
A′o,s
µ̃′oo,s

/
Ao,s
µ̃oo,s

)

κ
θ

additionally, we can write the welfare metric in terms of hat values (counterfactual ratio
of changes),

δo,t =
∞

∑
s=t

βs−t
w′o,s
wo,s
(
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µ̃′oo,s

/
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∑
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κ
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=
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∑
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βs ln(ŵo,s/ˆ̃µ
κ
θ
oo,s)
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Appendix B. Additional Empirical Results

B.1. Occupation Classification

Our analyses require constructing occupation-level panels for the period 1980–2018. To
this end, following Autor et al. (2024), we use a consistent occupation coding scheme
(occ1990dd), originally developed by Dorn (2009) and updated through 2018, which yields a
balanced panel of 306 consistent, 3-digit occupations. This detailed classification preserves
crucial occupational variation and accurately captures the structure of the labor market
over the period.

B.2. Occupational Skill Requirements

The O*NET database used in this study is O*NET 28.2, which provides information on
skill requirements and task outputs for 873 occupations. ONET ratings are derived from
two sources: (i) a survey of workers, who rate their own occupations based on a subset of
ONET descriptors, and (ii) a survey of occupational analysts, who assess the remaining
descriptors in the O*NET dataset.

The database includes 277 descriptors, each rated by importance, level, relevance, or
extent. These descriptors are organized into nine broad categories: skills, abilities, knowl-
edge, work activities, work context, experience/education levels required, job interests,
work values, and work styles. For this study, we focus on 218 descriptors from the skills,
abilities, knowledge, work activities, and work context categories, as they serve as the
empirical counterparts to occupational skill requirements.

In the PCA procedure, we reduce the large set of descriptors to three skill dimensions
commonly used in the labor literature: cognitive, manual, and interpersonal skill require-
ments. These dimensions are identified using the following exclusion restrictions: (i) the
mathematics score loads exclusively onto cognitive skill requirements, (ii) the mechanical
knowledge score loads exclusively onto manual skill requirements, and (iii) the social
perceptiveness score loads exclusively onto interpersonal skill requirements. By construc-
tion, the three skill dimensions are orthogonal, aligning with the model assumption that
individual productivity distributions across skills are independent. The proportion of
variance explained by the three principal components is denoted as Vars and together
they account for 58% of the variation in the original descriptors.

One limitation of the PCA procedure is that it assigns negative loadings to certain prin-
cipal components, which contradicts the restriction that skill requirementsωs

o should be
non-negative. To address this, we apply a linear transformation to rescale the occupational
loadings on the three principal components, ensuring that the resulting skill requirement
indices satisfy rso ∈ [0, 1].Finally, we measure occupational skill requirements based on
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their relative importance in explaining variation across occupations:

ωs
o =

rr
s
0
0 ×Vars

∑se∈ rs0 ×Vars
.

This formulation aligns with the theoretical definition of skill requirements as the relative
contribution of each skill to occupational labor productivity. Lastly, we map the estimated
skill requirements to the occ1990dd classification.

B.3. Measures of Automation and AI Exposure

The literature has identified several measures of occupational exposure to automation,
including occupational routine task intensity (Autor and Dorn 2013), the decline in labor
share due to the adoption of industrial robots, machines, and software (Acemoglu and
Restrepo 2022), and occupational exposure to automation patents (Autor et al. 2024).
Thesemeasures share a common characteristic, as highlighted by Autor (2015) in Polanyi’s
Paradox: jobs that can be codified into well-defined rules or algorithms are more likely to
be automated and are typically classified as routine jobs. Moreover, numerous studies
have shown that jobs more exposed to automation have experienced slower wage growth
over the past four decades.

In contrast, ex-post estimation of occupational exposure to artificial intelligence (AI)
is infeasible, as its full impact has yet to materialize. Given this challenge, recent research
has explored the use of large language models (LLMs) to assess economic outcomes.
Eloundou et al. (2024) evaluate occupational exposure to LLMs by classifying O*NET
tasks with both human annotators and GPT-4, developing an exposure rubric to determine
whether LLMs can perform or assist specific tasks. Their findings highlight the potential of
LLMs as general-purpose technologies. Rather than training amodel, I adopt a simpler yet
comparable approach, relying directly on ChatGPT queries to estimate AI and automation
exposure.

