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1. Introduction

Recent technological advances in automation and artificial intelligence have transformed
labor markets, spurring productivity gains while deepening inequality.! These technolo-
gies share a defining characteristic that fundamentally shapes their labor market impact:
they cluster within specific skill domains rather than dispersing across occupations.
Automation concentrates in routine manual tasks—manufacturing, assembly, transporta-
tion—while AI targets cognitive work—data analysis, research, decision-making. This
clustering creates a mobility trap for displaced workers: they can easily transition to skill-
similar occupations, but these alternatives face similar technological threats and offer no
economic refuge. An assembly worker displaced by automation could shift to construction
or welding—occupations where their manual skills transfer—but finds these jobs similarly
automated. A data analyst threatened by Al discovers that financial analysis and market
research, their most accessible alternatives, face equivalent Al exposure. Workers are
most mobile precisely where mobility provides the least benefits.

This paper develops a new framework to understand how technological clustering in-
teracts with occupational substitution structure to determine labor market incidence. Our
central contribution demonstrates that the distributional consequences of technological
change depend not on average labor market flexibility but on the alignment between shock
distributions and the underlying substitution structure. When technologies cluster in skill
space, workers have limited outside options, generating severe and persistent inequality
that conventional models systematically understate. We make this argument through
three interconnected contributions: a theoretical framework revealing the mechanism,
an empirical implementation estimating flexible and granular substitution structure,
and applications demonstrating the consequences for both historical automation and
prospective Al adoption.

We build our theoretical analysis on a Roy model of occupational choice augmented
with distance-dependent elasticity of substitution (DIDES). Workers draw correlated pro-
ductivity across occupations, where correlation declines with skill distance. This corre-
lation structure directly generates substitution patterns: high correlation between skill-
similar occupations creates strong substitutability, while low correlation between skill-
distant occupations limits substitution. The framework transforms these productivity
correlations into a flexible substitution structure, naturally generating realistic elasticities
from a parsimonious skill-based foundation. A key innovation is achieving dimensionality
reduction while preserving granular substitution patterns. Rather than estimating hun-
dreds of thousands of bilateral elasticities among occupations, we parameterize the entire
substitution structure through a low-dimensional skill space. The correlation function

1We follow Acemoglu and Restrepo (2022); Restrepo (2024) in defining automation technologies as indus-
trial robots, machinery, and software without Al capability.



governing productivity draws depends on just S + 1 parameters for S skill dimensions: one
cross-skill elasticity 6 and S within-skill correlation parameters {ps}le. This parsimony
makes estimation feasible from standard aggregate data while maintaining the flexibility
to capture how technological clustering constrains adjustment.

Our empirical implementation proceeds in three integrated steps that connect mea-
surement to theory to quantification. First, we map 306 detailed occupations into a three-
dimensional skill space using O*NET data, extracting cognitive, manual, and interpersonal
skill requirements through principal component analysis. These skill measures opera-
tionalize the theoretical framework: they position occupations in skill space and determine
substitution distances between them. Second, we construct technological exposure mea-
sures by having ChatGPT evaluate the automation and AI feasibility of 19,200 tasks across
862 occupations. This reveals the clustering patterns central to our analysis—automation
concentrates in manual-intensive occupations while Al targets cognitive-intensive roles,
with both technologies showing systematic concentration within skill-adjacent occu-
pations rather than random dispersion. Third, we estimate the structural parameters
governing substitution by exploiting how occupational employment and average wage
responded to automation between 1980 and 2010.

The estimation reveals striking departures from standard models that fundamentally
alter our understanding of labor market adjustment. Under conventional CES assumptions,
we estimate an average elasticity of 3.12, suggesting substantial worker mobility across
all occupations. But allowing for skill-based correlation through our DIDES framework
changes this picture dramatically. The cross-skill elasticity plummets to 1.10, implying
that moving across skill boundaries is far more difficult than standard models assume.
Within-skill elasticities show substantial heterogeneity: 4.8 for cognitive occupations,
4.4 for interpersonal occupations, but only 2.1 for manual occupations. The correlation
parameters driving these differences reveal that cognitive skills prove most transferable
(Pcog = 0.77), while manual skills exhibit limited transferability (oman = 0.48). These
estimates reveal that two-thirds of observed occupational substitution occurs within skill
clusters rather than across them—a pattern that becomes crucial when technological
shocks themselves cluster.

With the substitution structure estimated, we quantify how automation and Al reshape
labor market outcomes. The clustering of technological shocks within skill domains
fundamentally constrains adjustment: when entire skill clusters face negative shocks
simultaneously, workers have limited escape routes. This manifests in heterogeneous
wage pass-through across occupations. While standard models predict uniform 30%
pass-through from demand shocks to wages, we find rates ranging from 25% to 45%.
Production workers facing automation experience 40-45% pass-through—nearly half
their demand losses translate directly to wage declines. The variation directly reflects how



clustering eliminates escape routes: when skill-similar occupations face simultaneous
threats, the effective elasticity of substitution collapses, forcing wage absorption rather
than employment reallocation.

Mobility provides limited insurance against these wage losses. Workers recover only
20% of automation-induced wage declines through occupational transitions, compared to
30% predicted by standard models. This constraint emerges from technological shocks
concentrating precisely where skill transferability is weakest. Automation targets manual
occupations where workers have the lowest transferability (pman = 0.48), creating large
losses with minimal recovery options. Al affects cognitive occupations where higher
transferability (pcog = 0.77) offers better prospects, yet clustering still constrains escape
because natural transition targets face similar Al threats. The interaction between shock
distribution and heterogeneous transferability—absent from models assuming uniform
elasticity—drives the severe distributional consequences we document.

We extend this static analysis to examine dynamic adjustment by embedding DIDES
into a discrete choice framework with forward-looking workers facing transition costs.
Using CPS data aggregated to occupation clusters, we estimate a short-run elasticity of
0.07, confirming sluggish adjustment that amplifies the constraints identified in our static
analysis. Our examination of historical automation reveals remarkably persistent effects:
gradual adoption since 1985 generated wage gaps up to 50% between high and low exposure
occupations. Employment shifts absorbed two-thirds of demand changes over this period,
but mobility gains offset only half of wage losses, leaving substantial permanent inequality.
Under a counterfactual scenario where Al rapidly reaches automation’s scale by 2030,
adjustment proves even more constrained. The labor market initially absorbs less than
one-third of shocks, generating sharp wage declines with mobility recovering only one-
third of losses during the transition. The clustering that constrains static adjustment also
slows dynamic transitions, with forward-looking behavior providing limited relief because
improved outside options are offset by similar threats to alternative occupations.

These findings reshape our understanding of how technological progress affects work-
ers and carry immediate policy implications. The conventional estimates indicate that
labor market flexibility mitigates technological disruption proves dangerously incomplete.
When technical changes cluster in skill space—as our evidence definitively establishes
for both automation and Al—they systematically target the rigidities in occupational sub-
stitution. Workers cannot escape to unaffected occupations because skill requirements
create barriers, and the occupations they can reach face similar technological threats.
This interaction between clustering and substitution structure, completely invisible to
standard frameworks, explains why technological change generates such pronounced and
persistent inequality. Standard policy prescriptions for worker retraining miss this funda-
mental constraint: displaced workers’ natural transition targets face similar technological



risks. As AI deployment accelerates, understanding these mechanisms becomes essential
for designing policies that facilitate necessary economic transitions while protecting
vulnerable workers from concentrated disruption.

Related Literature. Our paper contributes to four interconnected literatures: skill-biased
technical change, labor reallocation dynamics, the Roy model tradition, and assignment
theory.

Skill-biased Technical Change: Our work builds on the extensive literature examining
labor market consequences of technological change. Early research by Katz and Murphy
(1992) and Autor, Katz, and Krueger (1998) introduced the concept of skill-biased technical
change (SBTC), later refined by Acemoglu (2002) and Autor and Dorn (2013) to show how
technological advances disproportionately benefit skilled workers, thereby widening
wage inequality. Recent task-based frameworks provide a more granular understanding of
how automation technologies generate unequal labor demand shifts across occupations
(Acemoglu and Restrepo 2018, 2020, 2022). Our contribution complements this demand-
side focus by modeling supply-side adjustment—developing a framework that captures
how workers reallocate across occupations and how the interaction between supply
constraints and demand shocks determines equilibrium incidence.

In parallel, emerging research explores AI’s distinct disruptive potential. Webb (2019)
and Acemoglu et al. (2022) demonstrate that AI affects both routine and non-routine
cognitive tasks, while experimental studies by Noy and Zhang (2023) and Brynjolfsson,
Li, and Raymond (2025) document how generative Al transforms knowledge-based and
creative work. Although recent analyses primarily examine Al's demand-side impact
through task frameworks (Eloundou et al. 2024; Brynjolfsson, Chandar, and Chen 2025;
Hampole et al. 2025; Freund and Mann 2025), we provide the first systematic assessment
of worker mobility constraints under Al exposure.

Labor Reallocation and Mobility Frictions: A growing literature emphasizes how re-
allocation frictions shape responses to demand shocks.? Recent work documents how
occupational mobility constraints amplify wage inequality during transitions (Lee and
Wolpin 2006; Dvorkin and Monge-Naranjo 2019; Traiberman 2019), with dynamic models
studying the regulation policies (Guerreiro, Rebelo, and Teles 2022; Lehr and Restrepo
2022; Beraja and Zorzi 2024). Regarding the source of slow adjustment, Bocquet (2024)
examines adjustment through job transition networks, while Adao, Beraja, and Pandalai-
Nayar (2024) highlights skill specialization as a constraint on reallocation. We extend this
literature by introducing a flexible substitution structure that captures how technological

clustering—not just average mobility frictions—determines incidence.?

2Foundational contributions include Matsuyama (1992) on sectoral shifts and skill acquisition, and Heck-
man, Lochner, and Taber (1998) on general equilibrium effects of skill formation.
3While Bohm, Etheridge, and Irastorza-Fadrique (2025) also highlights the importance of heterogeneous



Roy Models and Multidimensional Skills: Following the Roy tradition of selection on
comparative advantage (Heckman and Sedlacek 1985), recent work incorporates multidi-
mensional skills to study business cycle dynamics (Grigsby 2022), discrimination (Hurst,
Rubinstein, and Shimizu 2024), and household sorting (Lise and Postel-Vinay 2020). We
build on Lise and Postel-Vinay (2020)’s insight about multidimensional skill structure
but extend it to aggregate labor supply across granular occupations. Our innovation is
mapping 300+ occupations into three-dimensional skill space while preserving rich sub-
stitution patterns—all estimable from standard employment and wage data. By adopting a
Roy-Fréchet structure with copula-based correlation, we focus directly on substitution
patterns while circumventing the well-known identification challenges of unobserved
heterogeneity that plague selection models (Heckman and Honore 1990; French and Taber
2011; Erosa et al. 2025). This approach yields a tractable framework that uses occupational
skill requirements to parameterize substitution structure and aggregate employment
shares as sufficient statistics, enabling estimation without relying on individual-level data.

Assignment Theory and DIDES: The distance-dependent elasticity of substitution emerges
naturally from assignment models where workers sort based on comparative advantage
(Sattinger 1993; Teulings 1995, 2005). These models establish that substitutability declines
with skill distance—a theoretical result we operationalize empirically. While Lindenlaub
(2017) explores multidimensional assignment theoretically, we provide the first empirical
implementation that quantifies DIDES using occupational data, estimates its parameters
from observed labor market responses, and demonstrates its crucial role in technological
incidence.

Our contribution synthesizes these literatures: we embed assignment-theoretic in-
sights into a Roy framework, estimate the resulting substitution structure, and show how
its interaction with clustered technological shocks fundamentally reshapes our under-
standing of labor market adjustment and inequality.

Road Map. The paper proceeds as follows. Section 2 develops a static model featuring
distance-dependent elasticity of substitution (DIDES). Section 3 implements the framework
empirically, estimating a flexible and granular substitution structure. Section 4 quantifies
the incidence of automation and Al, revealing how technological clustering results in
unequal outcomes. Section 5 extends to dynamic adjustment, embedding DIDES into a
discrete choice framework to examine gradual transitions. Section 6 concludes.

labor supply elasticities, their heterogeneity stems solely from differences in employment shares across
occupations, not from underlying variation in substitution structure.



2. Theoretical Framework

This section develops a framework for analyzing how labor market incidence depends
on the interaction between technological shocks and occupational substitution patterns.
The key innovation is a low-dimensional representation that collapses O? bilateral elastic-
ities between occupations into a parsimonious skill-based structure. Through correlated
productivity draws across skill-similar occupations, the framework embeds distance-
dependent elasticity of substitution (DIDES) into a Roy model of occupational choice.

2.1. Static Model

Production and Labor Demand. Labor demand derives from a task-based production
framework following Acemoglu and Restrepo (2018, 2022). In the underlying model (de-
tailed in Appendix A.1), occupations perform distinct task sets that can be produced using
either labor or capital, with technological change shifting task allocation between these

inputs. This yields the reduced-form representation:

O 1 g-1\0!
W iy
0=1
where L, denotes employment in occupation o, o is the elasticity of substitution between
occupations, A captures aggregate productivity, and x, represents the share of tasks
performed by labor in occupation o after technology adoption.

The parameter «, serves as a sufficient statistic for technological displacement. When
automation or Al replaces labor in specific tasks, the corresponding «, declines: d1n «, <
0 for occupations whose tasks become automated. This parsimonious representation
captures technology’s distributional effects without explicitly tracking task assignments,
as the demand shifters {o,} fully summarize technological impacts across occupations.*

From profit maximization, occupational wages equal marginal products:

oy 1 1 .1

Wno =
°" AL

This labor demand equation, combined with the labor supply framework developed
below, determines equilibrium wage and employment responses to technological change.

Workers and Labor Supply. The economy consists of a continuum of workers indexed by

i. Each worker draws a productivity vector (i) = {eo(i)}(?:l across occupations from a

*The aggregate productivity effect dIn A represents a level shift that affects all occupations proportionally.
Since our focus is on distributional incidence across occupations, this term cancels out in relative wage
analysis and is omitted from subsequent analysis.



generalized multivariate Fréchet distribution:

) Prley(i) < 1., e0(i) < €0 = exp [-F(Are’, ..., Aper))]

where A, > 0 captures average productivity in occupation o and 0 > 0 governs productiv-
ity dispersion across workers. The marginal distributions are Fréchet: Pr[e,(i) < €] =
exp(-Aoe;?), standard in Roy models with extreme value distributions. The correlation
function F governs productivity similarity across occupations, serving as the primitive
that determines substitution patterns.®

Workers choose occupations to maximize utility. Worker i receives utility uy(i) =
Wo€o(1) from occupation o, where w, is the wage and €,(i) represents both productivity

and inverse effort cost.® The optimal occupational choice is:

0*(i) =arg max {woeo(i)}

0e{l,...,

The correlation function F : IRQQ — R, determines substitution patterns between
occupations. This function is homogeneous of degree one and satisfies the sign-switching
property, ensuring occupations are gross substitutes.” We normalize F(1,0,...,0) = 1to
separate scale from correlation effects.

PROPOSITION 1 (Occupational Employment Shares). Given the multivariate Fréchet produc-
tivity distribution in equation (2) and optimal worker choices, the share of workers selecting
occupation o is:
o AWIFo (AW, ..., Aow))

F(Awy, ..., Agwd)

where F, = 0F/0x, denotes the partial derivative with respect to the o-th argument.

PROOF. The employment share equals the probability that occupation o yields the highest
utility: 7ty = Pr[wpeo(i) = max, w,rey(1)]. This probability derives from the principle of
maximum stability for multivariate extreme value distributions. See Appendix C.1 for the
complete derivation. O

The employment share expression reveals that occupation o’s share depends on three
factors: average productivity A,, wage raised to the dispersion parameter (w9), and how

>The correlation function F is related to the copula of the productivity distribution. See Appendix A.2.1 for
formal properties.

8Formally, workers consume ¢, = W, and supply effort {o(i) = 1/e,(i), yielding utility 1o (i) = In(co/€o(i)) =
In(woeo(i)). The baseline analysis assumes idiosyncratic productivity does not enter firm production. In an
extension, we extend to incorporate efficiency effects.

"The sign-switching property requires that mixed partial derivatives alternate in sign, guaranteeing
negative cross-wage elasticities. For detailed properties of F and its connection to max-stable distributions,
see Appendix A.2.1 and Lind and Ramondo (2023).



the correlation function responds to changes in that occupation’s attractiveness (Fy/F).
This last term breaks the independence of irrelevant alternatives (IIA) property, allowing
realistic substitution patterns where wage changes in one occupation affect employment
shares differently across other occupations.?

Total labor supply to occupation o is L, = 7,L, where L is the total workforce. The cor-
relation function F fully characterizes substitution patterns through its effect on employ-
ment share responses to wage changes. Section 2.4 parameterizes F to capture distance-
dependent elasticity of substitution (DIDES), where substitutability declines with skill
distance between occupations—the key mechanism explaining why technological cluster-

ing generates inequality.

Market Equilibrium. A competitive equilibrium consists of a wage vector w* = {w; }OO:1
and allocation L* = {L} }2:1 such that:

a. Profit maximization: Firms choose labor to maximize profits, yielding demand:
d %o \? 1-1
i) -(22) v
Wo

b. Utility maximization: Workers choose occupations optimally, yielding supply:

AWIFo(AWY, ..., Aow)) z

L (w) = o(w)L =
0 F(AWY, ..., AowD)

c. Market clearing: Labor markets clear in all occupations:
Ld(w*) = LS (w*) =L} Vo

PROOF. Existence follows from continuity and Brouwer’s fixed point theorem. Uniqueness
follows from the gross substitutes property: the correlation function F ensures negative
cross-wage elasticities in labor supply, ruling out multiple equilibria. See Appendix A.3
for details. O

2.2. Technological Shocks and Labor Market Incidence

We model automation and AI as technologies that reduce the share of tasks performed by
labor in affected occupations. For technology j € { Automation, AI}, let d1n oc{; < 0 denote
the proportional reduction in occupation o’s task share, equal to the fraction of tasks newly
automated relative to tasks initially performed by labor.” While these technologies displace

8When F(xi, ..., X0) = ¥, %o (independent productivity draws), Fo/F = 1/ Y x; for all o, restoring ITA and
reducing to standard CES with uniform elasticity 6.

Formally, d1n (xf; =-M, j /M‘Ig; where M| j measures newly automated tasks and My measures tasks
initially performed by labor. See Appendix A.1 for derivation.



labor from specific tasks, they simultaneously increase aggregate output by reducing
production costs—a key source of productivity growth. The distributional question is how
aggregate gains and occupation-specific losses are shared across workers.

As demonstrated in Section 3, automation predominantly affects manual-intensive
occupations, while Al targets cognitive-intensive ones. Both technologies cluster within
skill-adjacent occupations. This clustering raises a fundamental question: how do concen-
trated technological shocks propagate through the labor market when affected workers’
natural alternatives face similar threats?

PROPOSITION 2 (Equilibrium Responses to Technology). Consider a technological shock
characterized by task share changes {d1n oco}(?zl. To first order:
(i) Wage and employment responses satisfy:

dlnw = ldln;v-l - ldln o - ldlnL
o o o
dInL=0 -dlnw
(ii) Equilibrium wage incidence is:

dln

(3) dlnw:ldlny-l—A-
o o

where A = (1+©/0) 7L is the pass-through matrix and © is the matrix of labor supply elasticities:

x F .
0 OI—OOOI — Ty lfOiO’

x]'=Ajo

4) O = [

+1-7m| ifo=0

= AP
x]—A]w].