To measure occupational exposure to automation and AI, we employ a structured
approach using the O*NET database and GPT-4o assessments. First, we utilize O*NET’s
dataset, which provides detailed descriptions of 19,200 tasks across 862 occupations. Each
task is evaluated to determine whether it can potentially be performed without human
intervention.

Our method consists of two distinct assessments using GPT-4o:
• AI Exposure: We query GPT-4o: “Can AGI (e.g., large language models like GPT-4)
potentially perform the task without human intervention?” This assessment captures
the extent to which occupations are exposed to AI-driven technologies.

• Automation Exposure: We query GPT-4o: “Can industrial robots, machines, and com-
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puters (no AI capability) perform the task without human intervention?” This distin-
guishes tasks that can be automated using conventional, rule-based systems from
those requiring more advanced AI capabilities.

Based on these evaluations, GPT-4o estimates that approximately 6,000 tasks (roughly one-
third of the total) can be performed by AI without human intervention. This classification
provides a detailed perspective on the differing impacts of AI-driven technologies and
traditional automation across occupations. Finally, I calculate the share of tasks that
can be automated or potentially performed by AI, using these estimates to construct
occupational exposure measures for automation and AI.

We compare existing measures of automation exposure to GPT-4o’s evaluation, as
shown in Figure A1. Panels (a) and (b) compare GPT-4o’s estimates with the automation
exposuremeasure from Acemoglu and Restrepo (2022). Since their measure is not defined
at the occupational level but rather at the group level (demographic-age-education), we
plot exposure against the log median wage in 1980. The two distributions are strikingly
similar across income levels. Panel (c) plots occupational routine task intensity against
automation exposure, showing a strong correlation. Similarly, Panel (d) plots exposure to
automation patents, revealing the same pattern.

B.4. Technological Exposure across Inter-personal Dimension

Figure A2 illustrates how occupational exposure to automation and AI varies with interper-
sonal skill requirements. Panel (a) shows that occupations requiring greater interpersonal
skills tend to be less exposed to automation, aligningwith the intuition that social and emo-
tional intelligence—often critical in managerial, negotiation, and caregiving roles—are
difficult to codify into rule-based processes. In contrast, Panel (b) reveals that occupations
with higher interpersonal skill requirements tend to be more exposed to AI, though with
greater variance. This noisier relationship suggests that while AI can assist or complement
interpersonal tasks (e.g., customer support or education), full automation remains limited
by the complexity of human interaction.

These findings reinforce the distinct nature of AI and automation risks: whereas au-
tomation displaces predictable, rule-based tasks, AI is more likely to augment or replace
cognitive tasks, including those requiring some degree of human interaction. However,
interpersonal-intensive occupations—such as psychologists, teachers, and business exec-
utives—still rely on empathy, persuasion, and social nuance, which remain challenging
for AI to fully replicate.

B.5. Wage and Employment Effects of Automation

This section provides additional details on thewage and employment effects of automation
exposure. The Panel Study of IncomeDynamics (PSID) is awidely used longitudinal dataset
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FIGURE A1. Automation Exposures

This figure compares automation exposure as evaluated by **GPT-4o** with existingmeasures with Binscatter,
including the **decline in labor share due to the adoption of industrial robots, machines, and software (panels
A and B)**, **routine task intensity (panel V)**, and **occupational exposure to automation patents (panel
D)**.

that has tracked nearly 9,200 U.S. families since 1968. We leverage its panel structure to
estimate relative wage trends by occupation while controlling for selection effects.

Since the main specifications have already been discussed, we now present additional
results in Figure A3, which examines wage effects by gender and under different control
specifications. Panel A reports the wage effects of automation separately for men and
women, showing that the results are nearly identical, with no statistically significant
differences. Panel B introduces additional controls, with the blue line accounting for
age and age2 for the blue line and allows for changing return to education for the green
line, while the green line further allows for a changing return to education. The results
suggest that changes in the return to education explain about a quarter of the wage effects
attributed to automation.