PROOF. Part (i) follows from log-differentiating first-order conditions and employment

shares. Part (ii) combines wage and employment responses. See Appendix C.2. O

This proposition reveals how technological incidence depends on the interaction
between shock distribution and substitution structure. The aggregate productivity gain
(d1n y/o) raises all wages uniformly. The distributional effect, captured by pass-through
matrix A, depends on both demand elasticity o and substitution matrix ©. This matrix
embeds distance-dependent substitution through two components: the correlation term
0x,F,. |F, reflects productivity correlation between skill-similar occupations, while the
share term —07t,, represents baseline substitution. When productivities are independent
(F = ¥, Xo), only the share term remains, reducing to the standard CES.°

0Rows of © sum to zero, confirming that only relative wage changes induce reallocation. This property



Pass-through matrix A embodies a fundamental trade-off: greater worker mobility
(larger ||©||) enables employment adjustment that dampens wage effects, while limited
mobility (smaller |©|) translates shocks directly into wage disparities. In the limit where
[©] - 0 (no mobility) or 0 - oo (perfectly inelastic demand), the pass-through matrix
approaches identity, yielding complete wage incidence. When automation or Al clusters
in skill-adjacent occupations, affected workers’ natural alternatives face similar threats,
reducing effective substitutability and amplifying wage inequality—a mechanism we
formalize through spectral analysis in the next section.

Mobility Gains and Welfare Recovery. While equation (3) captures wage effects for workers
remaining in their occupations, some workers benefit from transitions.

PROPOSITION 3 (Mobility Gains from Reallocation). The expected welfare gain for workers
initially in occupation o from occupational transitions is:

(5) Mobility Gain,, = > Woo (dlnwy — dlnw,)

o":dlnwy>dInw,

where W, = —©, (dInwy — dInw,) is the fraction of workers reallocating from o to o’.

PROOF. Marginal workers are indifferent between occupations before the shock. Their
welfare gain equals the differential wage changes upon switching. See Appendix A.5 for
the complete derivation. O

These gains decompose into average and correlation effects:

(6) Mobility Gain, = [ip- Aw* +Cov(lyy,dInwy —dlnwy)
~—
Average effect Correlation effect

where [i, is the average transition rate to better-off occupations and Aw* is the mean wage
gain conditional on moving.

The correlation effect reveals why clustering undermines welfare recovery. Work-
ers have high transition probabilities precisely to occupations facing similar negative
shocks—a data analyst threatened by Al can easily transition to financial analysis, but that
occupation faces comparable Al exposure. This negative correlation implies that standard
models with uniform elasticities overstate welfare recovery through reallocation while
understating persistent inequality.

follows from the homogeneity of F. See Appendix C.3.
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2.3. Spectral Analysis of Technological Incidence

We employ spectral analysis to understand how the distribution of technological shocks
shapes their labor market incidence. This approach reveals why the clustering of shocks in
skill space—a pattern we document for both automation and AI—amplifies wage inequality
while limiting worker reallocation. Before parameterizing the specific correlation struc-
ture underlying distance-dependent substitution in the next section, we first establish

general principles through eigendecomposition.

2.3.1. Eigendecomposition and Pass-Through

The wage incidence equation (3) can be reformulated using the eigenstructure of the
labor supply elasticity matrix ©. While O is not generally symmetric due to heterogeneous
occupational scales and skill requirements, it admits an eigendecomposition © = UAU ™
where A = diag(Ayq,...,Ap) contains eigenvalues in ascending order and U = [uy, ..., up]
contains corresponding eigenvectors.!!

Each eigenvalue A, represents the labor supply elasticity along its corresponding eigen-
vector uy—that is, how readily workers reallocate when relative wages change according
to pattern uy. This transforms the complex O x O substitution matrix into O independent

dimensions, each with its own elasticity.

LEMMA 1 (Eigenvalue Properties). The labor supply elasticity matrix © satisfies:
a. All eigenvalues are non-negative: A, > 0 for alln
b. Exactly one zero eigenvalue: A} = 0 with eigenvector u; o« 1

c. Remaining eigenvalues are strictly positive: Ap, > 0 for n > 1

PROOF. The zero eigenvalue follows from the row sum property > ©,, = 0. Non-negativity
follows from gross substitutes. See Appendix C.4. O

The zero eigenvalue A; = 0 reflects a fundamental constraint: uniform wage changes
(pattern uy o 1) induce no reallocation since only relative wages matter for occupational
choice. Positive eigenvalues A, > 0 measure labor supply elasticities for different patterns
of relative wage changes. Large eigenvalues indicate shock patterns enabling extensive
reallocation—workers have many unaffected alternatives. Small eigenvalues signal limited
mobility options—affected occupations and their natural alternatives face similar shocks.

The non-symmetry of © requires distinguishing between right eigenvectors (columns of U) and left
eigenvectors (rows of U™'). Empirically, all eigenvalues are distinct with O linearly independent eigenvectors,
ensuring: (i) diagonalizability, (ii) a complete basis spanning R°, and (iii) unique projection of shocks onto
this basis given our normalization |uy| = 1.

11



PROPOSITION 4 (Spectral Decomposition of Incidence). Any technological shock decomposes
uniquely into eigenshocks:

dlnax 2
= Z bnun

o n=1

where weights by, can be recovered as the coefficients in a linear projection of the shocks onto
basis b= (U’ U)_1 U’ - (dln /). The wage response is:

diny, & o
dlnw= 1- b
nw nZ::l G, Dnttn
——

pass-through

PROOF. Apply eigendecompositionto A = (I+©/c)™1 = U(I+ A/o) UL See Appendix
A6. O

The pass-through factor /(o + A) generalizes the classic one-dimensional incidence
formula to a multi-dimensional occupational setting. Our spectral decomposition reveals
that each shock pattern has its own effective elasticity A, generating heterogeneous
incidence across different shock distributions. When technological shocks align with
low-elasticity dimensions (small A,,), workers cannot escape through reallocation, gen-
erating near-complete pass-through to wages. When shocks align with high-elasticity
dimensions (large Aj), extensive worker mobility dissipates the impact through employ-
ment adjustment. This decomposition shows why shock distribution matters: techno-
logical changes loading heavily on low-elasticity eigenvectors—those affecting clusters
of skill-similar occupations—create maximal wage inequality with minimal offsetting
mobility. The multi-dimensional structure thus reveals incidence patterns invisible to
single-elasticity frameworks.

2.3.2. [Illustration: Clustered versus Dispersed Shocks

To illustrate these results, consider four occupations organized in two skill clusters: cog-
nitive (c1, cp) and manual (my, my). Workers’ productivity follows a nested structure with
within-cluster correlation p € [0,1):

=6 -0 \1-p =6 -0 \1-p
Pr[e(i) < €] =exp|- (€C11p + eéz") - (e,lnlp + erlnz")

This structure generates high substitutability within clusters but limited substitution

12



across them. With equal initial employment shares, the eigendecomposition yields:

11 1 1
| e 111 a4
eya-ol” 7 21 a1 1 a1

0/(1-p) 1 -1 -1 1

Three distinct shock patterns emerge:

* u1 = (1,1,1,1)": Uniform shocks (\; = 0) with complete pass-through

* up = (1,1,-1,-1)": Cross-cluster shocks (A, = 0) affecting cognitive and manual occu-
pations oppositely

* ug, uy: Within-cluster shocks (A = 0/(1- p)) with differential effects within each cluster

The cross-cluster shock uy has the smallest positive eigenvalue, yielding pass-through
o/(o +0). When 0 is small (limited overall mobility) or o is large (rigid demand), this
approaches complete pass-through. Crucially, workers displaced from cognitive occu-
pations find their natural alternatives—other cognitive occupations—similarly affected,
constraining mobility and amplifying wage disparity.

Within-cluster shocks achieve better adjustment. With eigenvalue 6/(1 - p), pass-
through becomes o(1 - p)/[o(1 - p) + 0]. Higher within-cluster correlation p increases
the eigenvalue, enabling more reallocation because workers can transition to unaffected
occupations in the same cluster. When one cognitive occupation faces a negative shock
while another remains stable, high correlation within the cognitive cluster facilitates
movement between them.

This example crystallizes why technological clustering matters. When automation or Al
concentrates in skill-adjacent occupations—aligning with low-eigenvalue eigenvectors—it
generates maximal wage inequality with minimal offsetting mobility. The next section
parameterizes this intuition through a cross-nested CES structure that captures distance-

dependent substitution in high-dimensional occupational space.

2.4. Distance-Dependent Elasticity of Substitution

The spectral analysis revealed why technological shocks clustered in skill space generate
severe wage inequality. We now move from the illustrative 2x2 example to the full complex-
ity of real labor markets with hundreds of occupations and multiple skill dimensions. The
key challenge is maintaining tractability while capturing realistic substitution patterns.
We achieve this through a cross-nested CES framework (Lind and Ramondo 2023) that
embeds distance-dependent substitution via a low-dimensional latent skill structure.

13



2.4.1. Latent Skill Formulation

Microfoundation: Skills and Occupational Productivity. Workers possess a vector of latent
skills s € 8. For each skill, they draw productivity across occupations from a correlated
Fréchet distribution:

1-ps
0 =6
Prlej(i) <ej,...,ep(i) < ep] =exp|- (2(62)1_93)

o=1

where skill-specific correlation coefficient ps € [0, 1) governs skill transferability. This pa-
rameter captures a fundamental aspect of human capital: some skills transfer seamlessly
across occupations while others are context-specific. General cognitive abilities—problem-
solving, analytical thinking—typically exhibit high transferability (large ps), while occupation-
specific manual techniques—operating particular machinery, specialized surgical proce-
dures—show low transferability (small ps).

Occupations differ in their skill utilization. Let A denote occupation o’s productivity
when employing skill s. Workers optimally deploy their skills, achieving productivity:

€o(i) = max A - € (i)
se8

This max operator captures how workers sort into occupations based on compara-
tive advantage. Different occupations require different skill combinations: data analysis
demands strong cognitive skills, construction requires manual dexterity, and sales posi-
tions need interpersonal abilities. The parameters {A}} encode these occupation-specific
skill productivity. Workers with exceptional manual dexterity but modest cognitive skills
achieve the highest productivity in manual-intensive occupations where AM21ual jg Jarge,
Conversely, cognitively gifted workers maximize productivity in occupations with high
ASOgnitive. This generates endogenous sorting: workers self-select into occupations that
best utilize their skill endowments, with the occupation-skill match determining produc-

tivity.

Cross-Nested CES Structure. The microfoundation yields a tractable aggregate structure:

PROPOSITION 5 (DIDES through Cross-Nested CES). The joint productivity distribution across
occupations follows:

Prles(i) < €1, e0(i) < €] = exp[-F(Ar€1®, ..., Ageg?)]
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with correlation function:

0 1 1-ps
) Fa-10) - 3| S |
se§ Lo=1
where Ay = ¥ 4(A3)? is aggregate productivity and w3, = (A%)® /A, represents occupation o’s
skill intensity.
PROOF. See Appendix A.7. O

The skill intensities {w}} map occupations into skill space, creating a geography of
occupational skill content. Each w$ measures how intensively occupation o relies on skill
s. Data analysts and financial analysts locate near each other in this space (both cognitive-
intensive), while construction workers occupy distant regions (manual-intensive). This
geography determines substitution patterns through two mechanisms:

- Proximity effect: Occupations with similar skill intensities (nearby in skill space) are
natural substitutes

- Transferability effect: High p; amplifies substitution between occupations sharing
transferable skills

The cross-nested structure achieves remarkable dimensionality reduction. The full
substitution matrix requires O? parameters—with 300 occupations, this means 90,000
bilateral elasticities. Our framework collapses this to S + 1 parameters: S transferability
parameters and one productivity dispersion parameter 0, with skill intensities {w} } mea-
sured directly from occupational data. For three skills (cognitive, manual, interpersonal),
we estimate just four structural parameters while capturing rich substitution patterns
across hundreds of occupations.

2.4.2. Employment and Substitution Structure

The cross-nested CES framework generates explicit expressions for employment shares
and substitution elasticities, revealing how distance in skill space governs labor market
outcomes.

PROPOSITION 6 (CNCES Employment and Elasticities). Under CNCES, occupational employ-
ment shares decompose as:

s,W ,B
(8) To=Y.Ty=y, T, o
se8 se§ | T Lill sh
within-skill share SKultshare
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where:

1
SW (w§Awd) s
" =

— (occupation o’s share among skill-s users)
Yo ((U‘;,AOIWS,) 1=ps

1—p3
I:ZO/ (wZ,AO/ Wg, ) 1—193 ]
B = (skill s’s share of workforce)

1 1_p5’
/ —
Yo [ZOI(wZ/AOIWSI)l oy ]

The correlated substitution elasticities are:

B
©) o %o For oY P W T
- . .
FO x]':AjW? se§ 1 - pS ¢ T[O
PROOF. See Appendix A.8. O

The employment decomposition in equation (8) shows that occupational employment
T, aggregates skill-specific contributions 75, each equaling the product of within-skill
share nf;W (occupation o’s share among skill-s users) and between-skill share 78 (skill
s’s workforce share). This multiplicative structure embeds employment patterns into
distance-dependent substitution.

The elasticity formula (9) reveals how skill distance determines substitutability. The
product T[Z’WTIZ’,W measures skill overlap between occupations, while ps/(1 - ps) scales
this overlap by transferability—high ps amplifies substitution even with modest overlap,
while low pg limits substitution despite substantial overlap. Two data analysts at different
firms (high overlap, high transferability) are strong substitutes; a data analyst and welder
(low overlap, low transferability) are not.

This structure explains why technological clustering amplifies inequality. When au-
tomation concentrates in manual-intensive occupations, displaced workers face a mobility
trap: their high within-skill shares (nf,nanual’w large) indicate concentration in manual
occupations, while clustering ensures their natural alternatives—other manual occupa-
tions—face similar negative shocks.

The framework nests standard models as special cases. When p; = 0 for all skills (no
transferability), the correlation term vanishes and the model reduces to CES with uniform
elasticity 6. Our framework generalizes nested CES models where each occupation belongs
exclusively to one nest. Traditional nested CES requires pre-specifying rigid occupation
groups—manufacturing versus services, routine versus non-routine. In contrast, CNCES
allows occupations to draw from multiple skills with varying intensities {w} }, measured
directly from occupational data. This flexibility proves crucial: data reveal that most
occupations blend multiple skills, and these continuous skill intensities—not discrete
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categories—determine substitution patterns.

2.5. Heterogeneous Workers

Our baseline model assumes workers are ex-ante identical, differing only in their id-
iosyncratic productivity draws. We now extend the framework to incorporate systematic
heterogeneity across demographic groups, providing additional identifying variation for
our empirical analysis.

Consider demographic groups g € G (e.g., race X gender combinations) that differ in
their occupational productivity distributions. Each group draws productivity from:

Prlef(i) < e] = exp [—F (Afefe, . .,Ageée)]

where A% represents group g’s average productivity in occupation o. While comparative
advantages {A%} vary across groups, the correlation function F and dispersion parameter
0 remain common, preserving the underlying substitution structure.'?

The productivity differences {A%} can arise from multiple sources—labor market
discrimination, differences in skill endowments, or heterogeneous preferences for job
amenities. The source of these differences does not affect our estimation strategy: given
observed employment distributions, groups with identical employment shares {75} ex-
hibit identical substitution elasticities, regardless of whether these shares arise from
discrimination or preferences. The elasticity matrix @8 depends only on the equilibrium
employment distribution, not on its underlying causes.

This group heterogeneity serves two purposes in our analysis. First, it provides crucial
identifying variation: different groups exhibit distinct substitution patterns based on their
initial occupational distributions. A group concentrated in manual occupations shows dif-
ferent reallocation responses than one concentrated in cognitive occupations when faced
with identical wage changes, helping to separately identify correlation parameters {p;}
from average elasticity 0. Second, it enables us to study heterogeneous impacts of techno-
logical change across demographic groups in an extension, revealing how automation
and AI affect different segments of the workforce.

3. Measurement and Estimation

This section implements the theoretical framework empirically in two steps. First, we
measure key model inputs: occupational skill requirements (w?) from O*NET descriptors
and technological exposure through task-level evaluations of automation and Al feasibility.
These measurements reveal that both technologies cluster within skill-adjacent occupa-

2Group-specific employment shares are denoted 75, yielding group-specific elasticity matrices ©.
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tions—automation in manual-intensive jobs and Al in cognitive-intensive ones. Second,
we estimate structural parameters {6, {ps}.s} by exploiting occupational employment
responses to automation-induced wage changes between 1980 and 2010.

3.1. Data and Measurement

The primary data source for measuring both skill requirements and occupational exposure
is O*NET (the Occupational Information Network).!3 O*NET provides two key elements:
(i) skill requirements, which define an occupation’s location in the skill space of labor
supply, and (ii) task descriptions, which allow measurement of exposure to automation
and Al

Occupational Skill Requirements. The theoretical framework requires measures of skill
requirements {w}} that map occupations into a low-dimensional skill space where prox-
imity determines substitutability. To operationalize this concept, we follow Lise and
Postel-Vinay (2020) and extract skill requirements directly from O*NET data rather than
estimating them, ensuring consistency with the DIDES structure.

We apply Principal Component Analysis (PCA) to approximately 200 O*NET descriptors
covering skills, abilities, knowledge, work activities, and work context. Following Lise
and Postel-Vinay (2020), we reduce these to three interpretable dimensions through exclu-
sion restrictions: (i) mathematics scores load exclusively onto cognitive requirements,
(ii) mechanical knowledge onto manual requirements, and (iii) social perceptiveness
onto interpersonal requirements.'* These orthogonal dimensions align with the model’s
assumption of independent skill-specific productivity distributions.

To construct skill requirement parameters w}, that enter correlation function F, we
first rescale principal component loadings to 7 € [0,1] using linear transformations
that preserve relative distances between occupations.'® The final skill requirements are
computed as variance-weighted shares:

s ry x Varg

wO = s/
Ys'e8To x Vary

where Var; is the variance explained by skill s. This formulation ensures }; w?, = 1 for each

BThe O*NET database, maintained by the U.S. Department of Labor, provides comprehensive data on
occupational characteristics, worker skills, and job requirements across a wide range of professions. (Link:
https://www.onetonline.org/)

The three principal components explain 58% of total variation, with cognitive skills accounting for 35.6%,
manual skills 15.2%, and interpersonal skills 6.9%. This concentration of explanatory power in cognitive and
manual dimensions aligns with their dominance in determining substitution patterns, as shown in Section 2.

SLinear transformations are crucial here as they maintain the distance metric in skill space—a key feature
for DIDES. Converting to ranks would impose uniform spacing between adjacent occupations, eliminating
meaningful variation in skill proximity.
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occupation, consistent with the theoretical requirement that w?, = (43)%/A, represents
relative skill intensity. Table 1 provides illustrative examples, with detailed methodology
in Appendix B.2.

TABLE 1. Skill Requirements and Technological Exposures for Selected Occupations

Skill Requirements Technological Exposure
Occupation Cognitive Manual Interpersonal Al Automation
Chief Executives 0.71 0.11 0.18 0.28 0.03
Electrical Engineers 0.73 0.19 0.08 0.71 0.19
Economists 0.79 0.07 0.14 0.86 0.31
Licensed Practical Nurses 0.52 0.26 0.22 0.08 0.47
Textile Machine Operators 0.52 0.47 0.01 0.02 0.51

Notes: Skill requirements (w}) represent the relative importance of cognitive, manual, and interpersonal
skills for each occupation, with values summing to 1.0 across the three dimensions. Technological exposure
measures indicate the share of tasks within each occupation that can potentially be performed by AI (genera-
tive models) or automation (robots, machines, and rule-based software) without human intervention.

Occupational Exposure to Technologies. Several measures exist for occupational exposure
to automation (Acemoglu and Restrepo 2022; Autor et al. 2024). In contrast, measuring
occupational exposure to Al presents unique challenges, as its full labor market impact
has yet to materialize. To construct forward-looking measures, we follow Eloundou et al.
(2024) and leverage ChatGPT to evaluate task-level automation and Al feasibility.'®

Specifically, we query ChatGPT on whether each task in O*NET’s database (covering
19,200 tasks across 862 occupations) can be performed without human intervention by: (i)
industrial robots, machines, and computers without Al capabilities (representing tradi-
tional automation exposure) or (ii) generative Al models like ChatGPT (representing Al
exposure). ChatGPT estimates that approximately 6,000 tasks—one-third of the total—can
potentially be performed by Al, a magnitude comparable to automation technologies.

Table 2 provides examples of task evaluations for two occupations: economists and
sewing machine operators. This classification distinguishes automation-exposed tasks,
which involve well-defined, rule-based processes susceptible to mechanization, from
Al-exposed tasks, which primarily involve inductive reasoning, complex decision-making,
and non-physical cognitive work. The latter aligns with Polanyi’s Paradox—many cogni-
tive tasks resist codification into explicit rules, making them more amenable to Al than
traditional automation (Autor 2015).

16This LLM-based approach has been validated by subsequent studies. Bick, Blandin, and Deming (2024) and
Tomlinson et al. (2025) demonstrate high correlations between LLM task evaluations and ex-post real-world
generative Al adoption patterns. Most notably, Brynjolfsson, Chandar, and Chen (2025) find that LLM exposure
measures predict actual employment declines: early-career workers (ages 22-25) in the most Al-exposed
occupations have experienced a 13% relative decline in employment since widespread AI adoption.
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TABLE 2. Task-Level Evaluation of Automation and AI Exposure

Task Description Automation Al

Economists, Market and Survey Researchers

Explain economic impact of policies to the public No Yes
Supervise research projects and students’ study projects No No
Teach theories, principles, and methods of economics No Yes

Textile Sewing Machine Operators

Remove holding devices and finished items from machines Yes No
Cut materials according to specifications, using tools Yes No
Record quantities of materials processed Yes Yes

This table presents examples of task-level evaluations using ChatGPT. Automation exposure is assessed
by asking: “Can industrial robots, machines, and computers (no Al capability) perform this task without
human intervention?” Al exposure is determined by querying: “Can generative Al (e.g., large language
models like ChatGPT) potentially perform this task without human intervention?” Each task receives a binary
classification.

Using these task-level evaluations, we compute the share of tasks within each occu-
pation that are either automatable or Al-exposed, forming our occupational exposure
measures. Table 1 reports automation and AI exposure levels for selected occupations.
Additional methodological details and validation against existing measures are provided
in Appendix B.3.

Technological Exposure in Skill Space. 'We now examine how technological exposure maps
onto occupational skill requirements, revealing the clustering patterns central to our
analysis. Consistent with existing research showing that manual-intensive occupations are
more susceptible to automation (Autor, Levy, and Murnane 2003), our ChatGPT evaluations
confirm this relationship. Panel (a) of Figure 1 demonstrates that automation exposure
increases with manual skill requirements and decreases with cognitive requirements.
Conversely, Panel (b) reveals that AI exposure follows the opposite pattern: cognitive-
intensive occupations face greater vulnerability to Al as these technologies increasingly
perform complex analytical and decision-making tasks.

While automation and Al target distinct occupational segments, they share a critical
feature: both technologies cluster within skill-adjacent occupations. Panels (c) and (d) of
Figure 1 visualize this clustering in cognitive-manual skill space, where darker shading in-
dicates higher exposure. Automation concentrates in the lower-right region (high manual,
low cognitive requirements), while AI clusters in the upper-left region (high cognitive, low
manual requirements). This spatial concentration has profound implications for labor
market adjustment: as established in Section 2.3, clustering restricts worker mobility be-
cause displaced workers’ natural alternatives—occupations requiring similar skills—face
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FIGURE 1. Technological Exposure in Skill Space

This figure illustrates the distribution of automation and AI exposure across occupational skill space. Panels
(a) and (b) present binscatter plots of occupational skill indices against technological exposure. Panels (c)
and (d) visualize the same exposure patterns in two-dimensional cognitive-manual skill space, where darker
shading indicates higher exposure levels.

similar technological threats.

The choice of cognitive and manual dimensions in our analysis reflects their empirical
importance: together they account for 88% of total skill requirements across occupations.!’
Given this dominance, our descriptive analysis focuses on these two dimensions, while

Appendix B.4 examines technological exposure along the interpersonal dimension.

3.2. Estimation of Structural Parameters

Having established technological exposure patterns across skill space, we now estimate the
labor supply elasticities {6, {ps}cs} that govern occupational substitution. Our estimation
strategy exploits long-run employment responses to automation-induced wage changes

7since cognitive and manual skills dominate occupational differentiation, they largely determine substitu-
tion patterns and mobility constraints.
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across demographic groups.

3.2.1. Linear Representation and Identification

While the full model is nonlinear, first-order approximation clarifies our identification
strategy. Log-linearizing the labor supply system yields:

L8 =©%(0,p, w,L8) W+ 8

where the elasticity matrix ©8 depends on structural parameters {0, p} and group-specific
employment shares LS. As shown in equation (4), elements of @ decompose into two
components: a baseline term capturing average substitutability and a correlation term

reflecting skill-based proximity.

ASSUMPTION 1 (Exclusion Restriction). Automation exposure z affects employment only
through wages:
E[8]z] = 0

where €8 represents unobserved labor supply shocks for group g.

This orthogonality condition is plausible because automation feasibility is determined
by technological capabilities—whether tasks can be codified into rules—rather than by
worker preferences or labor supply shifts.

Cross-skill elasticity 0 is identified from employment responses along clustering
shocks, while correlation parameters {p;} are identified from differential responses
along dispersed shocks. Consider the 2x2 example from Section 2.3: the clustering shock
u, = (1,1, -1, -1)" with eigenvalue A, = 0 affects cognitive and manual clusters oppositely,
directly identifying 6 from between-cluster reallocation. Within-cluster shocks us, us with
eigenvalue 0/(1 - p) create dispersed effects, identifying p from differential responses of
groups with varying within-cluster distributions.

In our empirical setting with hundreds of occupations, automation provides the clus-
tering shock (concentrated in manual occupations), while variation in exposure within
skill clusters provides dispersed shocks. Cross-group variation strengthens identifica-
tion: groups concentrated in different clusters identify 0, while groups with different
within-cluster distributions identify {ps}.

3.2.2, Wage Effects from PSID

We first estimate automation-induced wage changes using the Panel Study of Income
Dynamics (PSID) from 1985-2019. Following Cortes (2016), we exploit within-individual job
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spell variation to address selection concerns that plague cross-sectional wage compar-
isons:!8

. !
Inwy(o) ¢ = Bt - Automationo + Xj,y +8; 5 + 1y o ¢

where §; , represents individual-occupation spell fixed effects and X;;; includes year effects

and time-varying individual characteristics.

/
L
/ .
FEERS
)]
I
;
1
¢
/
\
.
.,
d In(Employment Share)
i

Wage Changes (In) / Automation Exposure
<
7

2= 0 0 0 0 0
1990 1995 2000 2005 2010 2015 200 0.0 0.1 02 03 04 05
Year Automation Exposure

A. Wage Effects from PSID B. Employment Effects from Census

FIGURE 2. Effects of Automation on Wages and Employment

Panel (a) shows estimated wage effects of automation exposure using PSID data. The solid line uses individual-
occupation spell fixed effects to control for selection, while dashed lines show alternative specifications
that yield attenuated estimates. Panel (b) presents employment share changes from Census (1980-2000) and
ACS (2010-2018) data, showing a 1.2 log point decline for maximally exposed occupations. The simultaneous
decline in both wages and employment confirms that automation represents a negative labor demand shock
rather than a supply shift.

The importance of controlling for selection is evident in Figure 2. Panel (a) compares
three specifications: (i) our preferred specification with job spell fixed effects (solid blue
line), (ii) occupation fixed effects only (dashed purple), and (iii) both individual and
occupation fixed effects (dashed red). The cross-sectional specification without individual
controls yields only a 30 log point wage decline for maximally exposed occupations, while
our preferred specification shows a 60 log point decline by 2019. This difference reflects
both composition changes and selection of workers in cross-sectional wage comparisons.
Wage effects of automation for men and women are remarkably similar, as shown in
Appendix B.5.

Panel (b) shows corresponding employment effects using Census and ACS data. Oc-
cupations with maximum automation exposure experienced a 100 log point decline in
employment share relative to unexposed occupations. Crucially, the simultaneous de-
cline in both wages and employment—rather than opposing movements—confirms that

automation operates as a negative labor demand shock. If automation were a supply

8Cortes (2016) classifies occupations into discrete groups. We instead use continuous automation exposure
for 306 occupations, providing richer variation for identification.
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phenomenon (workers leaving certain occupations), we would observe rising wages in
exposed occupations due to reduced labor supply. Instead, the parallel declines in wages
and employment unambiguously identify automation as reducing firms’ demand for labor
in affected occupations. These wage and employment responses provide the key moments
for structural estimation.

3.2.3. Structural Estimation via Exact Hat Algebra

Given estimated wage changes {Ww,} from automation, we now estimate structural param-
eters {0, p} using the exact hat algebra approach.

PROPOSITION 7 (Hat Algebra). Given relative wage changes w, correlation function F, and pa-
rameters {0, p}, observed employment shares {71‘? }geG serve as sufficient statistics for predicting
counterfactual shares {n‘f 1) geG Without requiring levels of wages or productivities.

PROOF. See Appendix A.9 for proof and algorithm. O

This result allows us to express equilibrium conditions in terms of ratios. For each
demographic group g, model-implied employment changes are:

78 =78 (0, 0, (Wi}, {76 .}, (Wo} )

where the function applies the hat transformation. We estimate parameters using pseudo-
Poisson maximum likelihood:

{6,0) =argmin Y« (., 75 - 75(6, 0))

0 0% o,t+1° "o,
where k(x,x) = 2[x1n(x/X) — (x — X)]. The estimation embeds the exclusion restriction:
E [Vit | Wi, {ﬂig}gEG] =0
where 1% , = /ftg’Auto -1
o,t 0,t+1/ ""o,t :

Table 3 presents PPML estimation results. The CES benchmark in column 1 imposes
ps = 0, yielding 0 = 3.12 (s.e. = 0.20). This represents average elasticity under independent
productivity draws across occupations. Column 2 shows our main CNCES specification
using all demographic groups, which dramatically alters the results.

Three key findings emerge. First, cross-skill elasticity falls to 6 = 1.10 (s.e. = 0.23), im-
plying that approximately two-thirds of observed substitution occurs within skill clusters
rather than across them. Second, skill transferability varies substantially: cognitive skills

show the highest correlation parameter (pcog = 0.77, s.e. = 0.13), followed by interper-
sonal skills (Pt = 0.75, s.e. = 0.13), while manual skills exhibit the lowest transferability
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TABLE 3. PPML Estimation Results of Labor Supply Elasticities across Demographic Groups

1980-2000 1980-2010

CES CNCES CNCES CNCES CES CNCES CNCES CNCES
All All White Men  White All All White Men  White

& Women Women & Women Women

0 3.12 1.10 1.07 2.29 2.85 1.02 1.06 1.97
(0.20)  (0.23) (0.47) (2.08) (0.20)  (0.50) (0.46) (0.80)

PCog 0 0.77 0.78 0.65 0 0.76 0.75 0.65
- (0.13) (0.09) (0.36) - (0.17) (0.22) (0.67)

PMan 0 0.48 0.50 0.39 0 0.44 0.45 0.38
- (0.18) (0.15) (0.44) - (0.23) (0.19) (0.52)

PInt 0 0.75 0.77 0.62 0 0.72 0.74 0.62
- (0.13) (0.14) (0.41) - (0.19) (0.14) (0.27)

Standard errors in parentheses. Following the literature, we scale the Poisson deviance by the mean-variance
ratio of the data to obtain standard errors. While scaling does not affect the estimates, it aligns the deviance
with the data variance. The CES specification imposes p = 0 across all occupation groups, while the CNCES
specification allows for heterogeneous distance-dependent elasticities. Columns 1 and 5 report CES estimates
for the full sample. Columns 2 and 6 report CNCES estimates for the full sample. Columns 3 and 7 restrict the
sample to white men and women, while columns 4 and 8 further restrict to white women only. The estimates
for the CES specification are close to those from a simple OLS regression with predicted wage effect as a
regressor.

(PMan = 0.48, s.e. = 0.18). Third, these parameters imply heterogeneous within-skill elas-
ticities: 0/(1 — ps) equals 4.8 for cognitive occupations, 4.4 for interpersonal occupations,
but only 2.1 for manual occupations.

The remaining columns demonstrate robustness. Columns 3-4 show that estimates
remain stable when restricting to white workers, though standard errors increase with
smaller samples.' Columns 5-8 replicate the analysis using 1980-2010 employment changes,
yielding nearly identical point estimates with slightly larger standard errors. Consistency
across time periods and demographic subsamples validates our identification strategy:
technological clustering within skill domains fundamentally constrains worker mobility,
with manual workers facing the most severe limitations due to lower skill transferability.

To assess our CNCES approach, we compare it with standard Nested CES specifications
that partition occupations into mutually exclusive categories. Using the same estima-
tion procedure, we test two nesting structures: occupation categories (low-skill service,

The larger but imprecise estimate for white women alone (6 = 2.29, s.e. = 2.08) likely reflects both
identification and compositional effects. First, cross-skill identification comes primarily from men, whose
employment concentrates in manual occupations, providing clearer variation in response to clustering
shocks. Second, rising female labor force participation during our sample period means cross-sectional
variation partly captures new entrants who are inherently more flexible in their occupational choices,
inflating the estimated elasticity. Women’s more dispersed employment across skill clusters, however, provides
valuable identifying variation for correlation parameters {ps}. This complementarity in identification across
demographic groups strengthens our overall estimates.
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high-skill service, manufacturing) and skill intensity groupings (cognitive, manual, in-
terpersonal). Results detailed in Appendix B.6 reveal that most within-nest correlation
parameters are statistically insignificant, while cross-nest elasticities (2.05-2.67) converge
toward our CES benchmark of 3.12, effectively reducing nested CES to standard CES. The
contrast with our CNCES estimates—where 6 = 1.10 and substantial skill-specific cor-
relations emerge—demonstrates that continuous skill intensities rather than discrete
categorical boundaries are empirically critical.

3.3. The Topology of Occupational Substitution

Our estimated parameters reveal the fundamental structure of labor market substitu-
tion. Using 1980-2000 estimates, Figure 3 visualizes the substitution network among 306
occupations based on estimated cross-wage elasticities from our CNCES model.
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FIGURE 3. The Network Structure of Occupational Substitutability and Automation Expo-
sure, 1980

This figure visualizes the substitution structure among 306 occupations based on estimated cross-wage
elasticities from the CNCES model. Edges represent substitutability between occupation pairs, with darker
and thicker lines indicating stronger substitution relationships (top 20% of elasticities shown). Node positions
are determined using a force-directed layout algorithm that places more substitutable occupations closer
together. The left panel colors nodes by broad occupational categories, revealing natural clustering of similar
occupations. The right panel maps automation exposure onto the same network structure, with colors ranging
from blue (low exposure) to red (high exposure), demonstrating the concentration of technological shocks
within skill-adjacent occupations.

The left panel demonstrates how our three-skill framework organizes occupations
into economically meaningful clusters. Production and operative occupations form dense
interconnections through shared manual skills; professional and financial occupations
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create even tighter clusters around cognitive requirements; service occupations fragment
based on specific skill combinations. The cognitive cluster exhibits the highest density
of connections, directly reflecting our estimated correlation parameters: pcog = 0.77
versus pman = 0.48. This differential density validates our model’s ability to capture both
occupational position in skill space (through w?) and varying strength of within-skill
connections (through pg). This structure emerges from estimated elasticities rather than
imposed assumptions, confirming that our framework captures both the geography of
occupations and heterogeneous mobility constraints governing transitions between them.

The network topology directly illustrates distance-dependent elasticity of substitu-
tion (DIDES). Within-cluster connections are dense (high substitutability for similar w}),
while cross-cluster edges remain sparse (limited substitution across skill boundaries).
This contrasts sharply with nested CES specifications, which impose rigid categorical
boundaries. Our empirical tests of nested CES reveal why such approaches fail: within-nest
correlations are statistically insignificant and cross-nest elasticities converge to the CES
benchmark.?’ The CNCES framework’s flexibility—with 6 = 1.10 for cross-skill substitu-
tion but within-skill elasticities ranging from 2.1 to 4.8—captures heterogeneous mobility
constraints that discrete nesting misses.

The right panel overlays automation exposure, revealing how technological cluster-
ing constrains adjustment. Automation concentrates in the production-operative cluster,
creating a mobility trap: workers’ most natural alternatives face similar threats. Dense
within-cluster connections that normally facilitate adjustment instead propagate shocks.
High within-cluster substitutability amplifies rather than dissipates wage effects when
entire skill clusters face negative shocks.?! This visualization crystallizes our theoretical in-
sight: when automation hits manufacturing workers, they can easily move to construction

or transportation jobs—but those jobs are also being automated.

4. The Incidence of Automation and Al

Having estimated the labor supply elasticities that govern occupational substitution,
we now evaluate the labor market incidence of automation and Al. For labor demand
elasticity, we use the estimate from Caunedo, Jaume, and Keller (2023) of o = 1.34, based on
occupational input responses to labor productivity changes. Our analysis proceeds in three
complementary steps: we first decompose technological shocks using spectral analysis

20gtandard nesting forces dissimilar occupations together while separating similar ones across arbitrary
boundaries. For instance, nested CES might group all "service" occupations despite heterogeneous skill
requirements. Our CNCES allows occupations to draw from multiple skills—a economist requires primarily
cognitive skills (cvzOg = 0.79) but also interpersonal abilities (wf)nt = 0.14)—letting data determine relative
distances rather than imposing discrete categories. See Appendix B.6 for detailed comparisons.

2L Appendix B.7 shows Al exhibits identical clustering in cognitive-intensive occupations, suggesting this
pattern characterizes skill-biased technological change generally.

27



to understand their fundamental structure, then examine resulting heterogeneous wage
pass-through across occupations, and finally quantify welfare recovery achieved through
occupational mobility. Throughout, we use 1980-2000 elasticity estimates, which provide

the most robust identification.

4.1. Spectral Decomposition of Technological Shocks

We apply the spectral framework from Section 2.3 to decompose automation and AI shocks
into eigenshocks—fundamental patterns revealing the labor market’s absorption capacity.
Each eigenshock’s eigenvalue determines reallocation possibilities: smaller eigenvalues
indicate rigid adjustment channels and larger wage effects.??
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FIGURE 4. Variance Decomposition of Labor Demand Shocks

Decomposition of labor demand shocks into eigenshocks ordered by eigenvalue magnitude. Smaller eigen-
values indicate limited employment reallocation. Panel A: Automation and Al concentrate on low-eigenvalue
eigenshocks. Panel B: Trade and demographic shocks distribute across higher eigenvalues, enabling better
adjustment.

Figure 4 reveals why technological shocks generate severe distributional consequences.
Panel A shows both automation and Al load disproportionately onto eigenshocks with
the smallest eigenvalues (1.8-2.0). Automation concentrates 23% of its variance on the
smallest eigenvalue; Al shows 44%—dwarfing other contributions. These small eigenvalues
represent shock patterns affecting clusters of similar occupations simultaneously, leaving
workers with minimal escape routes. When technological shocks concentrate on such
rigid adjustment channels, the labor market cannot dissipate them through employment
reallocation.