However, when estimating elasticities, we prefer the main specification without con-
trolling for changes in the return to education. From a long-run perspective, new workers
may adjust their educational and occupational choices in response to shifts in the skill
premium.
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FIGURE A2. Technological Exposures across Interpersonal Skills

This figure illustrates the relationship between occupational interpersonal skill requirements and exposure
to automation (Panel (a)) and AI (Panel (b)).
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FIGURE A3. Effects of Automation on Wages

Notes: Panel A presents thewage effects of automation separately formen andwomen, showing no statistically
significant differences. Panel B introduces additional controls, where the blue line includes age and age2,
and the green line further accounts for a changing return to education. The latter explains approximately
25% of the wage effects attributed to automation.

We now present additional results on the heterogeneous employment effects of au-
tomation across demographic groups, which are used to estimate correlation structures.
Panel A of Figure A4 displays the average change in log employment shares between
1980 and 2010 by gender for white workers, while Panel B presents the corresponding
employment effects for Black workers. The results indicate that white men are the least
responsive to automation. Based on the data, this group was predominantly employed in
occupations requiring more manual skills, which, as shown in our estimation results, are
less portable across occupations. This pattern is reflected in our estimation procedure,
which captures the variation in occupational transitions. As a result, the estimated correla-
tion parameter formanual skills, ρMan, is relatively small, indicating lower substitutability
of manual-intensive jobs.
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FIGURE A4. Heterogeneous Employment Effects by Demographic Groups

Notes: Panel A shows the employment effects of automation for white workers by gender, while Panel B
presents the results for Black workers.

The PPML estimator jointly incorporates changes in the employment distribution,
naturally weighting employment shares in the estimation process.

B.6. The Employment Effects of Automation and AI

As discussed in the main text, clustering shocks lead to smaller employment adjustments
while exacerbating wage disparities. Panel (a) of Figure A5 illustrates the relationship
between changes in log employment shares and relativewage changes for automation. The
CES benchmark (dashed line) rotates counterclockwise, overstating employment shifts,
particularly for negatively impacted occupations. This suggests that the CES framework
underestimates the rigidity in labor reallocation caused by clustering shocks.

Panel (b) presents the same employment effects for AI exposure, revealing a similar
pattern. The CES model again overstates employment adjustments, failing to account for
the constrained worker mobility induced by the skill-clustering nature of AI-exposed oc-
cupations. These findings highlight the importance of incorporating a richer substitution
structure, as captured by DIDES, to better reflect labor market frictions in response to
technological change.

B.7. Construct Job Transition with CPS

Our estimation strategy hinges on observing aggregate job flows across occupations. To
construct our occupation-level panel for the period 1980–2018, we rely on individual-level
data from the US Census Bureau’s March Current Population Survey (CPS). Each March
CPS provides detailed information on respondents’ current occupation as well as the
occupation in which they spent most of the previous calendar year. We restrict our sample
to individuals aged 25–64 who are employed full-time and have worked at least 26 weeks
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FIGURE A5. Employment Effects of Technological Shocks

Notes: This figure compares employment effects of automation (Panel a) and AI (Panel b) against the CES
benchmark. The CES framework overestimates employment adjustments, particularly in negatively impacted
occupations, due to its failure to account for clustering shocks that restrict labor mobility.

in the preceding year, thereby ensuring the reliability of our occupational transition
estimates. We also exclude observations with extreme or inconsistent income values to
mitigate measurement error. Using these data, we construct annual job flow rates for
occupations.

Employing a consistent occupation coding scheme, we generate a balanced panel of
306 three-digit occupations. Given the sparsity of observed transitions at this detailed level,
we further aggregate these occupations into 15 clusters using a k-means algorithm based
on occupational skill requirements. This intuitive clustering groups together occupations
with similar skill profiles, ensuring robust estimates of aggregate job flows and facilitating
subsequent analyses.

Furthermore, as noted by Artuç, Chaudhuri, and McLaren (2010), the retrospective de-
signof theMarchCPS captures job transitions over aperiod shorter thana full year—respondents
report the longest-held job from the previous calendar year, typically reflecting employ-
ment around mid-year. To correct for this timing bias, we annualize the observed job
transition probabilities using the transformation 37

µANNt = µ2t .