Clustering patterns vary across demographic groups, reflecting heterogeneous em-
ployment distributions across skill space. Appendix B.8 demonstrates that automation

22We compute the substitution matrix by inverting employment shares to obtain implied productivity levels
Ao,twg + Eigenshocks are eigenvectors of this matrix, with eigenvalues measuring absorption capacity.
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constrains male workers more severely—loading 31% of variance on the smallest eigen-
value versus women’s 10%—due to men’s concentration in manual-intensive occupations.
This gender difference disappears for Al, where both groups face similar extreme con-
centration on low eigenvalues, suggesting cognitive task clustering affects all workers
regardless of occupational segregation patterns.?®

Panel B contrasts this with trade and demographic shocks, which distribute variance
across eigenshocks with moderate-to-high eigenvalues. The China shock’s largest loading
(34%) occurs at eigenvalue 2.1, while demographic changes load substantially on eigenval-
ues above 2.5.2* These patterns create multiple adjustment pathways—workers displaced
from declining industries or occupations can transition to expanding ones, a mechanism
that technological clustering eliminates.
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FIGURE 5. Spatial Structure of Technological Constraints

Panel A: Eigenshock with smallest eigenvalue (2018) in cognitive-manual skill space. Panel B: AI exposure
distribution. Darker shading indicates higher loading/exposure. Dashed lines mark median skill requirements.
The correspondence shows Al aligns with the shock pattern least absorbable through reallocation.

Figure 5 maps why technological shocks resist adjustment. Panel A visualizes the
eigenshock with the smallest eigenvalue across cognitive-manual skill space. The pattern
bifurcates: high-manual/low-cognitive occupations (lower right) and high-cognitive/low-
manual occupations (upper left) load strongly but oppositely. Panel B reveals AI exposure
concentrates precisely in the high-cognitive region identified by the eigenshock—not
coincidence but mathematical necessity.

The grayscale gradient exposes the trap: occupations with highest eigenshock loading
(darkest quartile) form tight clusters. A financial analyst facing Al exposure cannot escape

Z3The convergence in Al's gender impact contrasts with automation’s differentiated effects, implying future
technological shocks may generate more uniform demographic impacts while maintaining severe absolute
clustering effects.

2*We obtain occupation-level demand changes from the China shock and population aging (demographic
shock) from Autor et al. (2024), who estimate these effects based on trade exposure and demographic
composition across U.S. commuting zones.
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to data analysis or market research—these skill-similar alternatives face comparable
threats. The correlation enabling natural transitions becomes the mechanism preventing
escape.?’

The spectral decomposition establishes two key insights: (i) Technological concentra-
tion on low-eigenvalue eigenshocks drives distributional consequences—not a technical
detail but the fundamental mechanism; (ii) The labor market’s limited capacity to absorb
skill-clustered shocks represents a structural constraint, not temporary friction, shaping
how technological progress creates persistent wage disparities.

4.2. The Structure of Wage Incidence

The spectral analysis revealed aggregate patterns; we now document their heterogeneous
manifestation across occupations. Our central finding: technological incidence depends
not on average substitutability but on the structure of substitution—specifically, how
clustering interacts with skill-based mobility constraints.

Figure 6 reveals systematic heterogeneity in how demand shocks split between em-
ployment and wage adjustments.?® Panel A shows automation’s pass-through ranging
from 25% to 45%—far exceeding the 30% CES benchmark for most exposed occupations.
This variation directly reflects our theoretical prediction: when shocks cluster in skill
space, affected workers cannot escape through reallocation, forcing adjustment through
wages.

Production and transportation workers (purple/cyan points) exemplify this trap. Facing
the largest negative shocks with 40-45% pass-through, nearly half their demand destruction
becomes wage losses—not the 30% standard models predict. Automation clusters in
manual-intensive occupations, eliminating natural transition pathways. The effective
elasticity falls from 3.12 to 2.38, yielding an average pass-through of 0.36. This reveals that
ignoring substitution structure and clustering overstates labor supply elasticity by 31%,
systematically understating wage inequality from technological change.

Panel B reveals AT’s distinctive pattern compared to automation. While highly exposed
occupations (right side) show modestly elevated pass-through around 35%, the larger
pass-through emerges for AlI-complementary occupations (left side), which exhibit pass-
through rates of 40-45%. This asymmetry reveals that Al generates larger wage gains for
beneficiaries than wage losses for those displaced. Workers in AI-complementary occu-
pations—those with minimal AI exposure—capture substantial wage increases because
displaced cognitive workers cannot easily transition into these roles, which often require
different skill combinations like manual or interpersonal expertise. This creates a pro-

% Dashed median lines divide the space into quadrants. Occupations in the upper-left quadrant face double
jeopardy: direct Al exposure plus surrounding by similarly threatened occupations.

26We invert the model using automation wage effects to recover demand changes. For Al we normalize
shocks to match automation’s aggregate effect, enabling distributional comparison.
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FIGURE 6. Heterogeneous Wage Pass-Through of Technological Shocks

Panels A-B: Pass-through rates versus exposure, with points colored by occupation category. Horizontal line
marks CES benchmark (0.30). Panels C-D: Pass-through distributions with CES benchmark (dashed), mean
(dotted), and median (dash-dotted) lines.

nounced winner-take-all than automation: those who benefit from Al experience larger
relative gains, amplifying inequality through a different mechanism than the symmetric
displacement effects of automation.

Economic Magnitudes. Panels C and D translate occupation-specific effects into workforce
distributions. Three features challenge conventional models. First, mean pass-through
(0.362 for automation, 0.360 for AI) exceeds the CES benchmark by 20%, implying that
CES overstates average labor supply elasticity by 31% and systematically understates wage
inequality. Second, pronounced bimodality—with modes at 0.32 (peripheral occupations)
and 0.42 (core exposure)—contradicts uniform incidence assumptions. Third, the three-
fold range (0.15-0.45) reflects fundamental heterogeneity in substitution structure, not
measurement error. These patterns have substantial consequences. For a 30% demand

shock, heavily exposed manual occupations experience 13.5% wage declines (30% x 0.45)
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versus 9% under CES—a 50% larger effect.?’

The key insight connecting to our theory: technological clustering transforms the
fundamental trade-off between employment and wage adjustment. In equation (3), pass-
through matrix A = (I + ®/0)~! depends on the full structure of ®, not just its average.
When technology clusters (concentrating on low-eigenvalue eigenshocks), workers can-
not escape through employment reallocation—the mechanism that typically dissipates
shocks—forcing adjustment through wages. This structural constraint, not average rigidity,
drives the severe and persistent inequality we document.

4.3. Welfare Recovery Through Occupational Mobility

While wage pass-through captures static losses, workers partially recover through occu-
pational transitions. These mobility gains, however, depend crucially on the interaction

between exposure patterns and skill transferability—revealing why average elasticities
mislead.
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FIGURE 7. Welfare Recovery Through Occupational Mobility

Welfare gains from transitions (equivalent variation) versus wage shocks. Points represent occupations (CNCES
model); black dashed curves show CES predictions. The convex relationship reflects stronger transition
incentives for larger shocks, but recovery remains partial and heterogeneous.

Figure 7 quantifies mobility gains as equivalent variation: EV, = ¥/ oo - dIn(wyr /wo).
The convex relationship confirms that larger shocks induce more transitions. Yet the sys-
tematic gap between our estimates and CES predictions reveals how clustering constrains
recovery.

Panel A exposes automation’s mobility trap: workers experiencing 40 log point wage
declines recover only 20% of losses through transitions, versus 30% under CES—a 50%

overstatement. This gap emerges from a cruel interaction: automation concentrates in

Y persistence matters for policy: high pass-through reflects structural mobility constraints requiring
sustained intervention, not temporary frictions that markets arbitrage away.
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manual occupations where workers have the lowest skill transferability (oman = 0.48). Pro-
duction workers cannot escape to construction or transportation—their most productive
alternatives—because these face similar threats. The clustering that drives wage losses si-
multaneously blocks escape routes. Standard models using average elasticity 6 = 3.12 miss
this interaction, falsely implying that manual workers enjoy the same mobility options as
others.

Panel B reveals AI's contrasting pattern: cognitive workers experiencing 40 log point
wage declines recover approximately 27% of losses, still below CES predictions but no-
tably higher than automation’s impact. This improvement directly reflects our estimated
Pcog = 0.77—cognitive skills transfer more readily across occupations. A threatened data
analyst has more viable alternatives than a displaced welder, even when many cognitive oc-
cupations face Al exposure. Yet recovery remains limited: even with higher transferability,
clustering ensures that workers’ best alternatives are often similarly threatened.

4.4. Summary: The Complete Incidence Picture

Our three-pronged analysis reveals how technological clustering fundamentally reshapes
labor market adjustment, generating more severe and persistent inequality than standard
frameworks predict.

The spectral decomposition established that automation and AI concentrate on eigen-
shocks with the smallest eigenvalues (1.8-2.0), channeling disruption through the la-
bor market’s most rigid adjustment channels. While other shocks—trade, demograph-
ics—distribute across multiple eigenvalues enabling reallocation, technology loads 23-44%
of variance onto patterns that mathematically minimize escape possibilities.

This concentration manifests in heterogeneous wage pass-through. Our estimates re-
veal 25-45% of demand shifts for both automation and Al translate to wages—substantially
exceeding the 30% CES benchmark. Heavily automation-exposed occupations face pass-
through rates reaching 45%, implying 50% larger wage effects than standard models
predict.

Mobility provides limited insurance against these losses. Workers largely exposed to
automation recover only 20% of wage declines through occupational transitions, compared
to 30% under conventional assumptions. This constraint emerges from a cruel interaction:
technological shocks cluster precisely where skill transferability is weakest. Automation
targets manual occupations with pman = 0.48, creating a double bind—large losses with
minimal recovery options. Al focuses on cognitive occupations where pcog = 0.77 offers
better prospects, yet clustering still constrains escape routes.

The crucial insight connecting theory to empirics: incidence depends not on aver-
age substitutability but on the interaction between shock distribution and substitution
structure. In our framework, pass-through matrix A = (I + ©/0)~! captures this interac-
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tion—when shocks align with low-eigenvalue eigenshocks (clustering), the labor market
cannot dissipate shocks through reallocation, forcing adjustment through wages. This
structural mechanism, absent from models assuming uniform elasticity, explains why
technological change generates such pronounced and persistent distributional conse-
quences.

5. Dynamic Extension with Transition

Our model retains the Roy structure, enabling a seamless integration of DIDES into related
frameworks while incorporating a richer substitution structure — essential for counter-
factual analysis. In this quantitative section, we extend our static model into a dynamic
discrete choice framework (Artug, Chaudhuri, and McLaren 2010; Caliendo, Dvorkin,
and Parro 2019) to capture gradual labor market transitions. This extension allows us to
examine the dynamic labor market incidence of technological adoption in the transition
and the long run (Lehr and Restrepo 2022; Adio, Beraja, and Pandalai-Nayar 2024).28

5.1. Dynamic Discrete Choice with DIDES

Our focus is on studying the dynamic labor market incidence of technological adoption
rather than modeling firms’ endogenous technology adoption decisions. The production
side remains identical to the static framework, while workers make rational, forward-
looking occupational choices in response to automation and Al shocks. To model these
choices, we adopt a structure similar to Caliendo, Dvorkin, and Parro (2019) with a corre-
lated productivity distribution among jobs.

Workers’ Dynamic Decision. In each period, we denote the vector of occupational employ-
ment by L;. Workers are assumed to be hand-to-mouth, taking the wage path {w;}°, as
given, and derive utility from consumption and labor supply according to:

U ({ee(i), (i)} 20) = E)Bt (Incr(i) - Inte(i))

Atthe beginning of each period, workers draw labor productivity across all occupations

from the same distribution as in the static model:2°

Priei(i) <e€1,...,€0(i) < ep] =exp [—F (Alefe, . .,Aoeée)]

2Different from Dvorkin and Monge-Naranjo (2019) and Seo and Oh (2024), we abstract from persistent
worker heterogeneity while allowing for the flexible substitution structure to focus on the incidence.

2The correlation function in both transition and steady state corresponds to the same empirical elasticities.
If transition probabilities are identical across all origins, these probabilities correspond to the stationary
distribution, implying they share the same substitution structure.
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After observing their labor productivity, workers choose an occupation, with consump-
tion equal to occupational income, ¢; = W, ¢, and labor supply given by:

In (¢ (i) = —x1n (o (i)

In contrast to the static model, productivity enters the labor supply function with
short-run discounting factor k, which governs short-run labor supply elasticity. While we
could allow workers to redraw labor productivity with a short-run probability, doing so
yields the same sufficient statistics for counterfactual welfare and similar dynamics.3°
Additionally, workers incur job transition cost T,,, when switching occupations.

ASSUMPTION 2. Job transition cost is constant over time T, and measured in terms of utility.

Given this economic environment, we formulate workers’ decisions recursively via
the following Hamilton-Jacobi-Bellman (H]B) equation:

Vot (€¢) = moe}x {ln Wyt tKIney p+BVo i1 - TOO/}

where V111 = Ee [Vo}t+1 (e)] and v, ¢ (e¢) denote a worker’s lifetime utility in occupa-
tion o after observing their productivity. This utility comprises current-period benefits
Inwy ; + kln ey ; and discounted expected future utility V, 1,1, net of job transition cost
Too - Workers choose occupation o’ to maximize lifetime utility.

Consequently, we can recursively express occupational expected utility as:

\ I
Vo,t =InlF (Al,tzol’t Ky ’AO!tZOKO,t) + Y5

where Zy + = exp (BVo',t+1 +lnwy ;- Too' )

Additionally, job transition probability can be derived as shown in Appendix A.11:

9 g <
AO/)fZOO/,t K X Fo/ (Al,tzol,t RERERE AO;tZ(;(O,t)

Moo/t = o 8
F (Al,tZol,t?; .. -,Ao,tZOKO,t)

The interplay of job transition costs and idiosyncratic productivity shocks generates
slow labor market adjustments in our model. A key distinction of our approach is that
it allows for rich substitution patterns between jobs, as embedded in the correlation
function F. When F is additive, our framework reduces to the standard model.

30 Allowing for short-run probability of redrawing productivity can also be interpreted as an overlapping
generations (OLG) framework. However, permitting productivity redraws would imply larger gains from
reallocation under the same transition dynamics.
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Dynamic Equilibrium. As discussed in the static model, the share of tasks performed by
labor, denoted by {sg}zo, characterizes distributional effects of technological adoption,

while aggregate capital productivity, {a’f}zo, is Hicks-neutral (see Appendix A.13). All
other occupational labor productivity is represented by {A;} ;2.

Given time-varying fundamentals {¥;}7°, = {sg, alf, At}::o , we define a dynamic equi-
librium under rational expectations. In this equilibrium, there exists a time path of wages
{wt}{2, occupational allocations {L;};-, and job transition probabilities {y;},-, such
that:

a. Wage vector w; = w (s% s a’,f s Lt) solves the static production equilibrium.
0,0

b. Workers’ optimal occupational choices yield job transitions p; = {uoofjt}ozl /o1’

c. Labor allocation evolves according to Lo ¢ = > Hoo',tLo,t—l-Sl

5.2. Dynamic Hat Algebra with Correlation

In this section, we extend the dynamic hat algebra to incorporate correlated productivity
distributions, enabling richer substitution patterns. The model addresses key counter-
factual questions: What would have happened to the wage distribution if automation
technologies had not been adopted? How much can the labor market absorb unequal de-
mand shocks caused by AL if Al technologies are adopted to the same extent as automation,
but at a much more rapid pace by 2030?

Formally, our counterfactual analysis studies how equilibrium allocations across
occupations and over time change relative to a baseline economy when faced with an
alternative sequence of fundamentals, denoted by {‘P;}zl We examine how changes in
these counterfactual fundamentals affect equilibrium outcomes of interest.

To facilitate characterization of the dynamic equilibrium, we introduce additional
notation. For any scalar or vector x, we denote its proportional change between periods
tand t+1as &, = X¢,1/X¢. Additionally, x; denotes the corresponding variable in the
counterfactual economy. Finally, we define X;,1 = X;, /%1, which represents the ratio of
the time change in the counterfactual equilibrium to that in the initial equilibrium.

Before characterizing counterfactual outcomes, we introduce the correlation-adjusted
transition probability:

3 ] ] 8
Boo',t = Aot tZoo',t | F (Al,tzol,t R ’AO;tZ;O,t)

which serves as a sufficient statistic. Note that when F is additive, [i; coincides with

since Hoo ¢ = Hoo’,t/Fo’-

3lWe construct job flows from retrospective responses in the March CPS; consequently, aggregate flows
derived from these responses do not directly match observed occupational employment levels. To account
for this discrepancy, we adjust the evolution of occupational employment as Lot = 3. Moo, tLo,t-1 + ALo,t-
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LEMMA 2. Given correlation function F, there exists a unique mapping between occupation
transition probability u; and correlation-adjusted transition probability [is:

0
Yo

{Hoo’,t = ﬂoo’,t Fo’(ﬂol,t: ) Floo,t)} P

o'=1

With this correlation-adjusted transition probability, we introduce the dynamic hat
algebra with correlation to analyze how economic outcomes change counterfactually.
Specifically, we study how allocations and wages across occupations evolve over time in

response to alternative sequences of fundamentals, denoted by {‘I’t}zl.

PROPOSITION 8 (Dynamic Hat Algebra with Correlation). For time-varying counterfactual
. Aoy 00 oAk oA\ ° . . A .
changes in fundamentals {‘i’t} pey = {st, at,At}t_1 with lim;_, ., Y+ = 1, observed allocations
and transition probability {Ls, ut } - are sufficient to characterize counterfactual changes in
allocations, wages, and expected utility (uo + = exp (Vo,¢)). Formally:
« Counterfactual changes in wages w; = w (§§, &];, f_,t) solve the static production equilibrium.

« Counterfactual correlation-adjusted transition probability is:

€] [¢)

o/ = A APR K
Moo t-1Ho0’, tAo,tly 1ol

Moo’,t . R BQ 0 0
~ ! ~ LS K
F {Hoou’t_l uoo”,tAO”,tuO/l,t+1WO//)t}0//_1

« Counterfactual change in utility is characterized by:

0 0 0} )
N ~/ * A ~P= "=
uo)t+1 =F {p’OO”;tuoo,’)t+1A0"1t+1uO"Ijt+2W(;<",f+1}0,,_1

with terminal condition lim¢ o0 ot = 1.
« Counterfactual occupational allocation evolves according to Lg,,t = Yo 1y O,)tL’O}t_l.

PROOF. See Appendix A.16 for proof and for the different expression for time 0 that

accounts for unexpected changes in fundamentals. O

Proposition 8 demonstrates the sufficient statistic property of the dynamic hat alge-
bra: observed allocations and transition probabilities fully characterize counterfactual
outcomes under a new sequence of fundamentals. Moreover, it underscores the critical
role of the substitution structure—captured by function F—which governs counterfactual
implications. While observed allocations serve as sufficient statistics, the specific form of
F determines how changes in fundamentals translate into counterfactual wages and allo-
cations.32 Our static results, showing that clustering of technological changes combined

32When F is additive, we return to the standard dynamic hat algebra approach with independent productivity
distribution.
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with DIDES leads to unequal labor market incidence, persist in the dynamic framework.

Finally, as derived in Appendix A.17, welfare change resulting from a shift in funda-
mentals—measured in terms of consumption equivalent variation—can be expressed
as:

o0 K
EVot = Z Bs_t In (Wo,s/flgo,s)

s=t
Moreover, changes in occupation-specific adjusted staying probabilities capture gains
from mobility, echoing results in Arkolakis, Costinot, and Rodriguez-Clare (2012), once
the substitution structure is taken into account.