37This approach ensures that no annual job-to-job flows are missing.
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Appendix C. Additional Materials

C.1. Derive Employment Shares in A.1.2.

Withproductivity distributionPr [ϵ1(i) ≤ ϵ1, . . . ,ϵO(i) ≤ ϵO] = exp [−F (A1ϵ−θ1 , . . . ,AOϵ−θO )],
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let t →∞, we have

πo = Pr [woϵo(i) =max
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C.2. Additional Derivation in Dynamic Model

C.2.1. Derivations of System in Changes A.6

ProductionEquilibrium. The production equilibriumcondition relates changes inwages,
labor allocations, output, and task shares. The equation is:

σ ln ẇo,t+1 + ln L̇o,t+1 = ln Ẏt+1 + ln (ṡℓo,t+1)
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This equation implies that wage changes ẇt+1 can be solved as a function of labor changes
L̇t+1 and fundamentals Θ̇t+1 denoted

ẇt+1 = ẇ (L̇t+1, Θ̇t+1)

Dynamic Equilibrium System. Given a converging sequence limt→∞ Θ̇t = 1 (indicating
fundamentals stabilize) and an initial allocation (L0,µ0), the dynamic equilibrium is
characterized by the evolution of adjusted mobility µ̃od′,t, expected utility u̇o,t+1, and
labor allocations Lα′,t. The adjusted mobility from origin o to o′ at time t is µ̃oo′,t =
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θ
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the labor allocation follows

Lo′,t =∑
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where µoo′,t = µ̃oo′,tFo′ (µ̃o1,t, . . . , µ̃oO,t).

C.2.2. Derivations of Dynamic Hat Algebra A.7

Production Equilibrium. The counterfactual change in wages is derived from the pro-
duction side. For occupation o at time t + 1:
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ẇ′o,t+1
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ℓ
o,t+1

L̇′o,t+1
/
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This defines ŵo,t+1 as a functionof labor allocations and fundamentals, denoted ŵo,t+1(L̂t+1, Ψ̂t+1),
where Ψ̂t+1 encapsulates production-side changes.

Counterfactual Switching Probabilities. The adjusted switching probability µ̃′oo′,t rep-
resents the counterfactual probability of moving from occupation o to o′ at time t. Its
evolution is:
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In Recursive Form: Since µ̃′oo′,t = µ̃
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Counterfactual Expected Utility. we can derive the counterfactual changes of expected
welfare,
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{µ̃oo′′,tȦo′′,t+1u̇

βθ
κ

o′′,t+2ẇ
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Actual Switching Probabilities. The actual counterfactual switching probability µ′oo′,t
adjusts µ̃′oo′,t for correlation effects:

µ′oo′,t = µ̃
′
oo′,tFo′ (µ̃

′
o1,t, . . . , µ̃

′
oO,t)
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Labor Allocation Evolution. The counterfactual labor allocation evolves as:

L′o,t =∑
o
µ′oo,tL

′
o,t−1 +∆Lo,t

Where ∆Lo′,t is the exogenous net inflow/outflow of workers.

C.2.3. Intial Dynamics

At t = 1, the counterfactual fundamentals change unexpectedly (unknown before t = 1).
Initial conditions at t = 0 are identical: ûo,0 = 1,µ′oo′,0 = µoo′,0,L

′
o,0 = Lo,0.
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similarly, we can write the expected utility in the counterfacctual world at time t = 1,
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combining these two equations gives us
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Then, we use the fact that u′o,0 = uo,0,A
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o,0 = Ao,0,w

′
o,0 = wo,0, we can write this in dot:
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and take the ratio of these:
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βθ
κ

o′,2}
O

o′=1

⎞

⎠

κ
θ

the next step is to derive the switching probability at t = 1:
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βθ
κ

o′2
⎛

⎝

u′o′,2
uo′,2

/
u′o′,1
uo′,1

⎞

⎠

βθ
κ
⎛

⎝

u′o′,1
uo′,1

⎞

⎠

βθ
κ

= µ̃oo′,1û
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βθ
κ

o′,2

thus,

µ̃′oo′,1 =
ϑoo′,1Âo′,1ŵ
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