5.3. Data and Estimation

The Euler-Equation Approach. Based on the Euler-equation approach introduced by Artuc,
Chaudhuri, and McLaren (2010), we account for correlation in the productivity distribution
and corresponding substitution structure. Specifically, we derive the following analogous
estimating equation:

n Hoo',t 6 In Wo' t Hoo! ,t+1

1 +B1n

+(B-1) Toor +Vt
Hoo,t K Woit Ho'o,t+1

where v; is an error term. This expression parallels ACM’s formulation but with correlation-
adjusted job transitions. Intuitively, cross-sectional adjusted job transition flows incor-
porate information on expected future wages and the option value of job mobility, with
adjusted future job transition flows serving as sufficient statistics for these option values
(see Appendix A.17 for details). The key insight is that, after conditioning on adjusted
future values, coefficient % represents the elasticity of relative adjusted job transitions
with respect to changes in relative wages.33 As in ACM, the theory implies that lagged
values of wages and adjusted job transitions are valid instruments.3*

Data and Estimation Results. Our estimation strategy requires aggregate job flows across
occupations and average wages—data readily available from standard sources. We con-
struct these measures using individual-level data from the US Census Bureau’s March
Current Population Survey (CPS). While our approach requires only aggregate transitions
and wages, the limited sample size of CPS necessitates grouping occupations. We therefore
cluster occupations into 15 groups based on their skill requirements using a k-means algo-
rithm. This procedure is intuitive, as occupations with similar skill requirements naturally
group together in skill space. We then compute annualized job transition probabilities

33We cannot separately estimate 0 and , nor is it necessary, as they enter equilibrium dynamics and
welfare metrics jointly, as demonstrated in Proposition 8.

34The exclusion condition requires that error term v; is not correlated over time. See ACM for detailed
discussion.
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among these 15 clusters, u, for the period 1976-2019. Appendix B.10 provides detailed
discussion of data construction.

TABLE 4. Estimation of Short-Run Elasticity 6/«

oy} (@) ® @)
OLS v IV + Dest. FE IV + Origin FE

0/k 0.063***  0.071*** 0.068** 0.080**

(0.018) (0.018) (0.025) (0.025)
Observations 630 630 630 630
Destination FE No No Yes No
Origin FE No No No Yes
v No Yes Yes Yes

Notes: This table reports estimates of the short-run elasticity 8/« from the Euler equation specification.
Column (1) presents the baseline OLS estimate. Column (2) employs IV estimation using lagged adjusted
job transition probabilities and wages as instruments. Columns (3) and (4) add destination and origin fixed
effects, respectively, both with IV. Standard errors in parentheses. Significance levels: *** p < 0.01, ** p < 0.05,
* p<0.l.

We use 3 = 0.96 as the annual discount factor. Table 4 reports estimation results for
short-run elasticity %. Column (1) presents the OLS estimate, yielding a short-run elasticity
of 0.063. Column (2) implements an IV approach using lagged adjusted job transition
probabilities and wages as instruments, resulting in an estimate of 0.071. Columns (3) and
(4) incorporate destination and origin fixed effects, respectively, yielding estimates of 0.068
and 0.080. While these estimates are broadly consistent, they are lower than those reported
in ACM, primarily due to our use of correlation-adjusted job transition probabilities. As
discussed in the static model, this adjustment nets out within-skill substitutability—a major
source of variation in the response of job transitions to relative wage changes. Moreover,
grouping occupations by similar skill requirements further reduces across-cluster job
transition responses, contributing to smaller elasticity estimates.

5.4. The Dynamic Incidence of Automation and Al

We now assess the distributional effects of automation and AI within a slow-adjustment
labor market framework. In our quantitative evaluation, we employ 15 occupation clusters
with transition probabilities constructed from CPS data. For counterfactual applications,
we use elasticities from our static estimation, augmented by short-run labor supply elas-
ticity 0/k = 0.07 estimated via the Euler-equation approach. To maintain clarity, we focus
on average effects over time, as cross-sectional heterogeneity closely mirrors results from
the static model.

For automation technologies, we obtain ex-post estimates of their dynamic wage
effects, as shown in Panel A of Figure 2. Occupations with higher automation exposure
have experienced gradual relative wage decline since 1985, resulting in up to 50% difference

between occupations where all tasks are exposed and those where none are. To match this
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observed wage trend, we calibrate the share of tasks performed by labor, {sg} We then
implement the following counterfactual: what would have occurred if task labor shares
{st} had remained unchanged since 19852%

Panel A of Figure 8 illustrates the relative decline in occupational labor demand due
to automation exposure (dashed line) alongside the share of demand changes absorbed
by employment shifts (green line). Employment adjustments mitigate roughly two-thirds
of relative demand changes, with the remaining one-third materializing as relative wage
changes (blue line in Panel B). In Panel B, the orange line represents cumulative mobility-
adjusted wage changes, given by ¥!_4¢sIn (WO, s/ ﬁg{,ﬂ), which accounts for worker mo-
bility gains. These gains offset approximately half of wage losses. Compared to the static
model, mobility gains are higher because we allow workers to redraw productivity—a
more realistic setting when occupational productivity is not permanent.3® Furthermore,
because workers are forward-looking, mobility gains occur early in the adjustment pro-
cess, as outside options improve immediately for negatively affected jobs, while wage
effects accumulate gradually.

The gradual wage impact of automation suggests progressive adoption over the past
four decades, allowing the labor market to absorb roughly two-thirds of associated labor
demand shifts. This gradual adoption makes labor market adjustment in transition similar
to that in the long run. However, if AI advances rapidly—as many practitioners advo-
cate—the labor market may face greater adjustment challenges. To explore this scenario,
we consider a counterfactual in which AT adoption reaches automation’s scale by 2030,
allowing us to evaluate labor market responses to rapid technological transition.

Panels C and D of Figure 8 illustrate the dynamic incidence of accelerated AI adoption.
Panel C shows that the labor market adjusts sluggishly, absorbing less than one-third of
relative demand shifts initially, with another third absorbed over subsequent decades. In
Panel D, occupations highly exposed to Al experience sharp wage decline as full adoption
materializes by 2030, followed by gradual recovery. Mobility gains offset approximately
one-third of relative wage losses during transition. These findings suggest that slow labor
market adjustment severely limits its ability to absorb rapid AI advancement impacts.

These findings underscore a key insight extending beyond the static model: clustering
of both automation and Al exposure constrains worker mobility, limiting the labor market’s
capacity to absorb shocks through occupational transitions in both the short and long run.
For automation, this rigidity is most pronounced in the long run, as gradual adoption has
contributed to persistent wage disparities across occupations. For rapid Al expansion,

$Since we focus on unequal effects of additional automation exposure, we omit discussion of aggregate
gains.

36Workers in current jobs typically have higher occupation-specific productivity due to selection; if produc-
tivity were permanent, they would face greater losses when transitioning. Allowing new productivity draws
each period provides the same sufficient statistics for mobility gains as an overlapping generations (OLG)
model.
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FIGURE 8. The Dynamic Incidence of Automation and Al

Panels A and B show employment and wage effects of automation exposure, while Panels C and D depict
projected effects of rapid Al adoption. Dashed lines represent changes in labor demand, green lines indicate
employment shifts, and blue lines capture wage incidence. Orange lines in Panels B and D account for
mobility-adjusted wage changes.

however, mobility constraints operate in both the short and long run, amplifying labor
market inequality and resulting in highly uneven economic incidence.

6. Conclusion

This paper establishes that the labor market incidence of technological change depends
fundamentally on the interaction between shock distribution and substitution struc-
ture—not on average labor market rigidity. By developing and implementing a framework
with distance-dependent elasticity of substitution (DIDES), we reveal how automation and
Al generate severe inequality through technological clustering in skill-adjacent occupa-
tions.

Our theoretical contribution embeds DIDES into a Roy model through correlated
productivity draws that decline with skill distance. This achieves crucial dimensionality
reduction—transforming hundreds of thousands of bilateral elasticities into four parame-

41



ters in three-dimensional skill space. When shocks cluster, they align with low-eigenvalue
eigenvectors of the substitution matrix, forcing wage adjustment rather than employment
reallocation.

Empirically, we map 306 occupations into cognitive, manual, and interpersonal skill
dimensions and estimate that two-thirds of substitution occurs within skill clusters. Cogni-
tive skills prove most transferable (pcog = 0.77) while manual skills show limited portability
(pPman = 0.48). These heterogeneous elasticities interact with technological clustering to
generate striking patterns: on average, 36% of demand shocks from both automation and
Al translate to wages (versus 30% under CES)—implying standard models overstate labor
supply elasticity by 31%. For most automation-exposed occupations, pass-through rates
reach 45%, generating wage effects 50% larger than CES predictions. Workers recover only
20% of wage losses through mobility, compared to 35% predicted by standard models.

The dynamic analysis reveals persistent constraints. Gradual automation since 1985
generated wage gaps of up to 50% between high and low exposure occupations. Rapid Al
adoption shows starker patterns: less than one-third of shocks absorbed initially, with mo-
bility offsetting only one-third of wage losses. This sluggish adjustment reflects clustered
shocks eliminating transition pathways precisely where workers need them most.

Three key insights emerge. First, technological clustering is the fundamental driver of
distributional consequences, not an ancillary detail. Second, heterogeneous skill transfer-
ability creates asymmetric vulnerability—manual workers face high automation exposure
with low transferability, while cognitive workers under Al threat benefit only partially
from higher transferability. Third, conventional frameworks underestimate wage effects
by 20% on average and 50% for heavily exposed occupations. These findings reshape
policy prescriptions. Standard retraining programs miss the fundamental constraint:
displaced workers’ natural transition targets face similar technological threats. Effective
interventions must either help workers cross skill boundaries—costly given our estimated
elasticities—or slow adoption in clustered domains. As AI deployment accelerates, the con-
centration in cognitive occupations threatens adjustment challenges exceeding historical
automation.

Future research should explore endogenous skill acquisition under clustered risks,
firm-level adoption decisions driving clustering patterns, and international dimensions
of technological disruption. The DIDES framework extends beyond technology to any
clustered shock—pandemics, climate change, or demographic shifts. The central mes-
sage is clear: technological progress need not generate severe inequality, but clustering
combined with skill-based mobility constraints ensures that it does. Recognizing this
mechanism—invisible to frameworks assuming uniform substitution—is essential for
policies that protect workers while facilitating adjustment in an increasingly automated
economy.
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Appendix A. Proof of Results in Main Text

A.l. Production and Labor Demand
A.l.1. Task Framework

Following Acemoglu and Restrepo (2022), we begin with a task-based production frame-
work where final output aggregates a continuum of tasks T through a constant elasticity

y= (quf(ac)%lcix);i1

where y(x) denotes the input of task x and o > 1is the elasticity of substitution between
tasks.
The task space is partitioned across O occupations, O = {71, T, ..., Tp}, where each

of substitution technology:

task belongs exclusively to one occupation:

0]
T = U{-TO with (‘Tiﬂ{.T]'ZQfOI'l‘¢]‘

0=1

Each task can be produced using either labor or capital under perfect substitution:
y(x) =Lo(x) +a(x)k(x), VYxeT,

where {,(x) is labor input from occupation o, k(x) is capital input, and a(x) represents
task-specific capital productivity. Capital is produced from final output at unit cost.

A.1.2. Labor Demand

Given occupational wages {wo}oozl, cost minimization determines the optimal allocation

of tasks between labor and capital. For each occupation o, tasks are assigned according to:
T8 = {xeTo:wo<1/a(x)} and T§ ={xeTo:wo>1/a(x)}

where T denotes tasks performed by labor and TX denotes tasks performed by capital.
The equilibrium price of each task equals the unit cost of production:

1/a(x) ifxeTX
p(x) = , .
Wo ifxeT,

Task demand follows from the CES structure: y(x) = y- p(x)~°. Integrating over all
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tasks performed by occupation o yields labor demand:
Lo = /xag Lo(x)dx =y -w,° M

where Mg = ng dx is the measure of tasks performed by occupation o.

A.1.3. Reduced-Form Representation

The zero-profit condition implies:

(0}
1- -1 1-
1= [Tp(x) Odx = fuorﬂga(x)0 dx+OZ::1w0 U.Mjg

Define the share of tasks performed by labor in occupation o as s = M“Tf; [/Ms, where My

is the total measure of tasks. Similarly, let sk=1-%, s{ denote the share of tasks performed
by capital, with average capital productivity a* such that s€(a¥)°~1 = fuo‘I’g a(x)°1dx/My.

Solving for equilibrium output and substituting out capital yields the reduced-form
production function:

where:

A= [1 - s]<(ctk)‘7_l]_ﬁ (aggregate productivity)
{

S
OCO_ 0

= W (effective labor share of occupation o)
- sK(ak)o-

This reduced form captures the essential features of the task model: «, represents
occupation o’s share of labor-performed tasks after accounting for automation. When
technology advances increase a(x) for tasks in T,, more tasks shift from labor to capital,
reducing s¢ and hence o,. The occupational wage then follows:

1 1
— = o
=yoous L

ql=

_ 9y

Al =
(A1) Wo oL,

This parsimonious representation allows us to analyze the distributional effects of au-

tomation and AI through changes in task shares {«, } without explicitly tracking individual

task assignments.
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A.2. Workers and Labor Supply
A.2.1. Properties of the Correlation Function

The labor supply side of our model builds on a Roy framework with correlated productivity
across occupations. Central to our analysis is the correlation function F : R — R, , which
governs the substitution structure between occupations. This function satisfies three key
properties:
a. Homogeneity of degree one: F(Axy, ..., Axp) = AF(xy,...,xp) forallA >0
b. Unboundedness: limy, .o, F(x,...,Xp) = o for any o
c. Sign-switching property: Mixed partial derivatives alternate in sign—the n-th order
mixed partial is non-negative if n is odd and non-positive if n is even
The sign-switching property ensures that occupations are gross substitutes from work-
ers’ perspective, a crucial feature for equilibrium uniqueness. Additionally, C(uy, ..., up) =
exp[-F(-1nuy,...,—1nup)] forms a max-stable copula, guaranteeing that workers’ occu-

pational choices aggregate consistently across the population.3’

A.2.2., Labor Supply

Workers are heterogeneous in their productivity across occupations. Each worker i draws
a productivity vector (i) = {c—:o(i)}(?:1 from the joint distribution:

Pr(ei(i) < ey,...,€e0(i) <epg] =exp [—F (Alefe, . .,Aoeae)]

where A, > 0 captures average productivity in occupation o and 6 > 0 governs the disper-
sion of productivity across workers. The marginal distributions are Fréchet: Pr[e,(i) <
€] = exp(-Aoe?).

Workers choose occupations to maximize utility. A worker with productivity vector
€(1) receives utility uy(i) = woeo(i) from working in occupation o, where the productivity
term captures both output produced and the inverse of effort cost. The optimal choice is:

(A2) 0" (i) = arg mélx{woeo(i)}
Given this optimization, the fraction of workers choosing occupation o is:

AWSF (AW, ..., Aow))
F(AwY, ..., Agwd)

(A3) o = Pr[woeo(i) = max Wy€y(1)] =

where F, = 0F/dx, denotes the partial derivative with respect to the o-th argument.38

3 Max-stability ensures that C(u,, ..., up) = C(ui/m, ce ugm)m forallm > 0and (uy,...,uo) €[0,1]°. This

property is essential for the aggregation of individual choices to yield tractable labor supply functions.
3The derivation of employment shares follows from the principle of maximum stability for multivariate
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Total labor supply to occupation o is L, = m,L, where L is the total workforce. The
elasticity of labor supply with respect to wages determines how workers reallocate across
occupations:

0 Xt F oot
[

— Tl ifo+0o
— A a0
x]—A]w].

(A4) O,y 1L

+1-m,| ifo=0
= A O
x]—A]w].

where x, = Aowg for notational convenience. The derivation of these elasticities from the
employment share equation is provided in Section C.2.

The cross-elasticities ©,, for o # o are negative (reflecting substitution) while own-
elasticities ©,, are positive. Importantly, ¥ 0O, = 0, confirming that proportional wage
increases do not affect relative employment—only relative wage changes induce realloca-

tion.3?

A.3. Proof of Equilibrium Existence and Uniqueness

PROPOSITION Al. Given the production structure in Section A.1 and labor supply in Section
A.2, a unique competitive equilibrium exists.

PROOF. Existence: Define employment shares A, = L,/L and note that market clearing
requires
A=m(w(A)),

where 71(-) are labor supply shares from (A3) and w(-) are occupational wages from (Al).
The mapping T : A91 — AO-! defined by T(A) = m(w(])) is continuous: (i) 7(w) is
continuous and strictly positive by the properties of the correlation function F, and (ii)
w(A) is continuous from the CES production structure. Since T maps the compact convex
simplex A% Linto itself, Brouwer’s fixed-point theorem guarantees at least one equilibrium
A* and corresponding w* (unique up to a scalar normalization).

Uniqueness: Two features rule out multiple equilibria.

(i) Labor supply: By the sign-switching property of F, the elasticity matrix

_0lnLy

Ooy =
%% " dlnwy

satisfies ©yo > 0, O,y < 0 for o # 0, and ¥, 0,, = 0. Thus, occupations are gross
substitutes from the workers’ perspective.

extreme value distributions. See Section C.1 for the complete proof.
39See Section C.3 for the proof that row sums equal zero using the homogeneity property of F.
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(ii) Labor demand: From (Al), own-wage elasticities are negative (0lnw,/0InL, =
-1/0 < 0), while cross-elasticities are positive for o # o’ under o > 1, implying that occupa-
tions are gross substitutes in production.

Taken together, excess demand in log-space has a Jacobian that is a P-matrix (posi-
tive diagonal dominance with gross-substitute sign pattern). By the Gale-Nikaid6 global
univalence theorem (or equivalently Kelso-Crawford/Gul-Stacchetti arguments for gross
substitutes), the fixed point A* is unique, and so are relative wages w* once a normalization
is imposed.

Conclusion Under o > 1 and the sign-switching (gross substitutes) property of F, a
competitive equilibrium always exists and is unique in relative wages and employment
shares.

O

A.4. Derivation of Wage Incidence in Proposition 2

Starting from the equilibrium conditions:

dlnw = édlny-l— idln o - %dlnL (labor demand)

dlnL=0-dlnw (labor supply)
Substituting the labor supply response into the demand equation:

dlnw= ldlny-l— ldlnoc— l@)-dlnw
o o o

(I+Q)dlnw: ldlny-l—ldlnoc
o o o

Since ¥ s ©,, = 0 for all o (see Appendix C.3), the matrix (I+©/0) is invertible. Solving

for wages:
-1
dlnw=-Ldiny-1- (1+ 9) Alna
o o o
| S —
=A

This establishes equation (3) with the pass-through matrix A = (I1+©/c) 1.

A.5. Derivation of Mobility Gains

Consider a marginal worker initially in occupation o who transitions to occupation o’
following the shock. Before the shock, this worker was indifferent between the two occu-
pations:

Inwy +1Ineo(i) =Inwy +1In ey (i)
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After the shock, the worker strictly prefers o’:
Inwy+dlnwy +1nep(i) <Inwy + dlnwy +1n ey (i)
The equivalent variation (EV) for this marginal switcher satisfies:
Inwy +dInwy +1Ineo(i) + EV(i) = Inwy + dlnwy +1ney (i)
Using the initial indifference condition:
EV(i) =dlnwy —dlnw,

For small changes, the share of workers transitioning from o to o’ when dlnw,, >
dlnw,is:
Woo' = —Oppr(dInwy — dlnwy)

Note that ©,, < 0 for o # 0/, so 1,y > 0 when wages rise more in 0'.
The average mobility gain for workers initially in occupation o is:

MOblllty Gaino Z Woo! * EVOOI

o:dlnwy>dInw,

> [-Oy (dInwy —dlnwy)]- (dlnwy — dlnw,)

o':dlnwy>dInw,

2
=- Zeoo’(dlnwo’ —dInw,) 'ldlnwol>dlnwo
0

This establishes equation (5).

A.6. Proof of Proposition 4

We derive the spectral decomposition of wage incidence using the eigendecomposition
© = UAV, where V= UL,
Step 1: Decompose the technological shock. Since the eigenvectors {u;} form a basis

for RO, we can write:

dina 9
= Z bnun
o n=1

where the coefficients are b, = v}, - (d1n «/0) with v/, being the n-th row of V.
Step 2: Apply the eigendecomposition to the pass-through matrix. The pass-through
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matrix can be written as:

-1 -1
A:(I+Q) :(I+UAV)
o o

A
~U(1+2) v-
( +0) zl+7\n/0u”vn

Step 3: Compute the wage response. Substituting into the wage incidence equation:

dlnw = 1-A-

dlny dlnx
o

n=1 m=1
diny., & by,
= 1-
o nzzjll+7\n/6un

The last equality uses the orthogonality property v}, - m = dum.
This completes the proof, showing that each eigenshock u; passes through to wages
with a dampening factor (1 +Ap/0) L.

A.7. Proof of Proposition 5

We derive the joint productivity distribution from the skill-specific distributions and the
max operator.

Step 1: Skill-specific productivity. For each skill s, productivity follows a correlated
Fréchet distribution:

1-ps
Prlej(i) <ej,...,ep(i) < ep] =exp|- (Z(e )T Ps)

Step 2: Occupational productivity as maximum. Since €,(i) = max,g A - €5(i), we
have:

Prlei(i) < €y,...,€0(i) <€p] =Pr [eo(l) <—, Vo, Vs]

O

=[]Pr [eo(l) < — ]

se8

where the product follows from independence across skills.
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Step 3: Substitute and simplify. Using the skill-specific distribution:

0 0 i lipS
=m@{xmw¢ﬂ
o=1

se8

0 1 \17Ps
=wp—z(zkﬁﬁgﬂwj

sed \o=1
Step 4: Define aggregate parameters. Let A, = Y (A%)% and w? = (43)/A,. Then:
(45)%€5° = wyAoe,”
Substituting yields the correlation function:
0 L 1P
F(xl; .. ')xO) = Z I:Z(ng())l_ps]
se8 Lo=1

where x, = Aoe;®, completing the proof.

A.8. Proof of Proposition 6

We derive the employment shares and correlated elasticities under the CNCES structure.
Part 1: Employment Shares
From equation (A3), the employment share is:

_ AOW(?FO(xl) - 'JxO)
0=
F(Xl, .. .,xo)

1
For CNCES, F(x1,...,%0) = Y5 Gs *° where Gs = X (w?, %) 5.
The partial derivative is:

oF _ s
Fo=2— = Gg»wy(wixo) s
0o se8
Therefore:
1 1-p
o FoFo < (whR)TE G
O = = .
ZOI .X'OIFO/ se8 Gs F
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1
(W3 AW)Tos G, ”

1 1I-p
se8 ZO/((U'Z,AOIWS,) 1-ps Zs’ GS’ S
[ —
s,B
ol (L
This establishes equation (8) with 7t = ﬂf;W 5B,
Part 2: Correlated Elasticities
To derive equation (9), we need the second derivative:
aZF Ps e _Ps Ps
_ _ ps—1 S S - S S =
FOO’ = W = - < 1- psGs s—4 wo(woxo)l Ps . (Uol(wolxol)l Ps
NS
The ratio becomes:
s 1 0 _Ps
Xo'Foor Z Ps ((,UO,XO/) 1P Gq swf)(wf)xo) 1=ps
Fo ses 1-ps Gs Fo
p Yo

o

Substituting x, = Aowg and noting that: - 1, = T[f)’,W (within-skill share) - y; = 70, /7,
(skill s’s contribution to occupation o) - 7t = ﬁf;W 5B

We obtain:
Xy Fop P W sW T
g’ oo =-0 E 5 -7[2’ o

Fo |x—awo se8
]

This completes the proof of equation (9).

A9. Proof of Proposition 7 (Hat Algebra)

The proof demonstrates how observed employment shares serve as sufficient statistics
for predicting counterfactual changes without requiring wage or productivity levels.
Step 1: Express employment shares in terms of the correlation function.
Given wages w; and group-specific productivity {A‘,ig }geG, employment shares are:

g .0 g .0 g 0
) AO,tWo,tFO(ALth,tJ .. 'JAO,tWO,t)

B g .0 g .0
F(Al’twl’t, .. "AO,tWO,t)

ot

Step 2: Define correlation-adjusted shares.
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Let the correlation-adjusted employment share be:

Ag

~ o,t

&, =
oL (A8 LA

1t lt’ OtWOt)

Since F, is homogeneous of degree zero, we obtain:
7‘%,1‘ = Té,tFO(TCitJ s 7%,t)

This establishes a one-to-one mapping between observed shares {r® t} and adjusted
shares {7 t}

Step 3: Derive the evolution of adjusted shares.

For wage changes from ¢ to t + 1, the ratio of adjusted shares is:

ﬁ%,tu (Wo,t+1/Wo t)e
~ g g 0
7‘%,15 F(A1 t 1 RTRRRPPCY Wo t+1)/F(A1 t 1 poe s AG W0 t)

Using the homogeneity property of F, the denominator simplifies to:

F (Al tW1 410 Ao tWO t41)

24
F(A Wlt’ AOt Ot)

) -
= F({Wo,t+1ﬂ§,t}oe0)

where Wy t11 = W, t+1/Wo,+ denotes the relative wage change.
Step 4: Obtain the counterfactual algorithm.

The adjusted shares evolve according to:

~ 0
T‘% W

0,t+1

o,t+1

F({WO/JH ol’t}o’eO)
Finally, recover the counterfactual employment shares:

Fo(7} T

O,t+1)

&

0,t+1

_ A8

0,t+1 1,t+10 -

This completes the proof and provides an algorithm to compute counterfactual em-
ployment shares using only observed shares and relative wage changes, without requiring
knowledge of productivity levels or absolute wages. O

A.10. Dynamic Model with Forward-Looking Workers

This appendix extends the static framework to incorporate forward-looking occupational
choice with adjustment frictions. The dynamic model enables analysis of transition paths
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and the timing of labor market responses to technological shocks.

A.1l. Workers’ Dynamic Problem

Setup. Consider a continuum of hand-to-mouth workers distributed across O occupations.
Workers maximize expected lifetime utility over consumption c;(i) and labor effort £;(i):

U ({e(i), (i)} Z0) = 3 B lInce(i) ~ Inbs(i)]

t=0

where 3 € (0,1) is the discount factor.

Productivity draws. Each period, workers draw productivity vectors

et(i) = (61,t(i); ) €o,t(i))

from the same multivariate Fréchet distribution as in the static model:

Priese(i) < e, e0,e(i) < o] = exp [ ~F(Arer®, ., Aoreg”)]

where the correlation function F embeds the CNCES structure:

1-ps

STO )
F(Xl, . ,xo) = Z [Z(wsoxo)l_ps]
s=1Lo=1
Occupational choice with transition costs. After observing e(i), workers choose oc-
cupations subject to transition costs T, > 0 (measured in utility units). The instantaneous
utility from occupation o’ is:

ur(i) = Inwy ; + klney 4(i)

where k > 0 governs the short-run labor supply elasticity, capturing sluggish adjustment
relative to the static model’s long-run elasticity 0.

Value function. The Bellman equation for a worker in occupation o with productivity
€t is:

Vo,t(€t) = mogx {ln Worp+Klney ¢+ BVy i1 - TOO/}

where Vi 1.1 = Ee[vy 1.1(€)] is the expected continuation value.
Aggregation. Define the inclusive value:

Zoo/ t = eXP(BVO’,Hl +1n Wo' t = Too')
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Given the Fréchet structure, the expected value simplifies to:

Vo, = In[F(A1Z0), .

Ao,tZ%Kt) K/e] g
where ¥ is the Euler-Mascheroni constant.

This formulation nests the static model when k = 6 (no adjustment frictions) and
generates gradual transitions when « < 0 (costly adjustment). The correlation structure
F preserves the DIDES property: workers transition more easily between skill-similar
occupations, but adjustment slows when technological shocks cluster within skill domains.

A.12. Occupation Switching Probabilities

This section derives the transition probabilities between occupations, showing how the
correlation structure generates realistic mobility patterns.

Switching probability. The probability that a worker in occupation o switches to o’ at
time ¢ is:

Moot = Pr [Zoo’,teg' £ maXZOOu t€07 ¢

Using the properties of the multivariate Fréchet distribution (see Section C.1), this
probability becomes:

Ao, tZe/K )

0
Ay 170 Fo (A 20" o

" 00’,t ol,t’ "
00/t = / 9/K

where F,y = 0F/0x,, denotes the partial derivative.
Correlation-adjusted transition rates. Define the correlation-adjusted transition prob-
ability:
AO' tZoo/’

lloo’,t 9 K

This adjustment isolates the role of correlation from the baseline substitution effect.

The observed and adjusted probabilities are related by:

Hoo',t = l:loo’,tFo’(ﬁol,t; Sy ﬁoO,t)

This establishes a one-to-one mapping between observed transitions {p, ;} and
adjusted rates {{i,o ¢ }-

Euler equation for mobility. The evolution of adjusted transition rates satisfies:
goo’,t _ 0 Wo' t Hoo t+1

In — —In +Pln ———+ (B -1D)71yy
Moot K Wor Ho'o,t+1
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This Euler equation shows that relative transition rates depend on three factors:
« Current wage differentials (scaled by 0/k, the short-run elasticity)
+ Future option values (captured by next period’s staying probabilities)
« Transition costs (discounted by  — 1 < 0)
The correlation-adjusted formulation enables estimation of 6/k from observed tran-
sitions while accounting for the skill-based clustering that constrains mobility between
distant occupations.

A.13. Static Production Equilibrium

This section characterizes the production side of the economy, which remains static within
each period while labor allocations adjust dynamically across periods.

Production technology. Taking task assignments as given, output aggregates capital
and labor across occupations via CES technology:

o

1, .00 QO 1 o-1]°7!
Yr{ubdﬁ>c+z@&woﬁov]
o=1

where:
. y{f = a],fkt is effective capital input with productivity a’f
. yf’)’t = Lot is labor input in occupation o
+ 0 > 01is the elasticity of substitution between inputs
. sf and sf,)t are time-varying task shares for capital and labor
Equilibrium with endogenous capital. Capital adjusts freely within each period. Under
the assumption sf(a{f)"‘l < 1 (ensuring finite output), optimal capital demand is:

ke = s (af) Ve
Substituting this into the production function yields the reduced-form output:

o

1751

0 (L i T |
z:o:l(so,t) O—LO,(;’

1-sk(akyo-1

t=

Wage determination. Competitive labor markets equate wages to marginal products:

oY; 1 NS
W = — = YO- S O-L
o,t aLo,t t ( o,t)

The task shares {sg)t} capture the distributional effects of technology: when automation
or Al displaces labor from tasks in occupation o, the corresponding sg)t declines, reducing
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wages even as aggregate productivity may rise through lower production costs.

A.14. Dynamic Equilibrium

This section defines the dynamic equilibrium, accounting for data limitations and charac-
terizing the conditions for market clearing across time.

Measurement reconciliation. The retrospective design of the March CPS creates a
discrepancy between measured job flows and observed employment levels. We account
for this by augmenting the employment evolution equation:

[0}
Lot = Z uo’o,tLo’,tfl + ALO,t
0'=1
where AL, ; represents exogenous net inflows/outflows satisfying 3, Lo+ = 1 (normaliza-
tion) and >, ALy, = 0 (no aggregate employment change).
Model primitives. The economy is characterized by:

* Time-varying fundamentals: A; = {A,:} (productivity), s; = {sf))t} (task shares), a’f
(capital productivity)

- Structural parameters: T, (transition costs), wos (skill weights), o (demand elasticity),
0 (dispersion), ps (skill correlation), k (short-run elasticity), 3 (discount factor)
Definition (Dynamic Equilibrium). A dynamic equilibriumis a sequence {L¢, wt, u, V¢ } 72,

satisfying:

a. Production equilibrium: Wages equal marginal products and output clears markets:

1 ¢ L _1

Wo,t = Y7 (So,6) oLy §
¢ (L o-1 %
ZO(so,t) GLO,OI-'
l—sf(alg)"‘l

b. Optimal expectations: Workers correctly anticipate future values:

0 0 _K
Vo,t = In [F(Al,tzol/;, .. "Ao:fzo(/)l,(t)K/e] +Y§

c. Optimal mobility: Transition probabilities satisfy workers’ optimization:

0 0 0
AOIJtZO({’ftFOI (Al} tZOl/,I;’ T AO} tZOé,Kt)
Hoo’,t = 0/k 0/k
F(Al)tzol/)t, N .,Ao,tZOé} )
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d. Labor market clearing: Employment evolves according to transitions:
Lot = Z p'o’o,tLo’,tfl + ALt
Ol

This equilibrium preserves the DIDES structure: technological shocks that cluster in
skill space generate limited mobility (through p) and force adjustment through wages,

creating persistent inequality during transitions.

A.15. System in Changes

This section expresses the dynamic equilibrium in growth rates, facilitating the analysis
of transition paths and steady-state convergence.

Notation. Define the growth factor x;,; = x¢,1/x; for any variable x. For utility, define
uo,t = exp(Vo,¢) to work with levels rather than logs.

Production in changes. Log-differentiating the wage equation yields:

olnw, i1 +1n Lo,t+1 =InY; 1 +In ég,t+1
This links wage growth to changes in aggregate output, task shares, and employment.
Dynamic system in growth rates. The evolution of correlation-adjusted transition
probabilities and expected utilities can be expressed as:

- ; -BO/k . 0/k
(A5) Hoo',t AO';tuo’,tJero’,t
T Cnire Ay BB/ - 0/k\0
H‘Oo’,tfl F( { HOOH;tflAO”;tuO",t+1WO",t O"=1)
_ . - BO/K -B/Kk 0 \k/O
(A6) Up,t+1 = F({Hoo”,tAo”,t+1uoﬂJHzWOﬂ)Hl}o"ﬂ) /

The observed transition probabilities follow:

Hoo',t = ﬁoo’,tFo’(ﬁol,t; cee PloO,t)

with employment evolving according to the transition matrix and exogenous flows.

Interpretation. Equations (A5)-(A6) form a forward-looking system where current
mobility depends on future expected utilities. The correlation function F preserves the
DIDES structure: when technological shocks cluster (affecting the growth rates Ao)t and 35,7:
in skill-similar occupations), the denominator in (A5) limits relative mobility adjustments,
forcing wage changes to absorb the shock.

See Appendix C.5 for detailed derivations.
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A.16. Dynamic Hat Algebra

This section extends the hat algebra to dynamic settings, enabling counterfactual analysis
of transition paths under alternative technological scenarios.
Counterfactual notation. For counterfactual fundamentals {A¢, §, &’; }, define:
* Xt = X}/%;: ratio of counterfactual to baseline growth rates
* X{ = x;/x;_;: counterfactual growth rate
Counterfactual equilibrium. The wage response follows from production equilibrium:

1
. Yt+150 AN
Wot1=|———
’ Lo,t+1

Counterfactual transition probabilities evolve recursively:

BO/k ~0/k
T Hoo’ t- 1“00’ Ay tuo’ tr1%o t
00',t = BO/x - G/K
F({uoo” t- 1P'oo” tAO" tuo" tr1Wor ¢ o” 1)

Expected utilities adjust according to:

. BO/x . 0/K K]0
Uot+1 = F({Hoo" tuoo” t+1Ao” t+1u0// t+2Worr, t+1}0” 1) /

with observed transitions u/ , , = i, , ,For (i), 4, .-, i, ;) and employment evolution:

' /
t= Z uo’o,tLo’,t—l +ALo,t
OI

A.16.1. Initial Conditions

For unexpected shocks at t = 1 (with baseline conditions at t = 0: &L, = 1, u, 0,0 = Hoo,0;
ngo LO,0)°

. 0/k R0/

~/ o, luo’ 2

Hoor,1 = K ~P0O/K
F({SOO" lAO" lwol/l 1 511/2 }O" 1)

d 00, 1A0/ 1W

~ 0 0
uo 1= F({ﬁoo’ 1Ao’ 1W /%4 B /K} 1)K/e

0,1 0’2

where 9y, 1 = 1100/’11159/ * captures the initial adjustment.

0,1
See Appendix C.5 for detailed derivations.
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A.17. Welfare Metrics

This section derives welfare measures that account for both wage changes and mobility
gains through the lens of staying probabilities.

Value function decomposition. The recursive value function can be rewritten to
highlight the role of staying probabilities:

0 0
v 1 BV 1 F(Aljtzol/,l; T AO}tZO(/),Kt) _K
,t: nw}t+ ,t1+—1’1 +Y—=
° ° e exp(BVo,e41 + In w1 )0/¥ 0

1
—1n(A% Wy ) + BV, 1y + 1 Lok
n( ot Wo,t) + 3 ot+1t g n oot 'Ye

Iterating forward yields:

Hoo,s

Vor=3 B 'In (ﬂ)dew AL
O,t & ~ 0,S 9(]_ _ B)

Equivalent variation. The welfare change from baseline to counterfactual, measured
as equivalent variation 8, ¢, satisfies:

This yields:
/0

00 W/ A/ ﬂ-/
6o,t - (1-B) Z Bs_t In| 2%S ( o,s/~oo,s)
s=t Wo,s Ao,s/Hoo,s

Hat algebra representation. Expressed in terms of counterfactual changes:
[ee)
_ A 2 -k/0
80,6 = (1-B) Y. B In (vhio,s- TIA )
s=t

The term ﬁ;(':’ /Se captures mobility gains: when technological shocks reduce staying
probabilities (workers transition more), this provides partial welfare compensation for

wage losses. The
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Appendix B. Additional Empirical Results

B.1. Occupation Classification

Our analyses require constructing occupation-level panels for the period 1980-2018. To
this end, following Autor et al. (2024), we use a consistent occupation coding scheme
(0cc1990dd), originally developed by Dorn (2009) and updated through 2018, which yields a
balanced panel of 306 consistent, 3-digit occupations. This detailed classification preserves
crucial occupational variation and accurately captures the structure of the labor market
over the period.

B.2. Occupational Skill Requirements

This appendix details the construction of occupational skill requirements {w$} from
O*NET data, following the methodology of Lise and Postel-Vinay (2020).

Data Source. O*NET version 28.2 provides comprehensive occupational information for
873 occupations. The database contains 277 descriptors organized into nine categories,
with ratings derived from two sources: (i) worker surveys for occupation-specific assess-
ments, and (ii) occupational analyst surveys for standardized evaluations. We retain 218
descriptors from five categories—skills, abilities, knowledge, work activities, and work
context—as these directly correspond to the theoretical concept of skill requirements. The
remaining categories (job interests, work values, work styles, and experience/education
requirements) are excluded as they reflect preferences or credentials rather than skill
utilization.

Dimension Reduction. Following Lise and Postel-Vinay (2020), we apply PCA with exclu-
sion restrictions to extract three interpretable skill dimensions:
a. Cognitive skills: Identified through the mathematics knowledge descriptor
b. Manual skills: Identified through the mechanical knowledge descriptor
c. Interpersonal skills: Identified through the social perceptiveness descriptor

These exclusion restrictions ensure that each principal component has a clear eco-
nomic interpretation while maintaining orthogonality—a property that aligns with the
model’s assumption of independent skill-specific productivity draws. The first three com-
ponents explain 58% of total variation (cognitive: 35.6%, manual: 15.2%, interpersonal:
6.9%), with the dominance of cognitive and manual dimensions reflecting their primary
role in occupational differentiation.

Construction of Skill Requirements. The raw principal component loadings contain nega-
tive values, violating the theoretical requirement that w$, > 0. We address this through a
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two-step procedure:
Step 1: Apply linear transformations to map each occupation’s loading on principal
component s to the unit interval:

s PC§ — miny PC;,

To = PC’, — min, PC’
max, PCS, - min, PCS,

This preserves relative distances between occupations in each skill dimension—crucial
for maintaining the distance-dependent substitution structure.
Step 2: Convert to variance-weighted shares to obtain the final skill requirements:
S
B r, % Vars

wO = s/
Ysieg To x Vary

where Var; is the proportion of variance explained by component s. This weighting ensures
that skills contributing more to occupational variation receive proportionally higher
weight in the correlation function F, consistent with their greater role in determining
substitution patterns.

Mapping to Occupation Codes. The final step maps O*NET occupation codes to the con-
sistent 0cc1990dd classification used throughout the analysis, enabling linkage with em-
ployment and wage data. The crosswalk covers 306 three-digit occupations, preserving
granular variation while maintaining temporal consistency from 1980-2018.

B.3. Measures of Automation and AI Exposure

Existing Measures and Task Evaluation. The literature has developed several measures of
occupational exposure to automation, each capturing different aspects of technological
vulnerability. These include occupational routine task intensity (Autor and Dorn 2013),
the decline in labor share due to the adoption of industrial robots, machines, and soft-
ware (Acemoglu and Restrepo 2022), and occupational exposure to automation patents
(Autor et al. 2024). These measures share a common theoretical foundation rooted in
Polanyi’s Paradox (Autor 2015): jobs codifiable into well-defined rules or algorithms are
more susceptible to automation and are typically classified as routine. Consistent with
this framework, numerous studies document that occupations with higher automation
exposure have experienced slower wage growth over the past four decades.

In contrast to automation, measuring occupational exposure to artificial intelligence
presents unique challenges, as its full economic impact remains unrealized. To address
this challenge, recent research has leveraged large language models (LLMs) as predictive
tools for assessing economic outcomes. Eloundou et al. (2024) pioneered this approach by

evaluating occupational exposure to LLMs through a dual methodology: human annotators
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and GPT-4 classified O*NET tasks using an exposure rubric to determine whether LLMs
can perform or assist with specific tasks. Their findings highlight the potential of LLMs as
general-purpose technologies.

Subsequent validation studies strengthen confidence in this approach. Bick, Blandin,
and Deming (2024) and Tomlinson et al. (2025) demonstrate high correlations between
LLM task evaluations and ex-post real-world generative Al adoption patterns. Most com-
pelling, Brynjolfsson, Chandar, and Chen (2025) provide causal evidence that LLM expo-
sure measures predict actual labor market outcomes: using high-frequency administrative
payroll data, they document that early-career workers (ages 22-25) in the most Al-exposed
occupations have experienced a 13% relative decline in employment since widespread
AT adoption, with effects concentrated in occupations where Al automates rather than
augments human labor.

Our Methodology: ChatGPT Task Evaluation. Building on this validated literature, we adopt
a streamlined yet comparable approach leveraging ChatGPT to directly estimate Al and
automation exposure. Our methodology employs the O*NET database, which provides
detailed descriptions of 19,200 tasks across 862 occupations. Each task undergoes two
distinct assessments:

- AI Exposure: We query ChatGPT: “Can generative Al (e.g., large language models like
ChatGPT) potentially perform this task without human intervention?” This assessment
captures the extent to which occupations are exposed to Al-driven technologies.

+ Automation Exposure: We query ChatGPT: “Can industrial robots, machines, and
computers (no Al capability) perform this task without human intervention?” This
distinguishes tasks automatable using conventional, rule-based systems from those
requiring advanced Al capabilities.

Based on these evaluations, ChatGPT estimates that approximately 6,000 tasks (roughly
one-third of the total) can be performed by AI without human intervention—a scale com-
parable to traditional automation technologies. This classification provides a granular
perspective on the differential impacts of Al versus traditional automation across occu-
pations. We then calculate the share of automatable or Al-exposed tasks within each
occupation to construct our exposure measures.

Validation Against Existing Measures. 'To validate our approach, we compare our ChatGPT-
based measures with established metrics in the literature. Figure Bl demonstrates that our
occupational exposure to generative Al correlates strongly with Eloundou et al. (2024)’s
measure, yielding a correlation coefficient of 0.825. This high correlation validates our
streamlined methodology while confirming the robustness of LLM-based evaluation
approaches.
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FIGURE B1. Comparison of AI Exposure Measures

This figure compares our ChatGPT Al evaluation scores (y-axis) with the science-based measure from Eloun-
dou et al. (2024) (x-axis). Points represent occupations colored by broad occupational categories. The dashed
line shows the linear fit with correlation coefficient p = 0.825. The strong positive relationship validates our
ChatGPT evaluation methodology against established measures in the literature.

Figure B2 further validates our automation exposure measure by comparing ChatGPT’s
estimates with existing metrics. Panels (a) and (b) compare our estimates with the automa-
tion exposure measure from Acemoglu and Restrepo (2022). Since their measure operates
at the demographic-age-education group level rather than the occupational level, we plot
exposure against log median wage in 1980. The striking similarity of the two distributions
across income levels confirms the validity of our approach. Panel (c) demonstrates a
strong correlation between our measure and occupational routine task intensity, while
Panel (d) reveals consistent patterns with exposure to automation patents from Autor
et al. (2024).

These validation exercises demonstrate that our ChatGPT-based methodology pro-
duces measures highly consistent with established approaches while offering the advan-
tage of direct, task-level evaluation for both automation and AI exposure. This validation
is crucial for our subsequent analysis of how technological clustering in skill space shapes
labor market incidence.
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FIGURE B2. Validation of Automation Exposure Measures

This figure compares automation exposure as evaluated by ChatGPT with existing measures using binscatter
plots. Panel (a) shows the decline in labor share due to automation from Acemoglu and Restrepo (2022), Panel
(b) presents our ChatGPT estimates, Panel (c) compares with routine task intensity from Autor and Dorn
(2013), and Panel (d) validates against automation patent exposure from Autor et al. (2024). The consistent
patterns across all measures validate our ChatGPT evaluation approach.

B.4. Technological Exposure across Inter-personal Dimension

Figure B3 illustrates how occupational exposure to automation and Al varies with interper-
sonal skill requirements. Panel (a) shows that occupations requiring greater interpersonal
skills tend to be less exposed to automation, aligning with the intuition that social and emo-
tional intelligence—often critical in managerial, negotiation, and caregiving roles—are
difficult to codify into rule-based processes. In contrast, Panel (b) reveals that occupations
with higher interpersonal skill requirements tend to be more exposed to AI, though with
greater variance. This noisier relationship suggests that while Al can assist or complement
interpersonal tasks (e.g., customer support or education), full automation remains limited
by the complexity of human interaction.

These findings reinforce the distinct nature of AI and automation risks: whereas au-
tomation displaces predictable, rule-based tasks, Al is more likely to augment or replace
cognitive tasks, including those requiring some degree of human interaction. However,
interpersonal-intensive occupations—such as psychologists, teachers, and business exec-
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utives—still rely on empathy, persuasion, and social nuance, which remain challenging
for AI to fully replicate.

8 71

Inter-personal Index
Inter-personal Index

Automation Exposure Al Exposure

A. Interpersonal vs. Automation Exposure B. Interpersonal vs. Al Exposure
FIGURE B3. Technological Exposures across Interpersonal Skills

This figure illustrates the relationship between occupational interpersonal skill requirements and exposure
to automation (Panel (a)) and AI (Panel (b)).

B.5. Wage and Employment Effects of Automation

This section provides additional details on the wage and employment effects of automation
exposure. The Panel Study of Income Dynamics (PSID) is a widely used longitudinal dataset
that has tracked nearly 9,200 U.S. families since 1968. We leverage its panel structure to
estimate relative wage trends by occupation while controlling for selection effects.

Since the main specifications have already been discussed, we now present additional
results in Figure B4, which examines wage effects by gender and under different control
specifications. Panel A reports the wage effects of automation separately for men and
women, showing that the results are nearly identical, with no statistically significant
differences. Panel B introduces additional controls, with the blue line accounting for
age and age? for the blue line and allows for changing return to education for the green
line, while the green line further allows for a changing return to education. The results
suggest that changes in the return to education explain about a quarter of the wage effects
attributed to automation.

However, when estimating elasticities, we prefer the main specification without con-
trolling for changes in the return to education. From a long-run perspective, new workers
may adjust their educational and occupational choices in response to shifts in the skill
premium.

We now present additional results on the heterogeneous employment effects of au-
tomation across demographic groups, which are used to estimate correlation structures.
Panel A of Figure B5 displays the average change in log employment shares between
1980 and 2010 by gender for white workers, while Panel B presents the corresponding
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A. Wage Effects by Gender B. Additional Controls
FIGURE B4. Effects of Automation on Wages

Notes: Panel A presents the wage effects of automation separately for men and women, showing no statistically
significant differences. Panel B introduces additional controls, where the blue line includes age and age®,
and the green line further accounts for a changing return to education. The latter explains approximately
25% of the wage effects attributed to automation.

employment effects for Black workers. The results indicate that white men are the least
responsive to automation. Based on the data, this group was predominantly employed in
occupations requiring more manual skills, which, as shown in our estimation results, are
less portable across occupations. This pattern is reflected in our estimation procedure,
which captures the variation in occupational transitions. As a result, the estimated correla-
tion parameter for manual skills, pyan, is relatively small, indicating lower substitutability

of manual-intensive jobs.

0.5=

d In(Employment Share)
d In(Employment Share)

10—

0 0 0 0 1 “1s- 0 0 0 0 | 0 1
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d In(Wage) d In(Wage)

A. White Workers B. Black Workers
FIGURE B5. Heterogeneous Employment Effects by Demographic Groups

Notes: Panel A shows the employment effects of automation for white workers by gender, while Panel B
presents the results for Black workers.

The PPML estimator jointly incorporates changes in the employment distribution,
naturally weighting employment shares in the estimation process.
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B.6. Alternative Nested CES Specifications and Model Comparison

This section demonstrates why standard Nested CES specifications fail to capture realistic
substitution patterns, validating our CNCES framework’s flexible skill-based approach.

Nested CES Framework. Standard Nested CES partitions occupations into mutually exclu-
sive nests O = UITYZI Nn with N; nN; = @. This generates within-nest elasticity 6/(1 - pn)

and cross-nest elasticity 6, assuming each occupation belongs to exactly one nest.*?

Estimation Results. Table Bl presents PPML estimates for two standard nesting structures
using our 1980-2000 automation data.

TABLE B1. Nested CES Estimation Results

‘ Occupation Categories ‘ Skill Intensity
0 (Cross-nest) | 2.67 (0.31) | 2.05 (0.28)
Nest Low-skill High-skill Manuf. | Cognitive Manual Interpers.
pn (Within-nest) 0.26 (0.18)  0.00(-)  0.00(-) | 0.30(0.15) 0.00(-)  0.45 (0.20)
Within-nest elasticity 3.61 2.67 2.67 293 2.05 3.73

Standard errors in parentheses. Dashes indicate parameters constrained to zero.

Three patterns emerge. First, most within-nest correlations p; are statistically zero:
occupations within predefined categories are no closer substitutes than the cross-nest
average. Second, cross-nest elasticities (2.05-2.67) approach our CES benchmark of 3.12,
indicating rigid nesting provides minimal improvement over independence. Third, these
estimates contrast sharply with our CNCES results: 6 = 1.10 with substantial correlations
(Pcog = 077, pMan = 0.48), revealing two-thirds of substitution occurs within skill dimen-

sions.

Why Nested CES Fails. The failure stems from imposing discrete boundaries on continuous
skill requirements. Nested CES assumes w}, € {0, 1}—each occupation uses exactly one skill.

Our data reveals occupations draw from 2.3 skills on average with continuous intensities

w? € (0,1). A financial analyst primarily uses cognitive skills (w¢ & = 0.75) but also requires
interpersonal abilities (w!P = 0.20). Forcing such occupations into single nests destroys

the natural substitution structure.*

-0

1-pn
*0The productivity distribution is Pr[e(i) < €] = exp |:- I (Zoej\f" €, " ) ]

“'Mathematically, CNCES nests standard Nested CES when w} ¢ {0,1}, reducing to F(xi,...,x0) =

1 71l-ps
=
s [Zo:wf):l Xo ] .
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These results confirm that flexible skill-based distances—not arbitrary categorical
boundaries—determine occupational substitutability and shape technological incidence.

B.7. The Network Topology of AI Exposure

To complement our analysis of automation exposure in the main text, this section exam-
ines how AI exposure maps onto the occupational substitution network using 2018 data,
when Al capabilities had become more clearly defined.

Clerical and administrative...

Construction and mechanics
Farm and mining

Managers and executives
Production and operative °
Professionals and financial
Service: Personal and Sales
Services: Cleaning and prot...
Technicians + fire, and police

Transportation [ ) ° ® %9 /...
() o 0.9 o (Y )
o @ oo,
N 7 _s%e
) O a— )
=2
()
L)
o, )
) @ )._ °
NS
{
[
m R |

Low ' Medium ' High
Al Exposure

FIGURE B6. The Network Structure of Occupational Substitutability and AI Exposure, 2018

This figure presents the occupational substitution network for 2018, following the same methodology as
Figure 3. Edges represent substitutability between occupation pairs based on estimated cross-wage elasticities,
with darker lines indicating stronger substitution relationships. The left panel shows occupational clustering
by broad categories, while the right panel maps Al exposure using a green gradient (darker green indicates
higher AI exposure). The concentration of Al exposure in professional and cognitive-intensive occupations
contrasts with the automation pattern, yet exhibits similar clustering within skill-adjacent occupations.

Figure B6 demonstrates that our parsimonious skill-based framework remains robust
over time, continuing to generate natural occupational clusters that align with economic
intuition. Despite nearly four decades of technological change and labor market evolution
between 1980 and 2018, the fundamental structure persists: occupations group according
to their cognitive, manual, and interpersonal skill requirements. The professional cluster
remains cohesive, production occupations maintain their tight interconnections, and
service occupations continue to form distinct sub-clusters based on their specific skill
combinations.

The stability of this network structure validates our modeling choice to characterize
occupations by their location in a three-dimensional skill space. The 2018 network shows
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some evolution—certain connections have strengthened while others have weakened—but
the overall topology remains remarkably consistent. This persistence suggests that the
skill-based organization of work represents a fundamental feature of the labor market
rather than a temporary configuration. Our CNCES framework, by incorporating these
skill dimensions through the correlation structure, captures this enduring architecture.

The right panel reveals how AI exposure maps onto the occupational network, pro-
viding a striking contrast to automation. AI exposure (shown in darker green) concen-
trates in the professional and financial cluster, with particularly high intensity among
occupations requiring advanced cognitive skills such as financial analysts, market re-
searchers, and technical writers. This concentration extends to adjacent clerical and
administrative occupations that share cognitive skill requirements. The spatial pattern
of Al exposure—clustering in cognitive-intensive occupations at the opposite end of the
network from automation’s manual-intensive targets—emerges naturally from AI’s capac-
ity to perform tasks involving pattern recognition, language processing, and analytical
reasoning.

Notably, both automation and AI exhibit the clustering pattern predicted by our frame-
work: technological shocks concentrate within skill-adjacent occupations rather than
dispersing randomly across the network. This parallel structure, despite affecting different
segments of the labor market, underscores a fundamental insight of our model. When
technologies target specific skills, they necessarily affect clusters of related occupations.
The network visualization makes this abstract concept concrete, showing how our three-
skill parameterization successfully captures the complex substitution patterns that govern
labor market adjustment to technological change.

B.8. Gender-Specific Spectral Decomposition

The spectral decomposition reveals striking gender differences in how technological
shocks interact with occupational structure, reflecting distinct employment distributions
across skill space.

Automation’s Gender-Differentiated Impact. Figure B7 reveals that automation constrains
male workers more severely than female workers. For men (Panel A), automation concen-
trates 31% of variance on the smallest eigenvalue (1.95), compared to 27% at eigenvalue
2.15 for women (Panel B). This difference reflects occupational segregation: men domi-
nate production and operative occupations where automation clusters, while women’s
employment disperses across service, clerical, and professional occupations.

The eigenvalue difference—1.95 versus 2.15—implies substantially different adjust-
ment capacities. Male workers face effective elasticity of approximately 1.9, while female
workers retain elasticity near 2.3. This 20% difference in mobility translates directly to
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FIGURE B7. Technology Shock Decomposition by Gender

Variance decomposition of automation (1980) and AI (2018) exposures into eigenshocks for male and female
workers. Gender-specific employment distributions generate distinct substitution structures and eigenvalue
patterns.

wage incidence: male production workers experience pass-through rates approaching
45%, while female workers in similar exposure levels face 38% pass-through. The gender
gap emerges not from different skill transferability but from employment concentra-
tion—men’s overrepresentation in manual-intensive occupations creates fewer escape
routes when automation strikes.

AI’s Convergent Pattern. In contrast, AI exposure shows remarkable similarity across
genders. Both panels display extreme concentration on the smallest eigenvalue: 51% for
men and 34% for women, both at eigenvalue 1.95. Despite women’s higher representation in
cognitive-intensive occupations potentially affected by AL the clustering pattern remains
universal. This convergence suggests Al's broad reach across cognitive tasks affects both
gender-segregated and integrated occupations equally.

The similar eigenvalue loading implies comparable mobility constraints. Both male
and female workers in Al-exposed occupations face effective elasticities around 1.8-2.0,
generating pass-through rates of 45-50%. Unlike automation, where occupational segre-
gation provides some insulation for female workers, AI’s cognitive focus creates uniform
rigidity across gender lines.

Implications for Distributional Analysis. These gender-specific patterns highlight how ini-
tial employment distributions shape technological incidence. Automation’s concentration
in male-dominated manual occupations amplifies its impact on male workers through
both direct exposure and constrained mobility. Female workers’ diversification across
skill clusters—partly reflecting historical exclusion from manufacturing—inadvertently
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provides better adjustment options. For Al, the universal nature of cognitive tasks elim-
inates this protective dispersion, suggesting future technological shocks may generate
more uniform gender impacts while maintaining severe clustering effects.

B.9. The Employment Effects of Automation and AI

As discussed in the main text, clustering shocks lead to smaller employment adjustments
while exacerbating wage disparities. Panel (a) of Figure B8 illustrates the relationship
between changes in log employment shares and relative wage changes for automation. The
CES benchmark (dashed line) rotates counterclockwise, overstating employment shifts,
particularly for negatively impacted occupations. This suggests that the CES framework
underestimates the rigidity in labor reallocation caused by clustering shocks.

Panel (b) presents the same employment effects for AI exposure, revealing a similar
pattern. The CES model again overstates employment adjustments, failing to account for
the constrained worker mobility induced by the skill-clustering nature of Al-exposed oc-
cupations. These findings highlight the importance of incorporating a richer substitution
structure, as captured by DIDES, to better reflect labor market frictions in response to
technological change.

A In(Employment Share)
A In(Employment Share)

A 0
Relative Wage Change
° CES = CNCES CES = CNCES

- 0
Relative Wage Change

A. Automation B. Al
FIGURE B8. Employment Effects of Technological Shocks
Notes: This figure compares employment effects of automation (Panel a) and Al (Panel b) against the CES

benchmark. The CES framework overestimates employment adjustments, particularly in negatively impacted
occupations, due to its failure to account for clustering shocks that restrict labor mobility.

B.10. Construct Job Transition with CPS

Our estimation strategy hinges on observing aggregate job flows across occupations. To
construct our occupation-level panel for the period 1980-2018, we rely on individual-level
data from the US Census Bureau’s March Current Population Survey (CPS). Each March
CPS provides detailed information on respondents’ current occupation as well as the
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occupation in which they spent most of the previous calendar year. We restrict our sample
to individuals aged 25-64 who are employed full-time and have worked at least 26 weeks
in the preceding year, thereby ensuring the reliability of our occupational transition
estimates. We also exclude observations with extreme or inconsistent income values to
mitigate measurement error. Using these data, we construct annual job flow rates for
occupations.

Employing a consistent occupation coding scheme, we generate a balanced panel of
306 three-digit occupations. Given the sparsity of observed transitions at this detailed level,
we further aggregate these occupations into 15 clusters using a k-means algorithm based
on occupational skill requirements. This intuitive clustering groups together occupations
with similar skill profiles, ensuring robust estimates of aggregate job flows and facilitating
subsequent analyses.

Furthermore, as noted by Artug, Chaudhuri, and McLaren (2010), the retrospective de-
sign of the March CPS captures job transitions over a period shorter than a full year—respondents
report the longest-held job from the previous calendar year, typically reflecting employ-
ment around mid-year. To correct for this timing bias, we annualize the observed job

transition probabilities using the transformation 42
ANN 2
e = Hee

*2This approach ensures that no annual job-to-job flows are missing.
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Appendix C. Additional Materials

C.1. Derivation of Employment Shares

This appendix derives the closed-form expression for occupational employment shares
under the multivariate Fréchet productivity distribution.

PROPOSITION Cl1. Given the joint productivity distribution:
- ' -0 -0
Pr(ei(i) < ey,...,€0(i) <€p] =exp [—F (A1e1 - Ap€g )]
the share of workers choosing occupation o is:

. AWFo(AWE, .., Apwd)
o=
F(AwY, ..., Agwd)

PROOF. We derive the probability that a worker chooses occupation o, which occurs when
Wo€o(i) 2 Wyey (1) forall o # o.

First, consider the joint probability that occupation o yields utility less than ¢ and is
optimal:

Pr[woeo(i) < t and wpeo(i) = maxwyre(i)]
OI

= Prwoeo(i) < t and woeo(i) > wyey (i), Vo' # 0]

This equals the probability that all occupational utilities are below ¢, with occupation
o being the highest. Using the law of total probability:

dz

z

£
= fo &Pr[wofeor <z, V0]
Substituting the joint distribution and differentiating:

= fot a% exp [—F (Alwfz_e, . .,Aowgz_e)] dz

t
=[0 AOWSFO (Alwlez_e,...,Aowgz_e)

X exXp [—F (Alwﬁz_e, . .,Aowgz_e)] 0z 9 1dz
Using the homogeneity of degree one property of F:
F (Alw?z_e, . .,Aowgz_e) =z %F (Alw?, . .,Aowg)

Since F, is homogeneous of degree zero (as the derivative of a degree-one homoge-
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neous function):
0,.-0 0,.-6 0 0
Fo (Alwlz sy AoWpz ) =F, (Alwl, .. .,AOWO)
Substituting these properties:

t
= /0 AOWSFO(Alw?, . .,Aowg) exp [—F(Alw?, . .,Aowg)z_e] 0z 9 ldz

_AgW§Fo(A1wd, ..., Aow))
F(AWd,..., Agwd)

t
x /0 exp [—F(Alwf, .. .,Aowg)z_e] F(Alw?, . .,Aowg)Gz_e_ldz
The integral evaluates to:
t
fo exp[-Az %1A027 % 1dz = 1 - exp[-At ]

where A = F(Alwf, . .,Aowg).
Therefore:

AWiFo(AWd, ..., Aow))
F(AwY, ..., Agwd)

Pr[woeo(i) < t and optimal] = (1 - eXp[—At_e])

Taking the limit as t — oo:

o = tlir?o Pr[woeo(i) < t and wpep(i) = nszlxwozeoz(i)]

AW Fo(A1wg, ..., Agw))
F(AwY, ..., Aowd)

This completes the proof. O

Remark: This result crucially depends on the max-stability property of the multivariate
Fréchet distribution and the homogeneity properties of the correlation function F. The
employment share expression shows that occupation o’s share depends on its productivity-
weighted wage (A4,w?9), scaled by how the correlation function responds to changes in that
occupation’s attractiveness (F,/F).

C.2. Derivation of Labor Supply Elasticities

This section derives the labor supply elasticity matrix © from the employment share
equation (A3).
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Starting from the employment share:

AwiFo(AWY, ..., Agwd)
F(Awy, ..., Aowd)

Tlo

Let x, = Aow? and define the wage index W = F(xj, ..., xo)l/ 9. The elasticity with
respect to relative wages is:

dlnmy 0 n XoFo(x1,...,%0)
dln(wy /W)  dln(wy /W) F(xi,...,x0)

sty = (5) (0]

Using the fact that F is homogeneous of degree one (hence F, is homogeneous of

degree zero):
F .
dlnm, e—x"'FOOO' ifo 0

o In(wy /W) Gx"F—IZ""JrG ifo'=0
To obtain the elasticity with respect to absolute wages, we use:

01lnm, 01lnm, _aln(wO,/W) alnno‘aan

dlnw, dln(wy/W)  dlnw, T omw dlnwy

dln(wy /W) -1- olnw and olnw

Since olnw, olnw, olnwy

=Ty

dlnm Xt Foor
0 —9T2% _gn, foro +o

Olnw, Fy
ol F F,
~T0 _ 970700 L g _ O, = 0722 4 (1 - o)
a 11’1 Wo FO FO
Since L, = 7oL, the labor supply elasticity is:
0 X"'F—IT;’O' — Ty ifo#o
0., - 0lnL, _ 0lnm, 1 x]-:A]-w?
°  dlnwy Olnwy
0 xOF—i"" +1-m,| ifo=0
x]-:A]-w?

This completes the derivation of the labor supply elasticity matrix in equation (A4).
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C.3. Zero Row Sum Property of the Elasticity Matrix

A crucial property of the labor supply elasticity matrix © is that its row sums equal zero,
implying that uniform wage changes do not affect relative employment. This result follows
directly from the homogeneity of degree one property of the correlation function F.

PROPOSITION C2. For the elasticity matrix © defined in equation (A4), we have:
0
> Oy =0 forallo
o'=1

PROOF. Starting from the definition of employment shares in equation (A3):

AWIFo (AR, ..., Aowd)
F(Awd, ..., Agwd)

7TO:

Let x, = Aowd for notational simplicity. The sum of elasticities for row o is:

o]

0 dlnm
Z B0’ = Z :
o’'=1

g2 0lnwy

0 0 0lnm,

g7 0lnxy

0}
xOIFOOI
-0 [#5
1 o

—TEO/] +0 '10=O’

o'=

0 0}

A Y Xy Foy +0(1-10) =0 ) Ty

o'=1 o'+o
Since 28:1 iy =1, we have 1 - 7ty = ¥ ., 7,7, Which simplifies the expression to:

0 0 0
Z @OOI = Z xO’FOO’
o'=1 F 0 0'=1
Now we invoke Euler’s theorem for homogeneous functions. Since F is homogeneous

of degree one, its partial derivative F, is homogeneous of degree zero. By Euler’s theorem
applied to Fy:

O 9F
M Xy—>=0-Fy=0
0,:1 axol

But 3 aF = = F, by definition, therefore:

0
Z xo’FOO’ =0

o'=1
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This immediately implies:

O 0
> Opy =7 -0=0
o'=1 Fo

O]

This zero row sum property has important economic implications. It ensures that pro-
portional wage increases—such as those resulting from aggregate productivity growth—do
not induce occupational reallocation. Only relative wage changes, such as those caused by
asymmetric technological shocks, trigger worker mobility across occupations. This prop-
erty is essential for the model’s consistency and ensures that the labor market responds
only to distributional shocks rather than level effects.

C.4. Proof of Eigenvalue Properties

This section proves the eigenvalue properties of the labor supply elasticity matrix © stated

in Lemma 1.

PROOF. We establish each property in turn.
Part 1: Existence of zero eigenvalue with uniform eigenvector.
From Section C.3, we know that ¥’ ©,, = 0 for all o. This implies:

©-1=0

where1=[1,1,...,1]'. Therefore, A = 0 is an eigenvalue with right eigenvector u; = 1//O
(normalized).

Part 2: Non-negativity of all eigenvalues.

The matrix © has the structure:
9[’C"F—12"‘)+1—7t0] >0 ifo=0

Opy =
F, :
G[X"'F—O"‘"—nof]<0 ifo+o

The sign-switching property of F ensures F,, < 0 for o # o/, making © a matrix
with positive diagonal and negative off-diagonal elements. Additionally, the diagonal
dominance condition holds:

®00:_Z®OOI>O

o'+0

By the Gershgorin circle theorem, all eigenvalues lie in the union of discs:

AeU{zeC:|z—@oo|§ > |®OO,|}

0 0'+0
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Since Opp = Y.y |Opo| (from the zero row sum), each disc is centered at a positive point
with radius equal to the center. Therefore, all discs lie in the right half-plane: Re(A) > 0.

For a real matrix with real eigenvalues (which © has due to its economic interpretation),
this implies A > 0.

Part 3: Uniqueness of zero eigenvalue.

Suppose A = 0 has geometric multiplicity greater than 1. Then there exists a non-
uniform vector x # c1 such that ©x = 0.

Without loss of generality, normalize x so that max, X, = 1 and min,x, < 1. Let 0* =

arg max, Xo. Then:
0=(0x)p+ = Oprpr + Z O o X

o' +o0*

Since x, < X+ = 1 for at least one o’ and ©,«, < 0 for all o’ # 0*:

Z @O*leol > Z @0*01 = —@O*O*

o'+0* o'+0*

This gives (©x),~ > 0, contradicting ©®x = 0. Therefore, the zero eigenvalue has

geometric (and algebraic) multiplicity 1.
O

C.5. Additional Derivations for Dynamic Model
C.5.1. Derivation of System in Changes (Section A.15)

This section provides detailed derivations for the dynamic system expressed in growth

rates.
Production equilibrium in changes. Log-differentiating the wage equation yields:
olnwy i1 +1nLo i1 =InYpq +1n sﬁ)m
This implies wages adjust according to:
Wi1 = W(Lgy1, Wiin)
where W, represents changes in fundamentals.

Evolution of adjusted mobility. Starting from the definition:

0/k
~ AO,JtZO(é’,t
Hoo’,t = 0/k 0/k
F(Al)tzol/}t, . .,AO’tZO(/)} )
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Taking the ratio across time:

- 6/x
Hoo! t Ay tZoo’ t/AO' t- 1Zoo’ t-1

= = 0
Hoo’,t-1 F(Al,tzol/;) )/F(Ay- 1201/ )

Using Zyo ¢ = exp(BVO,)tH +1n Wor ¢ = Toor) and ig ¢t = exp(Vo,r — Vo t-1):

- ; BO/k - B/k
Hoo,t Ao tuo’ t+1W0’,t

Hoo’,t-1 F({Ao”,tzoo")t/Ft_l}(())"=1)

where Fy 1 = F(Ay;- 1Zol/t v Ao 1Zoét 1)
- BB/k G/K

o' t+1 o” t

Using the homogeneity of F and noting that A ,» ono" JFt-1 = foor 11 AO// U

N ; -B0/k - 0/k
Hoo',t Aoy tuo’ t+1W0’

( K -0/k
Hoo’,t—l F({Hoo”t le” tuou /t+1 0/// t}o” 1)

Evolution of expected utility. From the value function:

K 0/k _K
VO,Z’ = glnF(Al tZOl/ E AO)tZO(/),t) +'Y6
The change in value is:
F(Ay 2% )
Lt+1%01, t+17 -
Vo,t+1 - Vo,t = 6 0/x
F(A1LiZg 55 )
Using homogeneity to factor out F(Aljtzgl/ ';, Sl
(0]
0/k
A /! Z
K o",t+1%00" 11
Vo,t41 = Voot = 9 InF S/K
F(Al t 01 - ) o''=1
Substituting A, ; +IZO({ " 41 Ao,,}tzgg ,'f} t‘Ao”,t +12§£ ,‘f} ;.1 and recognizing thatAOu)tZSé ,'f) JFt =
lj-oo”,t:
BO/x G/K K/0

uo t+1 = F({UOO” tAo” t+1u0" 142 o” t+1 o” 1)
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Labor market clearing. Employment evolves through transitions:
Lot = Z Horo,tLor t-1
Ol
where observed transitions relate to adjusted rates via:

Hoo',t = ﬁoo’,tFo’(ﬁol,t; S lloO,t)

These equations form a complete system characterizing the dynamic equilibrium in
growth rates, preserving the DIDES structure through the correlation function F.

C.5.2. Derivation of Dynamic Hat Algebra (Section A.16)

This section derives the counterfactual evolution equations for the dynamic model.

Counterfactual wage determination.. From the production equilibrium, counterfactual
wages relate to baseline wages through:

Wo,t+1 = =

1
o ! I
Wo,t+1 _ Yf+1So t+1
Wo,t+1

Lo,t+1

where hats denote ratios of counterfactual to baseline growth rates.

Evolution of counterfactual transition probabilities.. Starting from the ratio of counterfac-
tual to baseline growth rates:

~ - ~ BG K ~0/K
PLZ)o’,t HOO' tAO' o, t/+1Wo’/

~/

Denominator
Hoor -1 [ ]

The denominator requires careful manipulation. Using the ratio of counterfactual to
baseline correlation functions:

/ 0 /e
F({hyn 1 1AL BO/x 3oy )

o't o” t+1 o”t

[Denominator] = B0/x e I
F({P'oo”,t—le”,tuo// t+1%or, t}o”)

Recognizing that counterfactual growth rates equal baseline growth times hat values,
and using homogeneity of F:

I“Loo" t-1 - 0/k ~0/k
=F —— "Hoo"t" Ao” tugu /t+1W0,/, ¢
Uoo”,t—l o
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Therefore, the recursive formula is:

~ BO/k ~0/k

7 Moot 1“00' tAO' tuo’ t+1 %ol t

Hoo',t = A BO/k AG/K
({uoo” t— 1”00"1‘ o” tuo” t+1 o”t o” 1)

Evolution of counterfactual expected utility.. Following similar steps for the utility growth

rates:

uo t+1

uo t+1 =
uo,t+1

F({ﬂooﬂtA’ /[SG/K IG/K }O")K/e

o' t+1 o” t+2 o” t+1

BO/x 9/K }o”)K/e

F({Hoo” tAo” t+1u0n 142 O// 41

Using the same homogeneity argument:

B6/k AG/K

- K/0
Uot+1 = F({Hooﬂ tHoo” t+1Ao” t+1uoﬂ t+2Worr 111 o" 1) /

Observed transitions and employment evolution.. The observed counterfactual transitions

incorporate correlation effects:

/ ~/ ~7 ~/
oo’ t = uoo’,tFO’(uol,tJ e HoO,t)

Employment evolves through the transition matrix plus exogenous flows:
LZJ,t = I“L:)’o,tL:)’,tfl +ALo,t
O/

These equations provide a complete characterization of counterfactual dynamics,
preserving the DIDES structure through the correlation function F while enabling analysis

of alternative technological scenarios.

C.5.3. Initial Dynamics with Unexpected Shocks

For unexpected shocks at t = 1, the economy begins at baseline equilibrium with 1, ¢ =1,
Hgol)o = loor,0, and Lg,() =Lo,0-
Deriving the initial utility adjustment.. The baseline expected utility at ¢ = 0 is:

0
tio,0 = F({Ag,0Z0 0} 91)"
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Since initial conditions are identical (Ag,,0 = Ay 0, Wy o = Wor 0), WE Can rewrite using

counterfactual notation:

0 K/e
Ao’,O Zoo’,O / 10/
uO,O = {A/ . Z, -AO/,OZOO/ 0
o’,0 “00',0 o'=1
Since the ratios equal unity at t = 0:
19/k 0
tto,0 = F({Aly o Zot 191"/
After the shock, counterfactual utility at ¢ = 11is:
19/ 0
w1 = F({Ay 12000519 )"
Taking the ratio and using homogeneity of F:
18/k
ulo,l F({Ao’ 1 oo{ 1}0 )K/e
10/x
400 F({AY  Zoo))
/6
9/« 0
Ao’ IZoo’ 1

=F /e/K
F({Ao” 000", 0}0")

Connecting to baseline transition probabilities.. Note thatatt = 0:

6/x
Ay OZoo’ 0

ﬂoo’,o =
F( {AO":OZOO",O}OH)
0/x
AOI:OZOOI 0 A/
’ ZIG/K 0,0
o’,0%00’,0

- o/x
F Ay OZOO” 0 4/ Z,e/K
o7 Ao 0Z00 0
A:)” OZoo” 0 ’ g o

Since initial conditions are identical, the ratios equal unity, yielding:

ZIG/K

/
00’,0

0/x
Ao’ OZoo’ 0

goo’,O = 10/
F({Ao” 0 oo{’ 0}0")
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Combining this with the utility ratio:

K/0

/ A/ Z/G/K 0 /
uo,l Flia 0/,1%00/,1
= 00,0~ /¢
u0,0 A, ZIG/K

0',0700',0 ) 511
K/0
= F({fooro- A 205 /
= Hoo’,0 = £o/,1%00/ 1
Since Zy + = exp(BVy 41 + 1IN Wy ¢ = Toor):

01 = F({Hoo’ OA Ie/K ,Be/K}o’ )K/e

o, 1o 1 Yo 2
Computing the initial hat values.. The baseline utility growth follows:

0/k.-B0/k 0
Uo1 = F({Hoo’ OAo’ 1WO//1 ([)312/ } 1)K/

The hat value is:

iy
A uo,l
0,1~ =
T U
k/0
Al IG/K 136/k 0 /
F Poo', 04011 Wor 1 Uy
- ~ BG/K
F({Moo”,OAo”,lwon 1% 2 }0”)

Recognizing that A/, | /Ay 1 = Ay 1 and similarly for other variables:
K/0

)y fugn )
N - ~0/k~PBO/K Uy 1/ o,
U1 =F|{ o1 'Ao’ AWor 1% 2 o .
Ol,l/uO')l 1

Note that u:), l/uO/ 1= (ug, l/uO/’O) . (uo/)o/uoz)l) = u:)’)l/uo’,l = 1:1,01,1.
ﬁG/K

Defining 9,y 1 = Roor 1”01 1

~ ~ 0 0 0
Up1 = F({‘(}oo’,le’ lwol/'; E’ éK}o’ l)K/

Initial transition probabilities.. Following parallel derivation for transition probabilities,

starting from:
0/x

/ le/K
A 00’,1

0,1 oo’l

o 0
Hoo’,1 F({AO” ) OO{IKI}OH)/F({AO// lzooll 1}0”)

IjL:)o’,l /AOI 14
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After similar manipulations:

A . 0/k~R6/K
19()(),)1140,111,1/0',1 uO',Z

’ ~0/k ~[30
F({{}OO",IAO",IW [ uﬁ /K}O )

0",170",2 Jo''=1

~ _
uoo’,l -

The adjustment factor 9, ; captures the combined effect of the initial shock and
forward-looking expectations, encoding how unexpected changes propagate through the
DIDES structure.
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